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PEMBANGUNAN JASAD SERAMIK TANAH LIAT BERLIANG 

MENGGUNAKAN EMPAT JENIS SUMBER BIO TERBUANG 

 

ABSTRAK 

 

Objektif utama kajian ini ialah untuk mengesahkan kemungkinan untuk 

menghasilkan bahan seramik tanah liat berliang. Bahan mentah yang digunakan 

adalah terdiri daripada tanah liat berkaolinit dari Laos (LC) dan tanah liat berilit dari 

Malaysia (MC) yang dicampur dengan sumber bio terbuang (serbuk  kenaf, gentian 

kenaf, sisa batang pisang dan hampas tebu) sebagai agen pembentuk liang (PFA). 

Pencirian serbuk mentah tanah liat LC dan MC serta sisa sumber bio dijalankan 

terlebih dahulu menggunakan XRF, XRD dan TGA/DSC.  Beberapa jenis dan amaun 

sisa sumber bio yang berbeza telah dicampur ke dalam jasad anum tanah liat. Amaun 

sisa yang digunakan adalah 10, 20 dan 30 % berat.  Campuran serbuk tergranul telah 

dimampat dengan penekan hidraulik menggunakan acuan keluli tahan karat 

berdiameter 23 mm pada tekanan 50MPa. Pemerhatian menunjukkan penggunaan 

sisa sumber bio tidak mendatangkan seberang masalah kepada pembentukan sampel. 

Selepas dikeringkan, jasad anum seramik dibakar pada suhu berbeza (1100, 1125, 

1150 dan 1175oC) selama 3 jam pada kadar 5oC/min.  Kesan penambahan sisa ke 

atas sifat-sifat seramik berliang dinilai melalui ujian pengecutan, ketumpatan pukal, 

keliangan, serapan air, kekuatan mampatan, mikroskop imbasan electron (FESEM) 

dan tomografi komputer. Analisis XRD mengesahkan komposisi mineral bahan 

mentah tanah liat adalah  kuarza dan kaolinit sebagai fasa utama dalam tanah liat LC, 

manakala tanah liat MC mengandungi fasa kuarza dan illit. Selepas pembakaran, 

hanya fasa hablur kuarza dan mulit yang dikesan. Kesemua sisa sumber bio berjaya 

menghasilkan jasad berliang seramik bagi kedua-dua tanah liat (LC dan MC) pada 
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darjah yang berbeza. Kajian ini juga berjaya mengesahkan bahawa kesan relatif 

setiap sumber bio ke atas kedua-dua tanahliat adalah sama. Sebagai contoh, sisa 

hampas tebu memberikan keliangan yang tertinggi pada semua suhu bakar dan 

peratus kandungan yang diuji. Ini diikuti oleh gentian kenaf, serbuk kenaf dan sisa 

batang pisang.  Sejajar ini, sifat lain seperti ketumpatan akan menjadi yang terendah 

mengikut urutan sisa yang telah dinyatakan. Selain itu juga, kajian mikrostruktur 

menggunakan kaedah tomografi komputer memberi maklumat tambahan yang 

berguna terhadap bentuk liang disamping imej 3 dimensi yang dihasilkan dengan 

FESEM. Sebagai kesimpulan, hasil kerja ini telah berjaya membuktikan bahawa sisa 

sumber bio boleh menyumbang terhadap pembangunan teknologi hijau yang 

berkaitan dengan penghasilan jasad seramik berliang.  
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DEVELOPMENT OF POROUS CERAMIC CLAY BODIES USING FOUR 

DIFFERENT TYPES OF BIORESOURCE WASTES 

 

ABSTRACT 

 

The main objective of this study is to ascertain the possibility of fabricating porous 

clay ceramic materials. The raw materials consist of a kaolinitic Laotian clay and an 

illitic Malaysian clay, mixed with bioresource wastes (kenaf powder, kenaf fiber, 

banana stem and sugarcane wastes) as the pore-forming agents (PFA). The raw 

powders, i.e. Laotian clay (LC), Malaysian clay (MC) and bioresource wastes were 

initially characterized using XRF, XRD and TGA/DSC. The clay ceramic green 

bodies were fabricated with different types and amounts of bioresource wastes in the 

clay bodies (10, 20 and 30 wt%). The granulated powder mixtures were pressed 

hydraulically using a round stainless steel mould 23 mm diameter, under a pressure 

of 50MPa. It was observed that different types of bioresource waste additions did not 

create any shaping problems. After drying, the ceramic green bodies were fired at 

different temperatures (1100, 1125, 1150 and 1175oC) for 3 hours at a heating rate of 

