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for MSM PD, a) Ni/ZnO/PS/Ni and b) annealed-

(Ni/ZnO/PS/Ni). 
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Figure 4.38  Photocurrent sensitivity measured at a bias of +5 V with 

illumination turned on and off repeatedly for fabricated 

MSM PD, a) Ni/PS/Ni and b) annealed-(Ni/PS/Ni). 
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Figure 4.39  Photocurrent sensitivity measured at a bias of +5 V with 

illumination turned on and off repeatedly for fabricated 

MSM PD, a) Ni/ZnO/PS/Ni, and b) annealed- 

(Ni/ZnO/PS/Ni). 
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Figure 4.40  Sensitivity as a function of time at a bias of +5 V with UV 

and visible illumination turned on and off at constant 

durations, a) Ni/PS/Ni, and b) annealed-(Ni/PS/Ni). 
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Figure 4.41  Sensitivity as a function of time at a bias of +5 V with UV 

and visible illumination turned on and off at constant 

durations, a) Ni/ZnO/PS/Ni, and b) annealed- 

(Ni/ZnO/PS/Ni).  
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PENCIRIAN SILIKON BERLIANG DAN ZINK OKSIDA/SILIKON 

BERLIANG UNTUK APLIKASI PENGESAN FOTO 

 

 

ABSTRAK 
 

Zink Oksida (ZnO) digunakan secara meluas bagi pembangunan peranti 

optoelektronik dan elektronik seperti pengesan foto, piezoelektrik, transistor kesan 

medan (FET), diod pemancar cahaya (LED), fotovolta, pengesan kimia dan lain-lain 

kerana mempunyai kemampuan tindak balas yang cepat, gandaan optik yang tinggi, 

nisbah permukaan ke isipadu yang tinggi, dan mempunyai orientasi kristal tertentu. 

Sementara itu, silikon berliang (PS) telah menarik banyak perhatian kerana aplikasinya 

dalam pembangunan peranti optoelektronik berasaskan silikon disebabkan 

kebolehlarasan kekasaran permukaan, dan keupayaannya untuk mengurangkan 

ketidakpadanan pemalar kekisi dengan pembentukan lapisan berliang. 

Menggabungkan kedua-dua bahan, kajian dilakukan untuk mensintesis dan 

mencirikan sifat-sifat pertumbuhan ZnO pada PS. Substrat PS telah disediakan dengan 

menggunakan perubahan kadar masa penghakisan dan arus. Didapati bahawa kadar 

punaran adalah pada arus 25 mA dan masa punaran selama 15 minit di atas permukaan 

Si jenis n yang berorientasikan (100) dapat mencapai permukaan liang seragam dan 

sifat optik yang baik. Kemudian, ZnO dipercikan ke substrat PS oleh percikan 

frekuensi radio untuk lapisan benih. Lapisan benih membantu pemusatan ZnO dan 

menggalakkan perkembangan penumbuhan struktur hablur ZnO menerusi arah satah 

kekisi c. Ketebalan lapisan yang berbeza pada (50, 150, dan 200) nm telah dipercikan. 

Kemudian, penumbuhan struktur ZnO menggunakan teknik pemendapan rendaman 

kimia (CBD) dengan masa pertumbuhan yang berbeza (1, 3 dan 5) jam. Analisis 
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morfologi menunjukkan bahawa mikrostruktur ZnO telah tumbuh secara rawak pada 

dan dalam struktur PS. Dengan peningkatan jumlah lapisan benih dan masa 

pertumbuhan, lebih tinggi jumlah peratusan atom dan peratusan berat oksigen dan 

zink. Spektrum belauan sinar-X (XRD) menunjukkan pertumbuhan ZnO yang 

berkualiti tinggi dalam satah (100), (101) dan (002). Analisis serakan Raman 

menunjukkan peralihan puncak E2 (Tinggi), mencirikan kekisi wurtzite dan 

menunjukkan kehabluran ZnO yang baik. Untuk menguji keupayaan sampel ini 

sebagai peranti, pengesan foto Logam-Semikonduktor-Logam, (MSM) di reka 

menggunakan logam Ni dan dibentuk pada sampel. Parameter bagi penubuhan sampel 

adalah seperti berikut. Silikon berliang terbentuk dengan masa punaran selama 15 

minit dan arus 25 mA. Untuk sampel ZnO, ketebalan benih adalah 200 nm dan masa 

pertumbuhan CBD selama 5 jam. Sentuhan Schottky yang baik dan tindak balas foto 

yang pantas telah ditunjukkan oleh pengesan foto ujian Logam-Semikonduktor-

Logam yang telah disempuh lindap. 
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CHARACTERIZATION OF POROUS SILICON AND ZINC 

