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SiO4 Silicate 

Sr Strontium 

Sr2+ Strontium ion 

SrO Strontium oxide 

ß Beta (power of the study)  

t1/2 Half life 

TEOS Tetraethylorthosilicate 

TiO2 Titanium dioxide 

V Volume 

Wsl Water solubility 

Wsp Water sorption  

Wt Weight 

wt % Weight percentage 

YbF3 Ytterbium fluoride 

Zn Zinc 

Zn5(OH)8Cl2·H2O Zinc oxychloride 

ZnO Zinc oxide 

ZrO2 Zirconia 

α Level of significance  

δ Difference in Population Means  

ΔE Color change  

µm Micrometer 
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PENILAIAN KE ATAS CIRI-CIRI FIZIKO-MEKANIKAL, KIMIA DAN 

SITOTOKSISITI FABRIKASI BAHAN HIBRID NANO ZIRKONIA-SILIKA 

HIDROKSIAPATIT IONOMER KACA  

ABSTRAK 

Tujuan kajian ini adalah untuk mensintesis dan mencirikan komposit nano 

zirkonia-silika-hidroksiapatit (nanoZrO2-SiO2-HA) dan untuk menyiasat kesan 

penambahan nanoZrO2-SiO2-HA kepada simen ionomer kaca konvensional (cGIC). 

NanoZrO2-SiO2-HA telah disintesis menggunakan teknik sol-gel satu-pot, yang 

kemudiannya dicirikan menggunakan mikroskop pengimbasan elektron (SEM), 

mikroskop transmisi elektron (TEM), spektroskopi fourier transformasi inframerah 

(FTIR) dan x-ray difraksi (XRD). Berikutan kajian pencirian, siasatan lanjut telah 

dilakukan selepas penambahan nanoZrO2-SiO2-HA kepada cGIC (GIC nanoZrO2-

SiO2-HA) pada peratusan yang berbeza (~3% hingga 9%) untuk membandingkan 

sifat-sifat mekanikal mereka (kekuatan mampatan, kekuatan lenturan, dan ketahanan 

patah), ciri-ciri fizikal (kekasaran permukaan, kestabilan warna dan kelarutan-

penyerapan), ciri-ciri kimia (pelepasan ion fluorida) dan sitotoksisiti berhubung 

dengan cGIC (Fuji IX). Imej SEM dan TEM telah berjaya menunjukkan bahawa 

morfologi partikel dari segi saiz ke pengedaran bentuk adalah kecil dan sempit dengan 

aglomerasi yang rendah. Serbuk nano terdiri daripada kristal HA berbentuk rod (~ 114 

nm) yang diselaraskan dengan partikel bulat silika (~18 nm) dan zirkonia (~39 nm). 

Spektrum FTIR menunjukkan wujudnya beberapa interaksi molekul antara nanoZrO2-

SiO2-HA dan GIC. Diffractogram XRD menunjukkan kehadiran puncak untuk ZrO2, 

SiO2 dan HA. Kekuatan mampatan, kekuatan lenturan dan ketahanan patah GIC 5% 

nanoZrO2-SiO2-HA secara statistik lebih tinggi daripada peratusan GIC nanoZrO2-

SiO2-HA yang lain dan cGIC. Nilai tertinggi yang telah direkodkan ialah kekuatan 
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mampatan (144.12 ± 13.88 MPa), kekuatan lenturan (18.12 ± 2.33 MPa) dan 