5oC/min. The effects of adding these wastes on the properties of the porous clay 

ceramics were assessed by shrinkage, density, porosity, water absorption, 

compressive strength, scanning electron microscopy (FESEM) and computed 

tomography (CT) tests.  XRD analyses confirmed that the mineralogical composition 

of the raw clays consisted of quartz and kaolinite as the major minerals in the LC 

clay, whilst illite and quartz were in the MC clay.  Upon firing, the crystalline phases 

detected were only quartz and mullite. All the four bioresource wastes were 

successful in producing porous ceramic bodies in both clays but with varying degrees 

of porosity. This work had succeeded in establishing that the relative effects of the 
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different bioresoure wastes were the same. For example, the sugarcane waste gave 

the highest porosity at all temperatures and percentages tested. This was followed by 

kenaf fibre, kenaf powder and banana stem wastes.  Correspondingly, property such 

as density will be the lowest for the sequence of wastes mentioned. It was also 

established that the microstructural study using computed tomography provided 

useful additional information on the shape of the pores apart from the 3- dimensional 

image by FESEM. In conclusion, this work has successfully proven that bioresource 

wastes can contribute towards promoting green technology with regards to porous 

ceramic body production.    
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1 CHAPTER 1  

INTRODUCTION 

 

1.1 Introduction 

Over the last few years, there have been increasing interests in porous 

ceramic materials which are particularly important for ceramics and other industrial 

applications (Perez-villarejo et al., 2012; Sutcu and Akkurt, 2009). For industrial 

applications, porous ceramics with open-pores are required for gas and liquid 

filtration (Li et al.,2008a), membrane support and purification (Dong et al., 2006), 

whilst porous ceramics with closed-pore are suitable for thermal insulation and 

structural components because of their good thermal shock resistance and low 

specific gravity, respectively (Barea et al., 2005; García et al., 2010).  

 

 Clays are one of the most important raw materials for producing porous 

ceramic materials and have been widely used today, because clay materials are of 

low cost. Nowadays, several techniques for producing porous clay ceramics include 

addition of organic compounds as pore-forming agents (PFA).  Porous clay-based 

ceramics are also useful where there is a need for high abrasion resistance (Kiyoshi 

et al., 2010; Kizinievič et al., 2013). These qualities are dependent on the chemical 

composition of the clays, the fabrication methods and firing temperatures   

(Malaiškienė et al., 2011; Rafael et al., 2005).  The purpose of firing is to improve 

the durability of the clay products and that is achieved through vitrification. 

Vitrification is the bonding process of clay particles that can only be achieved under 

the influence of heat as similarly reported by Liu et al., (2011).  
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In general, porous clay ceramics are based on natural clays, such as kaolin, 

where there is a high volume fraction of a glassy phase due to the vitrification of 

impurities in the clays. The porosity in a material also affects changes in mechanical 

properties. A highly open porosity is desirable to increase of the specific surface area 

(Plappally et al., 2011), but an increase in the porosity also decreases the mechanical 

strength (Demir et al., 2005; Demir, 2006; 2008). High open porosity may be 

required concurrently in order to use porous materials under severe operating 

conditions (Alves et al., 2012).   

 

  Therefore, the preparation of porous ceramics with controlled of 

microstructure has been a subject of constant interest during the last decades. 

Common processing techniques include dipping (sponge method) and so-gel 

techniques (Gregorova and Pabst, 2007). The foams produced by dipping (sponge 

method) produce large pores and high porosity whilst the so-gel technique produces 

pores in the nanometer size range and extremely high porosity (Gregorova and Pabst, 

2007). There are also other methods such as biomimetic processing (using pyrolized 

wood templates), ceramic hollow spheres process and sacrificial (pyrolyzable) pore 

forming agents (PFA), i.e. natural biopolymers which burn out during firing (Korat et 

al., 2013; Shujing  et al., 2008; Wen et al., 2008).  A  number of PFAs have been 

proposed and used in porous ceramic technology such as  polyvinyl chloride, 

polystyrene, polyethylene (Hwu et al., 2002; Jui-Ming Yeha and Sheng-Chieh Hsua, 

2009), rice husk (Atta et al., 2012; Görhan and Şimşek, 2013), paper waste and tea 

waste (Demir, 2006).   
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1.2 Problem statements 

Clays are one of the most abundant natural materials on earth. In general 

terms, clays have good properties such as high strength, low thermal expansion, high 

thermal shock resistance and, most importantly, they are readily available at low cost 

when compared to other ceramic materials like Al2O3, ZrO2, SiO2, TiO2 and SiC.  

Clays have been widely used as a raw material with many industrial applications 

such as ceramics, paper, paint, petroleum industry and catalysis (Kizinievič et al., 

2013). Their applications are tightly dependent on their structures, as well as their 

chemical composition and physical properties (Meseguer et al., 2010; Njoya et al., 

2012; Pardo et al., 2011a). Knowledge of these properties is very important for 

understanding the technology of ceramic fabrication and the optimization of the 

firing schedules (Alcântara et al., 2008; Gaidzinski et al., 2011).  

 

 In this study, porous clay ceramics were fabricated using two clays deposits 

and in this regards two types of clay were used i.e. one from Lao, PDR and one from 

Malaysia. The Lao PDR clay (LC clay) has so far been used for brick making only. 