OXIDE/POROUS SILICON FOR PHOTODETECTOR APPLICATION 

 

 

ABSTRACT 
 

Zinc Oxide (ZnO) is widely used for the development of optoelectronic and 

electronic devices such as photodetectors, piezoelectric, field-effect transistors (FET), 

light emitting diodes (LED), photovoltaic, chemical sensors and others, because of its 

capability of fast response, high optical gain, high surface-to-volume ratio, and specific 

crystalline orientation. Meanwhile, porous silicon (PS) has drawn much attention for 

its application in the development of silicon-based optoelectronic devices due to its 

adjustable surface roughness and its ability to reduce the large mismatch in the lattice 

constants with the formation of porous layer. Merging both materials, the work is 

carried out to synthesize and characterize the properties of ZnO growth on PS. The PS 

substrates were prepared by using different parameter of etching time and current. It 

was found that, the etching condition is at current of 25 mA and 15 minutes etching 

time on n-type Si substrate with orientation (100) would achieve a uniform porous 

surface and good optical properties. Later, ZnO was sputtered onto the PS substrate by 

RF as a seed layer. The seed layer assists the nucleation of ZnO also promotes the 

growth development of ZnO wurtzite crystal structure along c-axis orientation. The 

different seed layer thickness of (50, 100, and 200) nm were sputtered. Then, the 

growth of ZnO structure was performed using chemical bath deposition (CBD) 

technique with different growth time of (1, 3 and 5) hours. Morphological analysis 

show that the grown ZnO microstructures covered randomly on and into the PS 

structure. With the increase in the amount of seed layer and the growth time, the higher 
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distribution for atomic and the weight percentage of oxygen and zinc. The X-ray 

diffraction (XRD) spectra indicate a high-quality growth of ZnO in lattice direction of 

(100), (101) and (002). Raman scattering analysis revealed the peaks shift of E2 (High), 

characterized a wurtzite lattice and indicates a good crystallinity of the ZnO. To test 

the performance as a device, an MSM photodetectors (PDs) were fabricated with Ni 

contact formed on the samples. The growth parameter of the samples are set as follows. 

PS is formed at the etching time of 15 minutes and current of 25 mA. For ZnO, the 

thickness of seed layer is 200 nm, and CBD growth time of 5 hours. A good Schottky 

contact and photo-responsivity has been demonstrated from the annealed MSM PDs 

test device. 
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CHAPTER 1 - INTRODUCTION 

 

 

1.1  Introduction  

 

This chapter clarify the background, problem statement, research objective, 

research hypothesis, scope of the study, and thesis organization by chapter of this work 

on the title of “Characterization of Porous Silicon and Zinc Oxide/Porous Silicon for 

Photodetector Application”. Some of the ideas were inspired from literature review of 

other works. 

 

1.2 Background  

 

Zinc oxide (ZnO) is a II-VI compound semiconductor. ZnO has a wide band 

gap of 3.37 eV and large exciton binding energy of 60 meV, allows for excitonic 

transitions even at room temperature and high radiative recombination efficiency for 

spontaneous emission [1]. ZnO is intrinsically n-type semiconductor, partly due to 

natural doping by interstitial Zn atom or oxygen vacancy and naturally crystallizes in 

the hexagonal wurtzite structure [2]. ZnO has potential in the development of 

optoelectronic and electronic devices such as photodetectors, piezoelectronics, field 

effect transistors, light emitting diodes, chemical sensors, photovoltaic devices [3] and 

others because of its capability of fast response, high optical gain, high surface-to-

volume ratio, and specific crystalline orientation. ZnO has its own intrinsic defects 

cause by the oxygen vacancies and/or zinc interstitials. ZnO plays a vital role in UV 

detection mechanism and the ZnO is extremely conductive and sensitive to UV light 

exposure [4]. 
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PS has large internal adjustable roughness [5], and strong absorbability 

properties [6]. Moreover, PS prepared by the silicon provides a possibility to integrate 

PS-based optical devices [7]. PS is important Si-based materials because its open 

structure and large surface area, combined with its unique optical and electrical 

properties as a template [8]. PS layer can reduce the large mismatches in the lattice 

constants between the ZnO and Si substrates [10,11] as formation of PS can decrease 

the lattice constants of Si. Lately, PS used as a good growth template for epitaxial re-

growth due to reduce the density of structural defects intentionally and allows the 

growth of residual free epitaxial ZnO layers [10].  