ketahanan patah (1.35 ± 0.15 MPa.m1/2), membawa kepada peningkatan sebanyak 

~30%, ~ 26% dan ~ 57%, berbanding dengan cGIC. Selain itu, GIC 5% nanoZrO2-

SiO2-HA mempunyai profil kekasaran (0.158μm ± 0.29) sama dengan cGIC (0.151μm 

± 0.29). Secara keseluruhannya, nilai perubahan warna (ΔE) bagi kumpulan GIC 5% 

nanoZrO2-SiO2-HA adalah lebih rendah berbanding dengan cGIC dalam tempoh 28 

hari dan antara sedikit hingga ketara. GIC 5% nanoZrO2-SiO2-HA menunjukkan 

perbezaan yang sangat signifikan dalam melepaskan fluorida secara purata dalam 

semua selang masa berbanding dengan cGIC (p≤05). Di samping itu, GIC 5% 

nanoZrO2-SiO2-HA merekodkan nilai penyerapan yang lebih rendah (23.64 ± 2.3 

μgmm-3) berbanding cGIC (36.28 ± 2.6 μgmm-3) dan keterlarutan yang lebih tinggi 

(66.46 ± 2.4 μgmm-3) berbanding cGIC (56.76 ± 1.6 μgmm-3). Keputusan ujian 

sitotoksisiti menunjukkan bahawa GIC 5% nanoZrO2-SiO2-HA mempunyai tahap 

sitotoksisiti pada tempoh 24 jam inkubasi untuk kepekatan 200 mg/ml. Walau 

bagaimanapun, pada tempoh inkubasi selama 72 jam menunjukkan tindak balas 

sitotoksik yang lebih rendah berbanding dengan cGIC yang secara statistiknya 

signifikan (p<0.05) pada kepekatan 200 mg/ml ekstrak bahan. Penambahan nanoZrO2-

SiO2-HA kepada cGIC meningkatkan dengan signifikan ciri-ciri fiziko-mekanikal, 

kimia dan menunjukkan tindak balas sitotoksik yang menggalakkan. Berdasarkan 

penemuan dari kajian baru kami ini, GIC nanoZrO2-SiO2-HA mempunyai potensi 

untuk dicadangkan sebagai bahan pergigian restoratif dengan pelbagai aplikasi 

bermula daripada restorasi kaviti, pembinaan teras dan sebagai bahan penyimenan 

simen.  
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EVALUATION OF PHYSICO-MECHANICAL, CHEMICAL PROPERTIES 

AND CYTOTOXICITY OF FABRICATED GLASS IONOMER NANO 

ZIRCONIA-SILICA-HYDROXYAPATITE HYBRID MATERIAL 

ABSTRACT 

The aim of this study was to synthesize and characterize a nano zirconia-silica-

hydroxyapatite (nanoZrO2-SiO2-HA) composite and to investigate the effects of 

adding nanoZrO2-SiO2-HA to a conventional glass ionomer cement (cGIC). 

NanoZrO2-SiO2-HA composite was synthesized using a one-pot sol-gel technique, 

which was then characterized using scanning electron microscope (SEM), 

transmission electron microscope (TEM), fourier transform infrared spectroscopy 

(FTIR) and x-ray diffraction (XRD). Following the characterization studies, further 

investigations were carried out  after addition of nanoZrO2-SiO2-HA to cGIC (GIC 

nanoZrO2-SiO2-HA) at varying weight percentage (~3% to 9%) to compare their 

mechanical properties (compressive strength, flexural strength, and fracture 

toughness), physical properties (surface roughness, colour stability and  sorption-

solubility), chemical property (fluoride ion release) and cytotoxicity in relation to 

cGIC (Fuji IX). SEM and TEM images were successful in demonstrating that the 

particle morphology in terms of size to shape distribution was small and narrow with 

low agglomeration. The nano powder consisted of rod-shaped HA crystallites (~114 

nm) interspersed with spherical silica (~18 nm) and zirconia (~39 nm) particles. The 

FTIR spectra indicated some molecular interaction presented between the nanoZrO2-

SiO2-HA and GIC. The XRD diffractogram indicated the presence of peaks for ZrO2, 

SiO2 and HA. Compressive strength, flexural strength and fracture toughness of GIC 

5%nanoZrO2-SiO2-HA was statistically higher than that of other percentages of GIC 

nanoZrO2-SiO2-HA and cGIC. The highest values recorded were- compressive 
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strength (144.12  13.88 MPa), flexural strength (18.12  2.33 MPa) and fracture 

toughness (1.35  0.15 MPa.m1/2), leading to an increase of ~30 %, ~26 % and ~57 % 

respectively, as compared to cGIC. Additionally, GIC 5%nanoZrO2-SiO2-HA had a 

roughness profile (0.158μm ± 0.29) similar to cGIC (0.151μm ± 0.29). Overall, the 

color change (ΔE) values for GIC 5% nanoZrO2-SiO2-HA group were lower than those 

of cGIC over a 28 day period and were between slight to perceptible. The GIC 

5%nanoZrO2-SiO2-HA showed highly significant difference in the mean fluoride 

release for all the time intervals as compared to cGIC (p ≤ 0.05). In addition, GIC 

5%nanoZrO2-SiO2-HA recorded lower sorption values (23.64 ± 2.3 μgmm-3) as 

compared to cGIC (36.28 ± 2.6 μgmm-3) and higher solubility (66.46 ± 2.4 μgmm-3) 

as compared to cGIC (56.76 ± 1.6 μgmm-3). The results of cytotoxicity testing showed 

that GIC 5%nanoZrO2-SiO2-HA demonstrated cytotoxicity at 24 h incubation for 200 

mg/ml conc. However, at 72 h incubation it exhibited lower cytotoxic response as 

compared to cGIC which was statistically significant (p<0.05) at 200 mg/ml 

concentration of the material extract. The addition of nanoZrO2-SiO2-HA to cGIC 

significantly enhanced its physico-mechanical, chemical properties and demonstrated 

a favourable cytotoxic response. Based on the results of our recently concluded study, 