Furthermore, there are not many available literature on Laotian clays. So this work 

aims to diversify the use of the Laotian clay and also to increase the literature on clay 

from Laos. The Malaysian clay (MC) has been used for cosmetic and flux in welding 

rods. So this work aims to diversify its use.  

 

The volume of wastes from daily human activities and industrial production 

continue to increase rapidly in tandem with a growing world population (Mucahit et 

al., 2012).  Most nations are considering controls on industrial products in order to 

reduce the rate of solid waste generation. Local and regional governments worldwide 
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have mandated wastes to be separated for recycling. Many countries in the world, 

especially the developing countries, see industrialisation as a necessity to build self-

reliance and uplifting the nation’s economy (Rambaldi et al., 2007; Raut et al., 

2011). In most cases, the wastes are thrown away in dumps or dispose by open firing.  

Here, environmental pollution is a major problem associated with rapid 

industrialisation, urbanisation and rise in living standards of the people (Pardo et al., 

2011).  The different types of wastes can be sourced from 2 groups, viz those that 

can be classified as industrial wastes (granite dust, marble dust, glass rejeds and 

petroleum waste) (Monteiro et al., 2004; Eliche-Quesada et al., 2011), and those that 

can be classified as wastes of bioresource origin (sawdust, starch, tea waste, rice 

husk, palm husk, and paper waste) (Sutcu and Akkurt, 2010; Atta et al., 2013). 

 

Accumulation of unmanaged industrial or agricultural solid waste especially 

in developing countries has resulted in an increased environmental concern (Şan et 

al., 2009).  At present, various governments have imposed that all household units 

have to manage their wastes in terms of reuse and recycling.  Recycling of the wastes 

as a sustainable material appears to be a viable solution, not only to pollution 

problems but also as an economical option to reuse the waste materials (Cusido and 

Cremades, 2012).  Recycling of waste materials is rapidly increasing and becoming 

very important today. The utilizations of wastes are intended to reduce the negative 

effects of their disposal towards the improvement in the quality of life (Eliche-

Quesada et al., 2011).  

 

The natural bioresource wastes are one of the important materials that have 

been widely used for the construction industry, apart from being soil organic and 
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environmental friendly (George et al., 2002; Chen et al., 2012). They also have other 

potentialities such as to conserve non-renewable resources, save energy, improve 

human health, environmental friendly, and most importantly, readily available and of 

low cost when compared to other materials (Demir, 2008; Raut et al., 2011). 

  

Recently, there has been an increasing interest in the applications of porous 

ceramic materials in many industrial areas (Shujing et al., 2008).  Clay as the ceramic 

raw material is one of the most important candidate materials to form porous ceramic 

with good performances. The creation of porous ceramic material is attractive 

because its properties are more stable in severe environments and can be engineered 

to satisfy specific requirements (Bai, 2010; Alonso-Santurde et al., 2012).   

 

Porous clay ceramic materials can be developed by several techniques, via 

the adding of chemicals, polymers, industrial wastes and bioresource wastes as the 

pore-forming agents (PFA).  PFA has been widely used in the development of porous 

clay ceramics (Korat et al., 2013).   

 

Different types of pure raw ceramic materials (Al2O3, ZrO2, SiC and TiO2), 

polymers (PMMA, polystyrene foam and PVA), and composite materials were also 

used to prepare the porous ceramic materials. However, these materials are of high 

cost and need high firing temperatures (Hwu et al., 2002).  Other materials that 

influence the development of porous clay ceramics have witnessed the incorporation 

of industrial wastes (granite dust, marble dust, waste glass and petroleum waste) into 

ceramic bodies. Nowadays, the range of materials used is increasingly worldwide.  
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As an example, Vieira et al. (2004) have evaluated the effect of granite dust 

incorporation into a ceramic clay body.   

 

Lastly, it can be seen that the development of porous clay ceramics has been 

carried out by using bioresource wastes (rice husk, sawdust and tea waste and coffee 

waste) as PFAs.  Several types of different bioresource wastes have also been used as 

the raw material to develop porous clay ceramics.  Şan et al. (2009) reported the 

successful investigation of the effect of rice husk additives on the porosity of fired 

clay.  Demir (2006; 2008) also investigated the organic nature of the tea waste in 

clay ceramic bodies. Many authors conducted and demonstrated that by using 

bioresource waste materials of high potentialities that can save energy, cost of 

production and enhance porous clay ceramic quality (Chen et al., 2011; Fangli et al., 

2009;  Fethi et al., 2006). 

 

This study compares the properties of porous ceramics by adding different 

bioresource wastes e.g. kenaf powder, kenaf fibre, banana stem waste and sugarcane 

waste as pore-forming agents (PFAs). Previous studies in many research works have 

shown the successful incorporation of chemicals, polymers, industrial wastes and 

some bioresource wastes. Unfortunately, no researcher has studied the use of kenaf 

powder, kenaf fibre, banana stem waste and sugarcane waste in terms of 

incorporations to develop porous clay ceramics. The types of pores produced (open 

or closed) will be part of this study. Different type of the green raw materials (clays 

and bioresource wastes) can be used to ensure a more comfortable way of life, 

energy saving and environmental friendliness.  It is believed that this approach of 

using clays and bioresource wastes is a step for promoting green technology.  
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1.3 Objectives of the study  

Therefore, the objectives of this research are: 

 To study two raw clay materials i.e. Laotian clay (LC) and Malaysian clay 

(MC), in order to increase knowledge and literature on the vitrification 

behaviours of the two clays  upon firing. 