Fabrication of MSM PDs requires the interface of metal-semiconductor having 

a large Schottky barrier height, leads to a small leakage current and high breakdown 

voltage. MSM PD, the thermal treatment is important due to enhance the 

photoresponsivity [11]. This convents the responsiveness in terms of photocurrent to 

dark current ratio [11].  
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1.3 Problem statement 

 

There is numerous of works study the PS surface on c-Si as a base substrate and 

the incorporation of ZnO on the PS structure. R. Shabannia works on the PS with small 

pores size acts as a base substrate, then grow the ZnO by seed layer and CBD method, 

ZnO nanorod arrays were well aligned, compact, and perpendicular to the PS substrate, 

thus the fabrication of MSM PDs just focussed on the sensitivity of ZnO layer, the 

maximum responsivity was 1.736 A/W at +1 V bias voltage under a 325 nm 

illumination [12]. Other than that, there are also a lot of works focused on the 

synthesized of ZnO on the different substrate such as ZnO MSM UV PDs on glass, the 

maximum responsivity is 0.19 A/W under illumination of 365 nm [13], and  ZnO MSM 

UV PDs on PPC plastic with various metal contacts, the responsivity values are 0.082 

A/W using Pd, 0.098 A/W using Ni and 0.116 A/W using Pt by 365 nm [14]. There 

are also some works focused on the ability of PS as MSM PDs. B. E. Batool claimed 

that the n-type Si (100) substrates, fabrication of macroporous structure, the 

responsivity recorded is 0.17A/W (Pt/PS/Pt) under 530 nm and the relatively weaker 

peak at 765 nm emerged from PS/Si junction [11]. Other than that, M. Zerdali work 

on n-type, small pore size, the MSM PD was fabricated by Ni contact, (Ni/PSi/c-Si/Ni) 

and achieved the photocurrent is maximum responsivity at the wavelength of 546 nm 

[15]. Normally, ZnO detector is irradiated by UV light with energy higher than the 

bandgap (3.37 eV for ZnO), ehp will be generated, as a result these excess charge 

carriers contribute to photo current and result in the response to the UV light [14] while 

PS mostly response in visible light [15].  

This work claimed that the growth of ZnO was deposited in and on the PS surface 

as the pores on c-Si surface are bigger and focussed on the incorporation between 
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them. This work used the PS structure with macropore size as a base substrate to apply 

its potential in applications as photodetection. The unique performance of the 

incorporation of ZnO structure on macroporous c-Si substrate as potential applications 

in photodetection was studied. There is no other work that apply the potential on this 

structure and capability as an MSM PDs on the growth of ZnO structure on the 

macroporous size of the PS layer, most of them elaborate the performance of UV PDs 

by performance of synthesized ZnO as the nanorods produced were vertically aligned, 

dense on the surface, and perpendicular to the PS substrate. In this work, the 

photodetection giving two spectra signal (UV and Vis) which higher in visible 

compared to UV range comes from both structure’s sensitivity which are ZnO and 

macroporous c-Si. The ZnO has a potential application in the UV detection while the 

PS has high sensitivity in visible detection application. The MSM structure was 

fabricated because it has very fast photon response and low cost of fabrication. In this 

work, the performance of ZnO structure on PS substrate as MSM photodetector will 

be discussed.  
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1.4  Research Objectives 

 

The objectives of this project:  

1. To study the physical properties of PS as a base substrate. 

2. To study the incorporation of ZnO in the PS structure. 

3. To investigate the performance of ZnO structure on PS substrate as potential 

applications in photodetection. 

 

 

1.5 Research Hypothesis  

 

1. PS contains following research hypothesis:  

• The morphology of PS on n-type Si (100) leads to formation of four-branch-

shape pores arrangement (PS) and macroporous PS will aligned on a silicon 

substrate using of HF and ethanol in ratio of 1:4. 

• The higher the etching time and current density, increase distribution of pores 

and more percentage of atomic and weight of oxide element compare while 

decreasing the percentage of Si. 

 

2. The growth and characterization of ZnO on PS has following research 

hypothesis: 

• Thin film of ZnO deposited onto a PS substrate has served as a seed layer not 

only to facilitate the nucleation of ZnO but also to decrease the lattice mismatch 

between them. As the seed layer thickness thicker, the seed layer deposited 

much and the growth of ZnO will align on and into the PS substrate.  
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• Investigation of the different growth time of synthesizes ZnO microstructures 

on and into PS substrate by CBD method. Randomly oriented growth of ZnO 

on and into PS surface, as PS surface is exhibited like amorphous surface and 

multicrystalline silicon substrate. 