GIC nanoZrO2-SiO2-HA has the potential to be suggested as a restorative dental 

material with diverse applications ranging from cavity restoration, core build-up and 

as a luting material.  
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1 CHAPTER ONE 

INTRODUCTION 

 

1.1 Background 

 

Throughout the millennia the roots of dentistry can be found as deep as the 

3000 B.C. Today’s clinicians are fortunate enough to have the option to choose from 

a plethora of biomimetic dental materials. In the middle of the 19th century amalgam 

was one of the first restorative dental materials used by dental practitioners (Singh et 

al., 2017). But amalgam was a non-tooth coloured, far from perfect crude restorative 

material which resulted in several problems such as post placement expansion, tooth 

and gingival discoloration and mercury poisoning.   The use of amalgam as a 

restorative material has since declined (Widstrom et al., 1992). The second half of the 

19th century saw efforts devoted to progress from using early dental materials as 

merely luting/lining agents to developing them for more aesthetic and restorative 

applications (Singh et al., 2017). Subsequently many dental materials which were 

white in colour began to make way into the dental industry. 

 

There is now a trend towards the use of tooth-coloured restorative materials 

such as glass ionomer cement (GIC) and composite resins. The International 

Organization for Standardization (ISO) has adopted the term glass polyalkenoate 

cement (GPC) which is another name for glass ionomer cement GIC (ISO-9917–

1:2007). Glass Ionomer cements were first introduced to dentistry in late 1960’s and 

have proven to be useful in various areas of dental science, such as restorative dentistry 

(Wilson and Kent, 1971). Glass-ionomer cements contain ion leachable fluoro-
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alumino-silicate glass that can react with water soluble acids such as polyacrylic acid 

(PAA) to yield cement. The cement is the product of an acid-base reaction between 

the silicate glass as the basic component and the poly acrylic acid homo and 

copolymers as the acidic component (Widstrom et al., 1992). 

 

 

Glass ionomers is a system which is  polyelectrolytic and aqueous at the same 

time, are east to manipulate, bond to tooth at an ionic level, exhibit fluoride ion release 

and recharge, a low coefficient of thermal expansion (CTE) and decent aesthetics 

(Naasan and Watson, 1998). They are also biocompatible with pulp, gingival and bone 

tissues. However, in the clinical environment their use has become limited owing to 

inferior mechanical properties such low flexural strength and fracture toughness 

(Mount, 2002; Oliva et al., 1996; Six et al., 2000; Wilson  and Kent, 1972). In addition, 

a relatively high opacity, moisture susceptibility during early setting phase and rough 

surface makes these materials less desirable (Croll and Nicholson, 2002; Gladys et al., 

1997; Wilson  and Kent, 1971; Wilson  and McLean, 1988). Therefore, GICs have 

become restricted to restoring low stress bearing areas such proximal and axial wall 

defects (Albers, 2002).  

 

 

In order to improve the physico-mechanical properties of GIC pure silver (Ag) 

and gold (Au) particles were added to the glass powder. The resulting Cermet ionomer 

cements had higher flexural strength compared to cGIC but were still not strong 

enough to replace amalgam (Al-Badri and Kamel, 1994; McLean and Gasser, 1985). 

Later the first light cured resin-modified glass ionomer cement (RMGIC) were 

developed by Antonucci et al., (1988) but disadvantages such as setting shrinkage and 

limited depth of curing were seen (Mitra, 1991b). 
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Other additions to the glass powder such as, metallic oxides, strontium and 

barium did not have a significant effect on the mechanical properties of GICs since 

they lacked the ability to increase the cross-linking within the glass matrix (Deb and 

Nicholson, 1999; Hurrell-Gillingham et al., 2005). Recent research has proven that 

incorporation of nanoceramics such as hydroxyapatite (HA), silica (SiO2), zirconia 

(ZrO2) produced via various soft chemistry processes capable of creating nanoscale 

particles have a potential to improve the properties of GICs (Ahmad Shiekh et al., 

2014; Moshaverinia et al., 2008a). 

 

 

It is thus, imperative to assess the efficacy of various nano fillers incorporated 

GIC in terms of overcoming the various shortcomings of cGIC mentioned earlier. The 

mechanical properties such as compressive strength, flexural strength, fracture 

toughness can be tested using a mechanical testing machine following the international 

standards organization (ISO) guidelines. Similarly, physical properties like colour 

change, surface roughness and solubility-sorption are evaluated using a 

spectrophotometer, profilometer and desiccators respectively (Carvalho et al., 2012; 

Prabhakar et al., 2013; Zankuli et al., 2014). Another unique property of cGIC is the 

ability to release F- which is evaluated using an ion specific electrode and pH meter 

(Arita et al. 2011; Panigrahi et al., 2016; Sayyedan et al., 2013). It is also important to 

make sure that any new hybrid GIC developed has a cytotoxic profile similar to cGIC 

if not better, which can be evaluated via a colourimetric in vitro assay (Ahmed et al. 