 To study the use of kenaf powder, kenaf fibre, banana stem waste and 

sugarcane waste as pore-forming agents (PFA), in terms of incorporations to 

develop porous clay ceramics and the consequent properties. 

 

1.4 Scope of research  

In general, the research work is divided into two parts that are described in 

detail as follows. The first part is the preparation of the Laotian clay (LC) to obtain 

results after firing at different temperatures. Then selected temperatures were chosen 

for firing of clay body mixed with bioresource wastes (kenaf powder, kenaf fiber, 

banana stem waste and sugarcane waste) respectively at different amounts. Similarly, 

the second part is the preparation of the Malaysian clay (MC) which was fired on its 

own before being followed with bioresource wastes additions into the clay body. The 

products produced were then characterized for all properties such as XRD, density, 

porosity, water absorption, strength, and morphology using a Field Emission 

Scanning Electron Microscope (FESEM) as well as computed topography (CT). 
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2 CHAPTER 2  

LITERATURE REVIEW 

 

2.1 Types of clays  

Clay is the oldest ceramic raw material. Clay has been defined as a geological 

deposit, less than 2 micron in size, that forms a coherent sticky mass when mixed 

with water and hardens when fired. It consists primarily of hydrated aluminium 

silicates and widely used in the manufacture of many traditional clay-based ceramics 

such as the bricks, tile, pottery and cements (Gualtieri et al., 2010; Jordán et al., 

1999; Jordán et al., 2009). The mineralogical and chemical compositions of clays 

determine the ceramic behavior such as plasticity, shrinkage upon drying and firing 

fineness of grain and colour after firing (Jordán et al., 2009). There are four main 

types of clays. 

 

2.1.1 Kaolin (China clay)  

  Kaolin is a primary clay formed over many millions of years by the 

decomposition of granite rocks (Horrocks, 2005). Normally, it is deposited near the 

parent rock without much transportation. Hence, kaolin is almost pure and has bigger 

particle size. Kaolin is normally white in colour and is used in ceramic bodies for its 

whiteness, e.g. paper filler, paper coating, paints, etc. 

 

2.1.2 Ball clays  

Ball clay is a secondary clay deposit formed after the decomposition products 

of granitic rocks are transported by rain, snow, etc. As such, the particles size is finer 

and it contains more impurities compared to kaolin. Ball clay is valued for its high 
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plasticity, dry strength, green strength, bonding nature, etc. The high plasticity 

facilitates shaping and finishing of ceramic bodies, and the high strength allows 

undried clay article to keep their shape and withstand all types handling (Aras, 2004; 

Bruce and Meunier, 2008). 

 

2.1.3 Fireclays 

Fireclay, like the china clays and ball clays was formed by the 

kaolinisation of feldspars. It is also a secondary clay and normally deposited 

together with fallen trees that turned into coal under pressure over long periods 

of time. Hence, fireclay is normally formed together with coal deposits. 

(Horrocks, 2005; Lee and Yeh, 2008).  Fireclay find restricted use in some 

sanitary ware bodies, but find their main usage in refractory products (Jordán et 

al., 1999; Jordán et al., 2009).  

 

2.1.4 Bentonites 

This is a general term for clays containing smectites (or montmorillonites) as 

the main clay mineral. The clay minerals are not kaolinite compared to the previous 

three clay types. The clay mineral has a structure that can absorb water between the 

layers of the structure. This interlayer absorption results in swelling of the clay and 

hence this type of clay is termed an expanding clay (Gualtieri et al., 2010; Lingling et 

al., 2005), often used in cosmetics and drilling muds. Although they are extremely 

plastic and show very high dry strength, bentonites are never used in high proportion 

in whiteware bodies since they induce very high drying shrinkage and adversely 

affect deflocculation characteristics (Meseguer et al., 2010). 
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2.2 Types of clay mineral groupings 

   Clay minerals are layer silicates that are formed usually as products of 

chemical weathering of other silicate minerals on the Earth's surface (Cultrone et al., 

2005; Garrido-Ramírez et al., 2010). There are three main groups of clay minerals. 

 

2.2.1 Kaolinite group  

This includes kaolinite, dickite, nacrite, and halloysite, which are formed by 

the decomposition of orthoclase feldspar (e.g. granite). 

 

2.2.2 Illite group  

This includes hydrous micas, phengite, brammalite, celadonite, and 

glauconite (a green clay sand) formed by the decomposition of some micas and 

feldspars predominantly in marine clays and shales. 