 

3. Potential as an MSM PDs has following research hypothesis:  

• Schottky contact of MSM PD, having a good signal of photocurrent, 

responsivity, and photoresponse as correspond to ZnO layer sensitive to UV 

and PS layer sensitive to visible range. 

• The thermal treatment (annealed) to the contact attributed to the rising of Fermi 

level into the conduction band which leads to widening optical band gap also 

attributed to better Schottky contact. 
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1.6  Scope of The Study  

 

Based on the objectives, the scopes of the study are projected as following: 

• Characterization of PS morphology and structural properties. 

• PS layer produced based on the uniformity PS morphological and has good 

structural also optical properties act as a base substrate. 

• Characterization of different seed layer thickness, morphology and structural 

using FESEM, UV-Vis and Raman spectroscopy.  

• Synthesis of ZnO on PS substrates under different growth duration conditions 

using CBD technique on the different seed layer thickness on the optimized PS 

surface. 

• Optical characterization via UV-Vis absorption, structural and morphology 

characterization using XRD, FESEM, and Raman spectroscopy. 

• Fabrication of the MSM PD using Ni contact. 
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1.7 Thesis Organization 

 

Thesis organization is prepared by chapter, based on following: 

Chapter 1 briefing the introduction, problem statement, research objective, 

research hypothesis, scope of the study, and thesis organization by chapter of this 

work. 

Chapter 2 provides literature reviews such as the basic properties, background, 

growth mechanism, structural properties, and optical properties from books, papers 

and journals of PS, ZnO, the incorporation between them and MSM PD which related 

to this work.  

Chapter 3 describes the equipment used for sample preparation, working 

principle, and different methods of characterization. The basic principle of FESEM, 

EDX, XRD, AFM, Raman Spectroscopy, UV-Vis Spectroscopy and I-V measurement 

also will be explained.  

Chapter 4 focusses on the analysis of the data, explanations of graph and 

analysis result gained from the characterization. The morphology, structural, optical 

and electronic properties are discussed for PS, the growth of ZnO microstructures on 

PS and also the discussion for the performance of MSM PD. 

Chapter 5 represents the conclusion of this work and future work. The 

conclusion will summarize all the result. Future work will be giving many new notions 

depending on the several studies that can be suggested.  
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CHAPTER 2 - LITERATURE REVIEW 

 

2.1  Introduction 

 

In this chapter, the basic properties, backgrounds, structures of Si and ZnO, 

also the growth techniques of ZnO using CBD method will be described. In later 

discussion, the ability of ZnO on PS as an MSM photodetector also will be reviewed. 

Most of the work had provided a strong fundamental viewpoint as well as motivation 

to carry on this research further. 

 

2.2 Introduction to Porous Silicon 

 

A great number of works had reported the interest on PS structure as an 

attractive material for application in photonics and electronics [16]. PS can be 

considered as a silicon crystal composed of discontinuous silicon filaments and nano-

sized air holes, called pores [17]. PS structure is usually designed by anodic 

electrochemical etching of silicon wafer. The pore formation mechanism requires 

electronic holes for facilitating dissolution reactions. The external illumination of the 

n-type substrate is required, to reach holes concentrations for pore formation. It is 

obtained by the electrochemical dissolution of Si wafers in aqueous hydrofluoric acid 

(HF) solution or by electrochemical etching in an HF solution containing an oxidizing 

agent. The darkness and illumination are necessary for p-type and n-type Si substrates, 

to realize the etching process. Ethanol is added to the HF electrolyte to respond the 

hydrophobic character of silicon, facilitate the penetration of HF inside the pores and 

assist to eliminate the hydrogen bubbles created during pore formation [18]. 



10 
 

Nanostructured oxidized PS revealed a wide band gap (Eg) compared to silicon [19]. 

Silicon-rich-oxide (SRO) or PS had established much interest for its high UV 

photoconductive properties [20]. Meanwhile, the oxidized porous silicon (OPS) that 

formed have better sensitivity than its unoxidized counterpart [21].  

 

 

2.2.1 Basic Properties of Silicon  

 

 

Silicon belongs to group 14 of the periodic table that also includes C, Ge, Sn, 

and Pb. The element has an atomic number of 14, and an atomic mass of 28 [22]. 

Silicon is under metalloids (group IV semiconductor) which means it has combination 

properties of metals and non-metals and exhibits semi-conducting materials. The 

group include Boron, Germanium, Arsenic, Antimony, Tellurium, and Polonium. 