2011; Noorani et al., 2017).  
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1.2 Statement of Problem 

 

Currently commercially available conventional GICs are brittle water-based 

materials with poor mechanical properties, low wear resistance, and opacity which set 

by an acid-base reaction. Therefore, to overcome the limitations of cGIC, RMGIC was 

developed. Resin modified GIC demonstrated some improved strength, but they set by 

a photo initiator and not by an acid-base reaction. In addition, they were found to be 

more cytotoxic than conventional GIC (cGIC) and demonstrated increased 

microleakage due to water sorption (Kent et al., 1971; Smith, 1998; Wilson, 1991). 

Subsequently the properties of GIC’s were enhanced by the addition of either metal 

particle, such as Au or Ag, but their inclusion brought damage to materials in relation 

to F- release, adhesion to tooth structure, as well as poor aesthetics (McLean et al., 

1985). 

 

The incorporation of micron range sized particles, such as, alumina, zirconia 

or glass fibres into cGIC are some efforts made to improve the mechanical strength of 

cGIC (Gu et al., 2005c; Kerby and Bleiholder, 1991; Lohbauer et al., 2004). However, 

the improvement on mechanical properties was not significant. Most likely the reason 

for this could be the micron-size of the fillers used. 

 

Due to the aforementioned weaknesses of cGIC, many attempts were made to 

improve them by incorporation of a nano reinforcement phase of HA and SiO2 in 

cGIC. Improvements in their compressive strength, diametral tensile strength, flexural 

strength, fracture toughness, bonding and F- release properties have been reported but 

at the expense of increased microleakage and water solubility (Arita et al., 2003; 
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Felemban and Ebrahim, 2016; Lucas et al., 2003; Moshaverinia et al., 2008b; Rahman 

et al., 2017). 

 

  Furthermore, few more studies have been reported that the incorporation of a 

HA-SiO2 phase in a cGIC resulted in enhanced mechanical properties and a favourable 

cytotoxic response (Ahmad Shiekh et al., 2014; Noorani et al., 2017; Norhayati, 2015). 

The authors believed that the nano SiO2 particles filled the voids between the elongated 

HA particles, enhancing the packing density, thereby, improving the mechanical 

properties (Ahmad Shiekh et al., 2014).  

 

Lopes et al. (2018) experimented on HA added GIC and reported an increase in 

the surface roughness (Ra) value (0.20 ± 0.07 μm) of the tested material. An increase 

in surface roughness could lead to an increase in microbial adhesion, plaque 

accumulation and thus could lead to increased risk of caries and periodontal disease 

(Bollen et al., 1997).  

 

In a recent study, Rahman et al. (2017), evaluated the effect of the addition 

nanoZrO2-SiO2-HA on the hardness of cGIC. They concluded that incorporation 

nanoZrO2-SiO2-HA into the GIC resulted in a 54% improvement in hardness over that 

for cGIC. However, their study was mainly focussed with the synthesis of the 

nanopowder.  Nonetheless, there is no detailed work available on the addition of a 

nanoZrO2-SiO2-HA to GIC with regards to its mechanical properties such as, 

compressive, flexural and fracture toughness. In addition, physical, chemical and 

biological properties of GIC nanoZrO2-SiO2-HA composite with regards to colour 
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stability, surface roughness, sorption-solubility, fluoride release and cytotoxicity are 

yet to be reported.  

 

It has been suggested that different methods of synthesising nano-powder might 

produce a material with different characteristics. In this case, some researchers have 

reported different characteristics for nanoparticles (nanoZrO2, nanoSiO2 and nano-

HA) produced with different synthesis techniques (Rahman et al., 2014; Rahman and 

Padavettan, 2012; Moshaverinia et al., 2008a). It has been noticed that there is a lack 

of data on the effect of one pot sol-gel synthesis technique on the morphology and 

chemical composition of nanoZrO2-SiO2-HA composite. 

 

  



 

7 

 

1.3 Justification of Study 

 

Nowadays, GIC is one of the most widely used restorative materials that is being 

employed by dentist worldwide both in urban and rural setup due to its ease of 

handling, cost, and beneficial anti-caries property (Tyas, 2018). It is particularly 

utilized in Atraumatic Restorative Treatment (ART) for high caries risk patients due 

to its acid-base setting mechanism and fluoride release property (Yip et al., 2001a). 