 

2.2.3 Smectite group  

This includes of the montmorillonite, bentonite, nontronite, hectorite, saponite 

and sauconite, formed by the alteration of mafic igneous rocks rich in Ca and Mg, 

and form weak linkage by cations (e.g. Na+, Ca2+).  

 

2.3 Structure of clay minerals  

The different types of clay minerals result in unique chemical and behavioral 

properties due to the structure and arrangements of the aluminium silicate building 

blocks (Kwame et al., 2012).   The two basic building blocks of all clay minerals are 

the silica tetrahedron and the aluminum octahedron (Garrido-Ramírez et al., 2010). 

When scientists talk about the 1:1 or 2:1 clays, it is based on the number and 
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arrangement of the tetrahedral (silica) and octahedral (alumina-magnesia) sheets 

contained in the crystal units.  

 

The layer structure of clays minerals can be classified into two different 

groups.   

 

(a) the 1:1 clay minerals consisted of one tetrahedral sheet and one octahedral 

sheet, and examples would be kaolinite and serpentine, 

(b)  the 2:1 clay mineral consisted of an octahedral sheet sandwiched between 

two tetrahedral sheets as in  illite, smectite, attapulgite and chlorite.  

 

Figure 2.1: Layers structures of clay minerals (Brindley and Brown, 1980) 

 

 

Illite (2:1) 

Non-expansive 

Vermiculite (2:1) 

Moderately 

Expansive 

Smectite (2:1) 

Highly Expansive 

Chlorite (2:1) 

Non-expansive 

Kaolinite (1:1) 

Non-expansive 
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Kaolinite is a two layer 1:1 silicate, (Al2O3.2SiO2.2H2O), and is the principal 

example of its group.  It is structurally formed by one layer of tetrahedral silica 

(SiO2) and one layer of octahedral gibbsite (Al2O3.3H2O) and bearing no cations or 

H2O molecules between the structural layers (George et al., 2002).  It is well-known 

that kaolinitic clays is one the most widely used clay as raw material in the 

manufacture of ceramics (pottery, tile and whitewear), cements (Guggenheim, 1995).   

 

The 2:1 types of clay minerals are divided into two parts, i.e. expanding layer 

and non-expanding layer as shown follows.  

 

Expanding layer: The 2:1 group (mostly, montmorillonite) is structurally 

formed by three layer of clay minerals e.g. Tetrahedron - Octahedron - Tetrahedron 

(TOT) layers as presented in Figure 2.1.Table 2.1 shows the properties of clay 

minerals (Bruce and Meunier, 2008).   

 

Non-Expanding layer:  The fine-grained micas or illite is a phyllosilicate or 

layered clay. Its structure is constituted by the repetition of Tetrahedron – 

Octahedron – Tetrahedron (TOT) layer as presented in Figure 2.1. The interlayer 

space is about 10 Å and is mainly occupied by poorly hydrated potassium cations 

responsible for the absence of swelling (Buchwald et al., 2009). Structurally illite is 

quite similar to muscovite with slightly more silicon, magnesium, iron, and water, 

and slightly less tetrahedral aluminum and interlayer potassium (Meseguer et al., 

2011). Summary of the clay properties is also shown in Table 2.1. 
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Table 2.1: The properties of the clay minerals 

Formula Properties 

 

Kaolinite:  

 

(Al2O3 .2SiO2. 2H2O) 

Fixed  layer type 

- No shrink-swell 

- No interlayer activity 

- Low cation adsorption 

- Larger particle size (0.1 - 5 

µm) 

 

Illite: 

 

(K,H3O)(Al,Mg,Fe)2(Si,Al)4O102[(OH)2,(HO)] 

Very limited expansion 

- Medium cation adsorption 

- Limited internal surface 

- Properties between 

kaolinite and vermiculite 

- Very fine-grained 

Montmorillonite:  

 

 

(Na,Ca)0,3(Al,Mg)2Si4O10(OH)2•n(HO) 

Freely expanding 

- Water in interlayer 

- Large shrink-swell 

- Large internal surface 

- Poorly crystallized 

- Small size 

- Large cation adsorption 

 

 

By comparison, to the illite and kaolinite, the swelling behavior of 

montmorillonite is beneficial in many applications such as nanocomposites 

(Guggenheim, 1995), but causes problems in ceramic processing by affecting 

ceramic suspensions and in fired products (Kwame et al., 2012).  Structures and 

formulas of kaolinite, illite and montmorillonite are presented in Figure 2.2 
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Figure 2.2: Structure of the main clay minerals: (a) kaolinite, (b) illite and (c) 

montmorillonite based on combined sheets (Bruce and Meunier, 2008) 

 

2.3.1 Physical properties of the clay minerals 

The properties of clay minerals include plasticity, shrinkage upon firing and 

air-drying, fineness of grain, colour after firing, hardness, cohesion, and capacity of 

the surface (Dionisio et al., 2009).  On the basis of such qualities, clays are variously 

divided into classes or groups.  Kaolinite exists only as very small, hexagonally 

shaped platy crystals, varying from less than 0.1 µm to 2 µm in diameter, although 

occasionally larger crystals of up to 20 µm in diameter are formed (Cultron et al., 

2005).  The kaolinite particles are flaky in shape. Some large kaolin flakes are 

stacked together to form agglomerates. 