Metalloids share the properties of metals and some non-metallic characteristic. They 

are normally shiny or dull, usually conduct heat and electricity, ductile, malleable and 

may gain or lose electrons in reactions. Table 2.1 shows the basic information and 

properties of silicon [19,21,22]. 

There are several crystal defects usually incorporated in silicon such as point, 

line, area and volume defects. The point defect usually occurs because of large or small 

substitutional impurity, an interstitial silicon atom, and interstitial impurity. The line 

defect usually caused by edge dislocation. Furthermore, the area and volume defects 

may cause by surface, voids, and precipitates of the other atoms on silicon [24]. 
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Table 2.1: Basic information and properties of silicon [19,21,22]. 

Atomic Weight 28.09 

Electron configuration [Si] 3s2 3p2 

Crystal structure Diamond 

Lattice constant (Angstrom) 5.43095 

Density (g/cm3) 2.328 

Density (atoms/cm3) 4.995 x 1022 

Dielectric Constant 11.9 

The density of states in the conduction band, Nc (cm-3) 3.22 x 1019 

Density of states in valence band, Nv (cm-3) 1.83 x 1019 

Electron affinity, X (V) 4.05 

Energy gap (eV) at 300K 1.12 

Mobility (cm2 / V sec), µ (electrons)  1500 

Mobility (cm2 / V sec), µ (holes)  450 

Optical-phonon energy (eV) 0.063 

Specific heat (J/g oC)  0.7 

Thermal conductivity (W/cm oC)  1.5 

Thermal diffusivity (cm2 /s)  0.9 

Index of refraction 3.42 

 

 

Figure 2.1 represents the energy band diagram of silicon. The respective 

doping concentration (cm-3), n for electron and p for the hole. For n-type: 

 

For p-type:  

 

where n is a concentration of electron carriers (cm-3), p is a concentration of hole 

carriers (cm-3), Ec and Ev are the energy level of the conduction band and valence band, 

EF is the Fermi level, Nc and Nv are the intrinsic density of states in conduction and 

valence band in (cm-3). 

 

(2-1) 

(2-2) 



12 
 

 

Figure 2.1: Energy band diagram for a) intrinsic, b) n-type, and c) p-type silicon 

[25,26]. 

 

 

Silicon wafer is produced by Czochralski (CZ) crystal growth technique. The 

process is started by electronic grade silicon (EGS), which then melted in the furnace 

about its melting point at 1412 oC. The Argon is used in the furnace chamber to reduce 

impurities and the crucible is made of silicon dioxide (SiO2) to reduce and lowest the 

contaminant effect. The dopant material (n-type or p-type) is added to the silicon melt. 

A seed crystal with desired orientation is dipped in the molten silicon. This seed crystal 

is rotated and solidify in the equivalent orientation. Then, the ingot with the weighing 

of nearly 800 kg is produced. The shaping is starting by ground the ingot to have a 

uniform diameter and remove both ends of the ingot. The cutting process is conducted 

by industrial-grade diamond-tipped saws to have a symmetrical size [28].   
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2.2.2 Background of Porous Silicon 

 

Semiconductor developers perceived that electropolishing process of bulk Si 

left certain rough areas called porous, and they observed these as imperfect areas. PS 

was accidentally discovered by the Arthur Uhlir Jr. and Ingeborg Uhlir while working 

at Bell Laboratories in 1950. During this time, they were trying to develop a technique 

for shaping the surfaces of Si by an electrochemical method, for the application in 

microelectronic circuits [29]. It was not until Leigh Canham, a scientist with the 

collaboration of DERA (the UK’s Defence Evaluation and Research Agency) in 1990 

discover that PS emits visible light when illuminated by UV source. This 

morphological state of the material later came to attract significant research interest. 

Moreover, in 1992 researchers revealed that PS can emit light when an electric current 

is applied, a finding that raised prospects for new optoelectronic sensors and other 

devices, coupling light to electronics, including future high-speed computers [30]. 

 

 

2.2.3 Structure of Porous Silicon 

 

PS can be characterized from any materials with different pore sizes 

(millimetre, micrometer, and nanometre), the pores arrangement is ordered or 

irregular, various type of chemical compositions and using different preparative or 

electrolyte. There are three pore sizes from the International Union of Pure and 

Applied Chemistry (IUPAC). The microporous which has pore smaller than 2 nm, 

mesoporous, the size is between (2 and 50) nm while for macroporous, the pore size 

larger than 50 nm. The microporous has a high porosity, while mesoporous has a 

medium porosity and macroporous has a very low porosity as stated in Table 2.2. 
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Table 2.2: IUPAC recommended the universal of classification of pore size 

distributions conjunction with electron microscopy data by representing the average 

percentage of porosity [31]. 
 