Historically, cGICs are brittle, exhibit poor wear resistance and thus are not ideally 

suited for restoring posterior stress-bearing areas inside the oral cavity (Prakki et al., 

2005; Yip et al., 2001a). Many in-vitro studies have compared the performance of 

cGICs to high-density GICs and filler modified GIC (Hussin et al., 2018; Lucas et al., 

2003; Moshaverinia et al., 2008a; Nishimura et al., 2014; Panahandeh et al., 2018; 

Prakki et al., 2005; Yip et al., 2001a). They found out that it still lacks the performance 

required as a universal restorative material.  

 

In order to promote the usage of cGIC especially for restoration of adult teeth and for 

anterior teeth restorations, the physical, mechanical, and aesthetic properties must 

improve. Studies found that incorporation of HA-ZrO2 improved the mechanical 

properties and F- release of GIC (Gu et al., 2005b; Rajabzadeh et al., 2014). 

Nanozirconia which is translucent may also improve the aesthetic property of GIC as 

shown in a study by Rahman et al. (2017). Many studies have been conducted to assess 

the physical, mechanical and biological properties of these nano fillers. A thorough 

review of literature has revealed that, studies documenting on the effect of addition of 

nanoZrO2-SiO2-HA composite to GIC on mechanical properties such as compressive, 

flexural strength and fracture toughness are yet to be undertaken. In addition, physical 
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and chemical properties of GIC nanoZrO2-SiO2-HA composite with regards to colour 

stability, surface roughness, sorption-solubility, fluoride release, and cytotoxicity are 

yet to be determined. Since there is a dearth of information on the effect of a nanoZrO2-

SiO2-HA filler on the physico-mechanical properties of cGIC this study was 

undertaken.  

 

The basic concept behind the current study was to synthesize nanoZrO2-SiO2-

HA composite to be incorporated as a reinforcement filler into the cGIC. This 

incorporation of nanoZrO2-SiO2-HA into cGIC might alter the properties of GIC, thus 

making it a superior restorative material physico-mechanically. In addition, 

incorporation of nanoZrO2-SiO2-HA into cGIC can enhance the diffusion of fluoride 

ions at the enamel/dentine interfaces enhancing its anti-caries activity.  

 

Therefore, the novel findings of the current study will have the potential to 

expand the future application of GIC in clinical practice both in urban and rural setup, 

thus paving the way for a wider application of GIC in restorative dentistry.  
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1.4 OBJECTIVES 

 

1.4.1 General Objective 

 

1. To synthesize and evaluate the physico-mechanical, chemical properties and 

cytotoxicity of the glass ionomer cement (GIC) nano Zirconia (ZrO2) -Silica 

(SiO2)- Hydroxyapatite (HA) hybrid material. 

 

1.4.2 Specific Objectives 

 

1. To synthesize the nanoZrO2- SiO2- HA using the one-pot synthesis method for 

addition to cGIC and to characterize the nanoZrO2- SiO2- HA powder synthesized 

from one-pot synthesis method using transmission electron microscopy (TEM), 

scanning electron microscopy (SEM), fourier transform infrared spectroscopy 

(FTIR) and x-ray diffraction (XRD). 

2. To evaluate and compare the mechano-physical properties- compressive strength 

(CS), flexural strength (FS), fracture toughness (FT) and surface roughness (SR) 

of four different groups of GIC nanoZrO2-SiO2-HA respectively, with the 

conventional GIC. 

3. To evaluate the physical properties- colour stability (over a 28-day period) and 

sorption-solubility of the new hybrid material group with the best mechanical 

properties tested and compare it with the conventional GIC. 

4. To assess fluoride release from the new hybrid material group with the best 

mechanical properties tested over a 28-day period and compare it with the 

conventional GIC. 
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5. To compare cytotoxicity of the new hybrid material group with the best mechanical 

properties tested at 24 h and 72 h incubation period and compare it with the 

conventional GIC. 

 

1.5 Research Question 

 

Does the incorporation of a novel nanoZrO2- SiO2- HA composite formulation 

in the cGIC have a significant impact on the physico-mechanical, chemical properties 

and cytotoxicity of cGIC? 

 

1.6 Research Hypothesis 

 

1. The addition of nanoZrO2- SiO2- HA to the cGIC significantly increases the 

physical, mechanical, and chemical properties. 

2. The addition of nanoZrO2- SiO2- HA to the cGIC does not exhibit any cytotoxic 

effect on human gingival fibroblast cell line. 
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2 CHAPTER TWO 

REVIEW OF LITERATURE 

 

2.1 Historical Development of Dental Restorative Materials 

 

We live in a society, where the general population is overly concerned about 

their aesthetics and appearance. Therefore, it is only logical to assume that the most 

preferred dental restorative material should be one which closely resembles and 

performs as the part of the tooth it replaces throughout the life of the individual. During 

the 19th century silver amalgam was the most popular restorative dental materials 

being used by dentists all over Europe. Taveau, in France (1816), developed, the first 

crude dental amalgam by mixing mercury with silver coins. Needless to say, this 

resulted in several problems such as post placement expansion, amalgam tattoo and 

mercury poisoning (Anusavice, 2003).  