 

Since clay minerals are so small, they are best observed under an electron 

microscope. The montmorillonite consist of thin, platy crystals, so small that their 

shape is difficult to discern, even with the electron microscope.   An estimate of the 

illite sizes is in range from 0.1 to 2 µm in diameter. The illites are very fine-grain 

particles, as small as 0.05 µm (Figure 2.3a), as compared to kaolinite (Figure 2.3b) 

and montmorillonite (Kwame et al., 2012).    

(a) (b) (c) 
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Figure 2.3: FESEM images of (a): illite and (b): kaolinite clay minerals (Aras, 2004) 

 

2.3.2 Effect of heat on the clay minerals and phases of transformation  

Many researchers studied the structural modifications of clay minerals 

especially kaolinite during dehydration (Bakr, 2011). Most hydrated minerals lose 

water when they are heated.  This effect of heat on clay minerals as a pure kaolinite 

has attracted a great deal of attention, including natural phase composition, 

microstructure, physical, chemical, mechanical properties and colour changes which 

determine predominantly their ceramic properties (Chen et al., 2004). These changes 

vary significantly according to the type of clay (Safeer et al., 2008).  Clays may be 

classified on the basis of their chemical composition, softening point, melting 

behavior, mineralogical composition, and plasticity.  Since clays are produced from 

natural deposits formed during various long geological processes, they are complex 

mixtures of different minerals. Clays usually contain clay minerals, such as kaolinitic 

and or illitic, and accessory minerals such as quartz, feldspars, smectites, micas, etc. 

These minerals influence remarkably the firing behavior, which makes it extremely 

difficult to formulate a rigid classification of clays (Bakr, 2011). It has been known 

that, after the removal of adsorbed water at just over 100oC, kaolinite decomposes 

above about 500oC. This process is called dehydroxylation and the product is 

(a) (b) 

Kaolinite 

25kV   x20, 000                         2µm     20kV   x10, 000                         2µm     

Illite 
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metakaolin. Further heating cause phase transformations as presented by the 

following Equations: 

 

  Al2O3. 2SiO2. 2H2O    500oC        Al2O3 .2SiO2 +2H2O                    (Eq.2.1) 

       koalinite       dehydroxylation   Meta-kaolin 

 

              2(Al2O3. 2SiO2)           980oC           2Al2O3.3SiO2 + SiO2                 (Eq.2.2) 

                   Meta kaolin                                       Spinel 

 

    3(2Al2O3. 3SiO2)         > 1100oC       2(3Al2O3.2SiO2) +5SiO2         (Eq.2.3) 

  Spinel                                             Mullite 

 

The phase transformation of kaolinite can be monitored by differential 

thermal analysis. The dehydroxylation reaction is an endothermic peak occurring at 

600oC for well crystallised kaolinite and about 580oC for disordered kaolinite.  About 

700oC, the clay mineral breaks down, giving up water of constitution to form 

metakoalin and an amorphous form of silica (Trindade et al., 2009; Vieira et al., 

2008). On being heated to a higher temperature, the metakaolin undergoes further 

reactions to form crystalline compounds and the end products are free silica and 

mullite as shown in Figure 2.4. X-ray work strongly suggests that mullite is not 

formed until much higher temperature are attained i.e. 1200 - 1600oC as reported by 

Chen et al., (2000a) and presented in Figure 2.4. 
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Figure 2.4: XRD patterns of kaolinite fired at various temperatures (Chen et al., 

2000a)   

K: Kaolinite;  Q: Quartz;  I: Illite  and  M: Mullite  

 

2.3.3 The effect of impurities 

Naturally occurring clays in general contains minerals other than kaolinite, 

the most common being quartz and mica, although a large number of minor 

constituents, notably pyrite (FeS2), oxides of iron, calcite (CaCO3) dolomite 

(CaMgCO3), gypsum (CaSO4.2H2O) and anatase (TiO2). One of the most important 

effects of impurities is that due to fluxing ions namely, Na, K, Ca and Mg, derived 

from micas and other compounds (Bruce and Meunier, 2008; Dionisio et al., 2009).  

 

2.3.4 Thermal decomposition of illite 

Data on the decomposition of muscovite (the equiralent to illite) are 

somewhat conflicting. Some researchers have reported a gradual loss of water at 
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temperatures up to about 850oC, while others maintain that there is a period of 

relatively rapid dehydration between 450 and 850oC. Similar results have been 

reported for phogopite and biotite (Aras, 2004). Illites have decomposition 

characteristics remarkably similar to those of kaolinite. Thus, there is a small loss of 

water below 100oC and major evolution of water between 350 and 600oC. However, 

it is reported that the structure of illite is not completely destroyed until a 

temperature of 850oC is attained (Buchwald et al., 2009).  