Type Pore size distribution Average porosity 

Microporous < 2 nm 80 % 

Mesoporous 2 nm < x < 50 nm 30 % - 70 % 

Macroporous > 50 nm < 10 % 

 

 

Variability parameters that can affect the porous structure also the distribution 

of pores include the etching time, current density, type of Si wafer, HF concentration, 

dopant concentration and temperature. PS can have a different shape of pores depends 

on the variables such as electrolyte, concentration, current, silicon doping type, density 

and temperature. It must be noted that the pore walls are amorphous and they are not 

crystalline [32]. The PS has helped in providing appropriate surfaces or planes for Zn 

or ZnO seed nucleation at the initial stage so that the subsequent promote the growth 

of ZnO structures [33]. Furthermore, the skeleton of Si is important for reducing the 

stress induced at the cooling phase and limiting the formation of dislocation or cracks 

in ZnO layers [10]. 
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2.2.4 Growth Mechanism of Porous Silicon 

 

The formation of porous structure of n-type Si (100) is purely based on the 

chemical reaction between HF electrolyte on surface of the silicon wafer. The 

mechanism is based on the capture of holes and electron injection process in four steps, 

as tabulated in Table 2.3. Step by step formation and growth mechanism due to 

dissolution chemistry of silicon anodically biased in hydrofluoric acid are shown. 

 

Table 2.3: Description of PS layer formation and growth mechanism due to dissolution 

chemistry of silicon anodically biased in hydrofluoric acid [34,35]. 

 

Description Mechanism 

A hole reaches the surface for a 

nucleophilic attack on Si-H bonds by 

F- from the HF electrolyte (the hole 

can then migrate on to a Si-H bond), 

thus releasing a proton. 

 

 

  
 

A second attack is accomplished by 

another F-, causing the evolution of 

molecular H and electron injection 

into the substrate. The attack of the Si 

radical by F- causes electron injection 

into the silicon conduction band and 

the formation of a Si-F bond. 

 

 

   
 

  

By removal of -SiF2 by the 

replacement of protons in the highly 

oxidized silicon with the current 

injection of an electron into the 

conduction band. A chemical reaction 

occurs in which HF is added to the 

one remaining Si-Si bond to release 

SiF4 into solution, and in this step, a 

tetrafluoride (SiF4) molecule is 

produced. 

 

 

 

The tetrafluoride molecule reacts with 

two HF molecules and H2SiF6 is the 

final product in solution. 

 

 

 

 
 

(2-3) 

(2-5) 

(2-4) 

(2-6) 
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2.2.5 Structural Properties of Porous Silicon 

 

There are various structural properties of PS layer that form after the etched 

process depends on the parameters used during electrochemical etching. The shape of 

individual pores on n-type silicon tend to change from circular to the square to star-

like and to dendrite-like with increasing potential [36]. Current density normally 

affects the pore diameter. Pore diameter increased with increasing the potential and 

current density. As reported by Martha Ramesh et.al [37], the increase in pore diameter 

and a decrease in the interpore distance with current density. The oxide layer starts to 

form at the bottom of pores by increasing current density will increase the coverage of 

the oxide film and the bottom of the pore will increase ensuing in larger pores and 

smaller interpore distance, as shown in Figure 2.2.  

 

  

Figure 2.2: (a) Plane view and (b) Cross-sectional views of SEM of PS samples (S1, 

S2, S3) at different current density, (c) Histograms showing particle size and (d) 

interpore distance distribution of PS samples [37]. 
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The surface nature of the PS was converted from hydrophilic to hydrophobic 

when the current density is increased. The figures indicate the sponge-like structure of 

PS layer with increasing current density, from (30 to 90) mA/cm2 with increasing the 

surface roughness and particle size [38].  

Furthermore, etching time for electrochemical etching acts as a primary role in 

producing porous layer. Nurul Izni  proposes n-type (100) Si wafer with that etched 

process using solution of 48 % HF and 95 % ethanol with a volume ratio of 1:4 mostly 

in the lateral or horizontal directions precisely in the <001> and <010> directions along 

with vertical or <100> direction [39]. It was stated that etching time is conducted from 

(20, 40 and 60) minutes leads to the formation of connected four-branch-shaped pores 

shows by three successive phases. By increasing the etching time, the increase of pore 

density is detected as shown in Figure 2.3. As the front-side is illuminated, this makes 

holes continuously generated, thus the number of existing holes is larger than the 

consumed holes at the tip. Later, these holes are continuously transported in the electric 

field and attempt to penetrate the porous structure, pore wall and dissolution takes 

place on the surface of the pore walls. Basically, these holes tend to move to the 

electrically enhanced places, such as pre-etched initial pits and pore walls formerly 

known as pore formation sites [39].  