 

 

In the 1890’s the amalgam composition was fine-tuned and experimented with, 

till it could be successfully employed as a dental filling material. However, in spite of 

its advantages, such as being inexpensive, durable and easy of handling, amalgam also 

possessed two serious shortcomings; namely, mercury poisoning (which can cause 

neurodegenerative disease, and rarely birth defects, upon long term exposure), and 

poor aesthetics due to dark metallic colour. In the near future the use of amalgam is 

going to decline, in parts due to environmental restrictions and the aesthetic concerns. 

The development of more durable and technique insensitive restorative materials is the 

way to move in the correct direction (Anusavice, 2003). 
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2.2 Evolution of Conventional GICs 

 

In the first half of the 19th century dental cements progressed from being 

merely used for luting and lining to being utilized as aesthetic filling materials. 

Subsequently various tooth-coloured dental restoratives were developed. It was Sorel 

(1855), who created the first dental restorative cement, zinc oxychloride 

(Zn5(OH)8Cl2·H2O). Later, Pierce (1879) modified and replaced Zn5(OH)8Cl2·H2O 

with an improved zinc oxide-phosphate cements (Albers, 2002). These zinc 

oxyphosphates exhibited greater durability and lower pulpal irritation. Thereafter, 

around the turn of the 1900’s, Ames and Fleck introduced modern zinc phosphates 

luting cements (Khurshid et al., 2019). Whereas, a bit earlier in 1875, through the 

works of Pierce and Flagg, the zinc oxide eugenol (ZOE) cement was made available, 

which soon saw a rise in its demand owing to its anodyne effect (Albers, 2002).  

 

 

The turn of the 19th century saw these cements being used for temporary 

restorations, cavity bases and as adhesives. On the other hand, silicate cement, a glass 

ceramic restorative material, developed by Fletcher in 1873, did not gain popularity 

until 1904 when Steenbock modified and reintroduced it. A few years later, Shoenbeck 

developed the first successful silicate cements with the addition of F- (Khurshid et al., 

2019). 

 

 

The Laboratory of the Government Chemists, London tried to further enhance 

the handling and mechanical properties of silicates, zinc polycarboxylates and zinc 

phosphate cements. The goal was to combine the beneficial features of the silicate 

cements (translucency and F- ion release) with those of zinc polycarboxylates 

(chemical bond to the tooth substrate and low pulp toxicity) (Walls, 1986; Wilson  and 
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Kent, 1971). At the aforementioned laboratory, Wilson and Kent sought to make these 

materials a practical system by figuring out ways to overcome their sluggish setting 

and hydrolytically instability. 

 

 

The evolution of the GICs dates back to the early 1970s. The researchers at 

laboratory of government chemists were seeking to replace the silicate restorative 

materials. The first breakthrough came when it was suggested to replace phosphoric 

acid with polyacrylic acid in GIC (Smith, 1968). In doing so, the authors discovered 

the chemical reaction of GICs was actually the result of a neutral phenomenon between 

the basic component and an acidic polymer, resulting in a polysalt matrix. The cause 

for poor handling characteristics was identified as poor sensitivity of the basic glass to 

the weak polyacid. Therefore, to enhance the glass reactivity, its basic oxide ratio was 

increased; thereby, making the glass component more susceptible to the acidic 

polymer attack (Culbertson, 2001; Nagaraja Upadhya and Kishore, 2005).  

 

In 1972 Wilson and Kent manufactured the first workable cGIC and named it 

aluminosilicate polyacrylate-I (ASPA-I). Unfortunately, the cement took 20 minutes 

to harden, and exhibited poor aesthetics because of its high F- content which increased 

its opacity, thereby, limiting its clinical usability (Wilson  and Kent, 1972). However, 

in 1972 Wilson and McLean reformulated the cement by adding tartaric acid (TA) and 

by replacing Al2O3 with SiO2 in the glass (McLean and Wilson, 1977). 

 

In 1985 McLean and Gasser with the intention to improve the properties of 

cGIC which set by acid-base reaction, successfully produced a glass and silver (Ag) 

cermet which was later commercially marketed by ESPE as Ketac-Silver® (McLean 
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et al., 1985). They used pure Ag particles, fused to abrasion resistant calcium ASPA 

glass powder with a lower coefficient of friction. Unfortunately, with the passage of 

time silver particles in the material formed Ag2O that resulted in discolouration of the 

restoration. Cermet ionomer cements had higher flexural strength compared to cGIC 

but were still not strong enough to replace amalgam (Al-Badri and Kamel, 1994). 