 

2.4 Bioresource  

A bioresource is any resource that is biological or natural in origin. The main 

chemical composition consists of organic matter e.g. cellulose, hemicellulose, lignin, 

etc.  Nowadays, bioresource is attractive and more important in order to promote the 

utilization of natural resources. It is necessary to understand of their properties and 

performances (Liu et al., 2009; Zhang et al., 2013).   

 

2.4.1 Bioresource wastes 

Bioresource wastes    included all types waste that are no longer of any use 

and are intended to be thrown away.  There are many types of wastes e.g. rice husk, 

coffee husk, sugarcane waste and many others (Atta et al., 2012).  Thus, all daily 

activities can give rise to a large diversity of wastes from different sources.  

Bioresource wastes are attractive and important to extent the application of resources 

(Deepa et al., 2011; Zhang et al., 2013). Bioresource wastes are one of the very 

important materials that have been widely used in many fields today such as 

construction industry, fertilizer, etc. These potentialities such as conservation of 

renewable resources, source of energy(biomass), environmental friendly (no toxic 
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chemical), and most importantly, they are readily available and of low cost when 

compared other materials (Ounas et al., 2011). 

 

2.4.2 Kenaf  

 Kenaf (Hibiscus cannabinus L), is a member of the Malvaceae family and is 

grown in tropical and subtropical regions. It is an important source of fibres for use  

in polymer composites and other industrial applications (Macías-García et al., 2012). 

Many countries in the world have planted kenaf trees especially in Malaysia, India, 

Bangladesh, Thailand, and to a small extent in Southeast Europe and some parts of 

Africa, as well as in Brazil where it is cultivated throughout the year (Akil et al., 

2011; Amel et al., 2013).  In the early-1970s, it was first introduced in Malaysia, and 

then in the late 1990s  it was recognized to be of  potential to manufacture 

particleboard and fibreboard (Abdul Khalil et al., 2010).  Kenaf stem comprises of 

two distinct parts, i.e. the  core and the bast (the core is the woody inner part, and the 

bast  is the fibrous outer bark), with a makeup of about 35% and 65%, respectively 

(Elsaid et al., 2011; Herbert et al., 1999).  The core is light and also highly of porous 

compared to the bast. The kenaf core (KP) and kenaf bast or fibre (KF) have 

different chemical compositions. The bast is higher in cellulose whilst the core is 

higher in hemicellulose and lignin. Both parts are also very different in 

morphologies. Nowadays, they there are many of applications that have been made 

using kenaf core (KP) and kenaf bast (KF) including pulp, paper products, bio-

composites, automotive door trimmings and interior shelving.  In Malaysia, realizing 

the diverse possibilities of commercially exploitable derived products from kenaf, the 

National Kenaf Research and Development Program has been formed in an effort to 

develop kenaf as a possible new industrial crop for Malaysia. The government has 
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allocated RM 12 million for research and further development of the kenaf-based 

industry under the 9th Malaysia Plan (2006 – 2010) in recognition of kenaf as a 

commercially viable crop (Edeerozey et al., 2007; Jonoobi et al., 2011; Ninomiya et 

al., 2012). 

 

2.4.3 Banana stem waste 

Banana is one of the most important fruit crops and widely cultivated in 

tropical and subtropical countries.  After the fruit has been harvested, the rest of the 

plant would be cut and thrown away. Generally, banana by-products include the 

stem (pseudostem), leaves, inflorescence, fruit stalk (floral stalk), rhizome, and 

peels (Zhang et al., 2013). The banana stem waste can be used for several 

processes, such as pulping in the paper industry and for making natural fibers, 

animal feeds, and biofuels (Satyanarayana et al., 2007; Sgriccia et al., 2008; 

Ververis et al., 2007). 

 

2.4.4 Sugarcane waste (SC)  

Sugarcane crop is planted in more than 110 countries in the world.  The 

largest producers in the world include Brazil, India, China, and Thailand (Faria and 

Holanda 2012).  Jackson et al. (2011) have reported that during 2008/2009 harvest, 

more than 629 million tons of Brazilian sugarcane were crushed, which generated 

around 229 million tons of solid waste. In 2012/2013, it has increased very rapidly 

by generating about 597 million tons of solid wastes (Faria and Holanda 2012). This 

waste material is mainly reused in the industry as fuel in boilers for energy co-

generation of around 4 million tons per year, from the Brazilian sugarcane waste 

generated (Guimarães et al., 2009).  Meanwhile, the rest of the waste has been 
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mainly used as soil fertilizer and others. The ceramics sector can incorporate large 

amounts of sugarcane waste materials without additional process modifications 

(Sutcu and Akkurt, 2009).   