 

  

Figure 2.3: Morphology of FESEM on PS with randomly distributed four-branch-

shaped pores, a) 20, b) 40, and c) 60 minutes, leads to the formation of highly 

connected four- branch-shaped pores [39]. 
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Khaldun A. Salman also reported n-type Si wafer (100) orientation as in Figure 

2.4, the etching process was done in (5 to 30) minutes using solution of HF and ethanol 

in ratio of 1:4 to prepare the PS layers. The pores have similar shapes and only the 

pore diameters were increased, and the pore walls were broadened, directed to the 

decreased number of pores on the PS surface, later, the porosity was reduced. [40]. 

 

 

Figure 2.4: Morphology of FESEM on PS with different etching time randomly 

distributed on the surface of the PS, and some pores had star-like appearances and 

elongated shapes. The pores were increased with the increasing etching time, a) 5, b) 

10, c) 15, d) 20, e) 25, and f) 30 minutes [40].  

 

 

The XRD analysed the PS and crystalline Si, the peak at 2𝜃 = 33.3° 

corresponds to formation of PS structures at (211) with little broadening, indicates the 

crystalline nature of the silicon pores. The peaks at 69.2° correspond to the bare 

crystalline silicon (c-Si) substrate retain as shown in Figure 2.5 [41]. 
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Figure 2.5: XRD pattern analysis of PS and crystalline Si, 2𝜃 = 33.3° correspond to 

the position of PS and 2𝜃 = 69.2° correspond to the bare crystalline silicon [41]. 

 

 

 

2.2.6 Optical Properties of Porous Silicon 

 

The etching of the n-type PS is difficult because the reaction needs holes to 

react. To overcome this problem during etching, the sample was illuminated with a 

100 W bulb to produce more hole carriers [42]. In a n-type, holes are the minority 

carriers, hence the number are needed to be increased by some external source. The 

illumination is necessary for pore formation in silicon due to the excess holes present 

in the material [43]. This property indicates that the n-type porous silicon is a better 

candidate for the application in optoelectronics than the p-type porous silicon. As the 

fact that, the bulk silicon has an indirect band gap of 1.1 eV at room temperature. S. 

M Prokes and O. J Glembocki et al. mentioned the mechanisms of visible light 

emission in porous silicon [44]. In crystalline solids, optical transitions must conserve 

momentum and indirect transitions in k-space exploit phonons to conserve the 

momentum.  
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A typical indirect absorption process in Si is showing in Figure 2.6. In this case, 

the absorption process where the virtual optical transition occurs at k = 0, from state 1 

to state 2 followed by the electron’s being scattered in the conduction band by 

absorbing or emitting a phonon. This takes the photoexcited electron from state 2 at k 

= 0 to state 3, at k = (100). A transition can occur involving a virtual optical transition 

at k = (100) and a hole scattering from k = (100) to k = 0, the final energy of the 

transition is energy gap, Eg.  

PS layer has a rough surface that effective in absorbing more photon than 

reflected it. By increasing the current density, the reflectance decreases [45]. The 

schematic diagram of reflectance mechanism shows a reflection of light from the two 

interfaces in a PS sample. The interference occurs between the reflected beams from 

the upper and the lower interfaces also constructive interference of the reflected light 

from the two interfaces. M. Das and D. Sarkar also report that by increasing the current 

density during the etching process, the value of n is seen to decrease and the porosity 

is increased from 55 to 78 % [43]. K. A. Salman state that the reflectance was recorded 

from the PS layer at 5 to 20 min etching time, obviously reduced the light reflection 

and thus increased the light-trapping at wavelengths ranging from 400 to 1000 nm 

[40]. Figure 2.7 shows the reflectance mechanism diagram which explains the 

reflectance on PS layer [43].  
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Figure 2.6: Schematic representation of the indirect absorption process in 

semiconductors, an indirect transition, the indirect transition takes an electron from 

state 1 into state 2 through a two-step process, involving a virtual optical transition at 

k = (0, 0, 0) and a phonon scattering of the electron from k = (0, 0, 0) (state 2) to k = 

(l, 0, 0) (state 3). The final energy of the transition is Eg [44]. 