 

 

2.3 Development of Resin-modified Glass Ionomer Cement 

 

  In 1988 Antonucci et al. introduced the first light cured RMGIC with hopes to 

emulate the best properties of composites and GICs such as, anticariogenicity due to 

F- release, low CTE and hydrophilicity of GICs. This was done by mixing cGIC with 

small quantity of resin polymeric solution (Wilson, 1990). The first commercial 

RMGIC, Vitrebond, was developed (Mitra, 1991a) set by dual mechanisms, namely a 

light polymerisation reaction and an acid-base reaction. Later in 1991 a self-

polymerising RMGIC was introduced though, disadvantages like setting shrinkage and 

limited depth of curing remained (Mitra, 1991a). 

 

 

2.4 Structure of GICs 

2.4.1 Macroscopic Structure 

 

Glass ionomers are complex materials with a predominantly Si gel-like matrix 

as a result of the reaction between an aqueous PAA solution and a fluoro-alumino-

silicate glass powder (Al2O3- SiO2-CaF2). The partially dissolved remnant glass cores 

act as fillers within in the matrix. The matrix is composed of precipitated polyacrylate 

salt bridges and uncoiled polymer chains (Figure 2.1). 
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2.4.2 Mesoscopic Structure 

 

A mesoscopic structure lies between microscopic and macroscopic structures. 

At the mesoscopic level, GICs consist of partially consumed glass cores encapsulated 

in a SiO4 gel, embedded in a matrix of cross-linked Al3+ and Ca2+ polysalt bridges. 

Silica gel and AlPO4 make up the bulk of the matrix.  

 

Figure 2.1: Graphical representation of the macroscopic structure of the GIC matrix 

at the GIC-tooth interface.  



 

16 

 

2.4.3 Microscopic Structure 

 

 

At the microscopic or atomic scale, polysalt bridges are formed between the 

polymer chains and the Al3+ and Ca2+ cations following their chelation by tartaric acid. 

The glass matrix is composed of polysalt bridges formed by Al3+ cations cross-linking 

with the –COOH groups from the PAA polymer chains, in the presence of H2O and F- 

facilitating the cation binding. Fluoride is usually present in the form of complex such 

as AlF2, AlF2 and CaF (Wilson, 1978). Phosphorus usually form AlPO4 late in the 

setting reaction and is evenly distributed throughout the matrix (Wasson and 

Nicholson, 1993; Wilson, 1996a). 

 

Wilson first proposed the possible molecular structures of the salt bridges in 

1974 (Figure 2.2). Unfortunately, there has been no follow-up study nor any molecular 

modelling of the proposed salt bridge structures. 

 

Figure 2.2: Molecular structure of the polysalt bridges proposed by Wilson (1974) 
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2.5 Chemical Composition of GICs 

 

The International Organization for Standardization (ISO) has adopted the term 

glass polyalkenoate cement (GPC) which is usually known as glass ionomer cement 

(GIC).  

 

2.5.1 Composition of Ion Leachable Glasses 

 

The glasses used in GIC are classed as Al2O3- SiO2-CaF2 glasses. These are 

different from conventional industrial glasses which are mostly composed of soda and 

lime silica glasses. Routinely, the ion leachable fluoro-alumino-silicate glasses are 

manufactured by the melt quench or fusion method involving several inorganic 

chemicals, such as quartz (SiO2), alumina (Al2O3), cryolite (Na3AlF6), fluorite (CaF2), 

aluminium trifluoride (AlF3) as listed in Table 2.1(Clifford et al., 2001). 

 

During this process, the melt glass is shock cooled with the intention of 

forming coarse granules or frit which is then ground to a pulp via ball milling to create 

the desired particle size. Generally, a particle size of <20μm is produced for the luting 

applications and a particle size of <50μm is preferred for restorative or filling purposes. 

In both these instances, after ball milling the glass powder is acid washed with a weak 

poly acetic acid to render it less reactive (Wilson  and McLean, 1988).  
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Table 2.1: Powder composition of the earliest GIC 

 

 

 

 

 

 

 

 

                          Adapted from Clifford et al., (2001).  

Components Percentage Effects 

SiO2 29.0 Essential component-fuse to form calcium fluoro-alumino silicate glasses. 

Al2O3 16.6 

CaF2 34.2 

Na3AlF6 5.0 Reduces fusion temperature and complements CaF2 

AlPO4 9.9 Adds body to cement and improves translucency 

Sr,Ba,La ---- Replace Ca partially or fully to impart radiopacity to GIC 
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This is because of the fact that these glasses possess a highly crosslinked O-Si-

O structure and are relatively stable chemically and are immune to the conventional 

acid attack. Therefore, it is logical to assume that such glasses would serve no purpose 

since in order to produce set cement it is imperative that the glass is susceptible to the 

poly acids and release metal cations in the process. However, by certain cations we 

can ensure that the O-Si-O linkage is disrupted to produce non-bridging oxygens 

(NBO).  