 

2.4.5 Recycling of wastes 

Recently, the development of technology has led to the treatment of larger 

quantities of wastes, improvements in  properties and a reduction in harmfulness of 

the wastes generated (Eliche-Quesada et al., 2011; 2012; Martinez-Garcia et al., 

2012; Perez-Villarejo et al., 2012). Recycling is a suitable method for subsequent 

reuse of these wastes, either in its original form or in pre-treated forms.  It includes 

recycling of organic wastes and include energy recovery. Recycling benefits the 

environment by reducing the use of virgin materials. Many different materials can be 

recycled (Faria et al., 2012; Martínez-García et al., 2012).  It can also be seen that 

numerous waste materials from industries have been used such as from mining, 

industrial activities and construction processes. Figure 2.5 shows that the largest 

fraction of recycled wastes is paper (35%), followed by organic materials (25%)  as  

reported by Chen et al., (2012). 

 

Figure 2.5: Highlights of type waste after reducing and recycling process (Martínez-

García et al., 2012)  
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2.5 Firing of clays 

Firing forms a key stage in the fabrication route of ceramics where a 

compacted powder or specimen is heated to a certain temperature and converted to a 

dense body by removal of pores between the starting particles (Chen et al., 2000a; 

Fangli et al., 2009). It involves heating of powder compacts at elevated temperatures, 

where diffusional mass transport is appreciable which results in a dense 

polycrystalline solid (Johari et al., 2010; Lecomte-Nanna et al., 2011).  A ceramicist, 

physicist, chemist and metallurgist have to work together to produce a material with 

particular properties, identify the required microstructure, and then design the 

processing conditions that will produce the required microstructure (Ptáček et al., 

2012). The objectives of firing studies are therefore normally carried out to identify 

and understand how the processing variables such as temperature, particle size, 

soaking duration, applied forming pressure, composition and firing atmosphere 

influence the microstructure that is produced (Yürüyen and Toplan, 2009). 

Thermodynamically, firing is an irreversible process in which during this process the 

constituent atoms redistribute themselves in such a way so as to reduce the energy in 

the system (Gualtieri et al., 2010; Lee and Yeh, 2008). It involves association of the 

powder compact by diffusion on an atomic scale, occasioning in a decrease of the 

surface area and grain boundary formation, neck growth between particles and 

densification of the system (Alonso-Santurde et al., 2011; Dionisio et al., 2009;  

Dubois et al., 1995; Johari et al., 2010; Jordán et al., 1999). The effect of firing 

temperature variations on the physical properties and microstructure of the finished 

product have  always been a subject of  great importance in ceramic literature since 

several decades ago (Chen et al., 2000b; Fangli et al., 2009; Lecomte- Nana et al., 

2011; Monteiro et al., 2004).  Through the different diffusion mechanisms, matter 
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moves from the particles into the void spaces (Figure 2.6)  between the particles 

causing densification and resulting in shrinkage of the part and thus  microstructural 

developments will occur (Ptáček et al., 2012; Romero et al., 2008). Several variables 

influence the rate of densification. Some of them are initial density, type of material, 

particle size, firing atmosphere, temperature, time and heating rate (Johari et al., 

2010; Jordan et al., 2008).   Figure 2.6 shows the diffusion process in the sintering 

phenomena which is of two types, viz. 1) Solid-state sintering, where all 

densification is achieved through changes in particle shape. 2) liquid-phase firing, 

where some liquid is present at the firing temperatures to aid compaction (Chen et 

al., 2000a; Buchwald et al., 2009). 

 

Figure 2.6: Diffusion processes (Chen et al., 2000a) 

 

All clays upon being heated to a high temperature will form a viscous liquid, 

which consists principally of silica, together various impurities such as Na2O, K2O, 

CaO and MgO. These oxides lower the melting point of silica, enabling liquid to 

form at a comparatively low temperature of 1200oC, and for this reason are called 

fluxing oxides (Guggenheim, 1995). 

 

Sintering 
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2.5.1 The drying and firing of clays 

The influence of drying conditions can be evaluated by adopting a standard 

drying method at 110oC for 24 hours. The drying of clays is of considerable 

technological importance. When a plastic clay body is dried, shrinkage occurred. If 

drying is rapid and uneven, the shrinkage may give rise to cracks in the products.  

When completely dry, clays have considerable strength (Monfort et al., 2008; 

Rodrigues et al., 2012; Lee and Yeh, 2008).   

 

Figure 2.7(a) shows that as drying proceeds, water evaporates from the outer 

surface and the particles of clay is drawn progressively closer together by surface 

tension forces.  Eventually, the particles will come into mutual contact (Figure 

2.7(b)), forming loosely packed assembly. When this stage has been reached no 

further contraction is possible during drying and no further shrinkage occurs. The 

residual water is contained in the voids between particles (Yürüyen and Toplan, 

2009), and the water content at this stage is known as the critical moisture content. 

Further drying now results in the loss of water from the pores of the body, then water 

is being drawn to the surface by capillary action. Thus, the original packing is 

maintained and air replaces the water in the pores resulting finally in a dry porous 

body (McConville and Lee, 2005; Sahnoune et al., 2008).   

   

Figure 2.7: The clay particles (a): before drying, (b): after drying and (c): after firing 

(Lee and Yeh, 2008) 

(a) (b) (c) 
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