 

 

 

 

Figure 2.7: Schematic diagram of reflectance mechanism, which shows a reflection of 

light from the two interfaces in a PS sample, interference occurs between the reflected 

beams from the upper and the lower interfaces [43]. 
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The optical energy band gap by reflectance spectroscopy can be calculated 

using Tauc’s relation [46]: 

                                        (1-1) 

where Eg is the energy gap, hv is the energy of photon, A is a constant and n is an index 

which n = 
1

2
 for allowed direct transition and n = 2 for allowed indirect transition of 

PS. Then, the diffused reflectance measurements are very important for determination 

of the absorption coefficient, α for Tauc’s relation using Kubelka-Munk [K-M or F(R)] 

relation [46,47,48]: 

α = ln [(Rmax – Rmin) / (R – Rmin)]                      (1-2)      

where Rmax and Rmin are the maximum and minimum values of reflectance, R is the 

reflectance at a given photon energy, hv. Figure 2.8 shows the reflection spectra of the 

c-Si compared with the PS Samples (left) and the extrapolation of a straight line using 

K-M relation for indirect allowed transition of the samples with different etching 

current densities A) 10 mA/cm2, B) 20 mA/cm2, and C) 30 mA/cm2 (right) [46]. 

 

 

 

Figure 2.8: Reflection Spectra of the c-Si compared with the PS Samples (left) and the 

extrapolation of a straight line using K-M relation for indirect allowed transition of the 

samples with different etching current densities A) 10 mA/cm2, B) 20 mA/cm2, and C) 

30 mA/cm2 (right) [46]. 
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2.3 Introduction of ZnO 

 

ZnO is intrinsically n-type semiconductors with a wide direct band gap of 3.37 

eV and a large exciton binding energy of 60 meV. ZnO have unique optical properties, 

high mechanical and thermal stabilities, and electronic properties [50]. ZnO has high 

sensitivity to UV light, high density of surface trap states and the much higher surface-

area-to-volume ratio can improve the properties of photodetectors [51]. 

 

2.3.1 Background of ZnO 

 

ZnO was created as a product by a process involving heating and melting 

(smelting) [52]. This smelting technique was then taken to China in the 16th or 17th 

century, to produce brasses with high zinc contents. Europeans imported zinc from 

China and later it was listed as an element on the periodic table in 1789 by Antoine 

Lavoisier [53]. The first electronic application of ZnO was built as a compartment in 

a radio sets in 1920. By in contact with ZnO crystal and a copper wire, a Schottky 

barrier was created and providing the rectification to convert the AC to DC [54]. 

 

2.3.2 Structural Properties of ZnO 

 

Group II-VI are compound semiconductors (ZnO, ZnS, CdSe, CdTe), 

crystallize in cubic, zinc blende or hexagonal wurtzite structure where each anion is 

surrounded by four cations. Theoretically, ZnO can be scheming in the three phases of 

crystal structures either rock salt or Rochelle salt (B1), Zinc blende (B3) and Wurtzite 

(B4) as in Figure 2.9 [55]. 
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Figure 2.9: ZnO crystal structures, the small and big dot represent O and Zn atom, (a) 

cubic rock salt (B1), (b) cubic zinc blende (B3) and (c) hexagonal wurtzite (B4) [55]. 

 

ZnO is an intrinsic n-type semiconductor. It naturally crystallizes in the 

hexagonal wurtzite structure [56]. The hexagonal lattice in which each Zn2+ ion is 

tetrahedrally bonded to four O2- ions and vice-versa. ZnO has two lattice parameters c 

and a in the ratio of 1.633, indicate an ideal wurtzite structure. In this structure, the Zn 

terminated face (0001) and O terminated face (0001̅) are the polar faces while the non-

polar faces are (112̅0) and (101̅0) which contain equal number of Zinc and Oxygen 

atoms. The plane perpendicular to the c-axis are called basal planes. The tetrahedral 

coordination of ZnO indicates the sp3 hybridized covalent bonding, but the strong ionic 

character of the Zn-O bond, makes ZnO behave like both covalent and ionic 

compound. The bulk parameters of ZnO are calculated to be a = 3.284 Å and c = 5.333 

Å [57] and also reported by Matthias and Diebold, lattice parameters of a, b = 3.25 Å, 

and c = 5.206 Å [56]. There is a polar symmetry along the hexagonal axis and gives 

rise to piezoelectricity in ZnO [58]. Crystal structure simply shown in Figure 2.10. In 

ZnO, normally point defect (oxygen vacancy or Zn interstitial) gives high effects, can 

create electronic states in the band gap which influence its optical and electrical 

properties [58]. 