 

These cations are classed into different groups of network constituents 

depending on their nature. Zachariasen proposed a classification whereby they were 

divided into three groups (Zachariasen, 1932): 

1. Network formers (Si4+, PO4 
3-), 

2. Network modifiers (Ca2+, Sr2+, Ba2+, Na+) and 

3. Intermediates (Al3+, Ti4+) 

 

The network modifiers in the glass, such as Na+, Ca2+, Ba2+ and Sr2+, create an 

excessive -ve charge by disrupting the Si-O-Si bonds, thereby, resulting in the 

formation of NBOs in the set cement. On the other hand, all the Bos found in the matrix 

were O2. Therefore, by addition of other oxides such as CaO and Na2O (network 

modifiers) in the glass composition NBOs can be formed. 

 

 

Loewenstein hypothesized the centre of each tetrahedra, which is linked by an 

oxygen atom to another tetrahedra, can be engaged by Al3+, while the centre of the 

next one is engaged by Si4+ or different ion carrying four or more positive charge 

(Loewenstein, 1954). Since Al3+ is an intermediate, it can act as both a network 

modifier and a network former (Zachariasen, 1932). The inclusion of Al3+, as a 
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network former, in the tetrahedra forces a change in the glass behaviour and results in 

a surplus negative charge on the structure (AlO4
-). Therefore, the network now has a 

surplus negative charge, which must be balanced out by incorporating a network 

modifier to regain neutrality. The substitution of Si4+ by Al3+ ions in the glass can 

happen only to the point of ratio limit 1:1. This ratio is critical, and should be ideally 

1.2:1 by mass if the glass is to be able to form a set cement (Wilson et al., 1980).  

 

Early work on the effect of Al2O3/SiO2 ratio in classic glass composition 

suggests that it was a crucial factor in determination of the glass reactivity. Fluxes 

containing F- (CaF2 and Na3AlF6) apart from lowering the glass fusion temperature, 

impart F- release and recharge ability to the cement. (Kent et al., 1979; Wilson et al., 

1980).  

 

Based on the recommendations of ISO, Ca2+ is wholly or partially replaced by 

Sr2+or Ba2+ or to make the set cement more radiopaque. Sr2+ is routinely employed for 

this purpose since it has an ionic radius similar to that of Ca2+ and hence can 

isomorphically replace it without disruption or producing any loss of translucency 

(Deb and Nicholson, 1999). 

 

2.5.2 GIC Poly Acids 

 

The earliest experimental GIC (ASPA-I) system included a liquid component 

which was composed of a homopolymer of PAA 50% by mass and essentially had 

poor handling properties. This was found to be due to susceptibility to early gelation 

owing to intermolecular hydrogen bonds formation between the polymer chains (Crisp 

et al., 1975b).  
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2.5.2 (a) Acrylic Acid and Itaconic or Maleic Acid Copolymers 

 

It has been suggested that instead of only using homopolymers of PAA, 

copolymers of PAA with other carboxylic acids such as itaconic acid and maleic acid 

(Figure 2.3) can reduce polymer chain intermolecular hydrogen bonding owing to their 

reduced stereoregularity (McLean and Wilson, 1977). 

 

 

Figure 2.3: Illustration of the chemical structure of GIC polyacids 

 

A reduced intermolecular hydrogen bonding was observed in these newer 

copolymers which was attributed to the presence of two COO groups resulting in 

higher degree of cross-linking in the copolymer. This newer PAA copolymer 

developed by Crisp et al., containing an aqueous solution of acrylic acid, itaconic acid 

and tartaric acid was termed as ASPA-IV system (Crisp et al., 1980). As a result, the 

first commercial GIC contained the PAA and itaconic acid copolymer formulation 

were developed (Crisp et al., 1980). However, long term investigations on the 

influence of water storage on the biaxial flexure strength and compressive strength, of 

GICs based on copolymers of PAA demonstrated a decrease in biaxial flexural 
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strength on ageing compared with those based on homopolymers of PAA (Nicholson 

and Abiden, 1997; Williams and Billington, 1991). It has been suggested that the 

decrease in compressive strength of the copolymer containing GICs on long term water 

storage, may be a consequence of the high density of copolymers cross-linking rather 

than hydrolysis (Nicholson and Abiden, 1997; Pearson and Atkinson, 1991).  

 

2.6 Setting Reaction of GICs 

 

The setting reaction of GICs is thought to be complicated and yet not fully 

comprehensible. Attempts have been made to observe and characterize this 

phenomenon using various qualitative and quantitative techniques, such as infrared, 

XRD, FTIR, and solid-state NMR spectroscopy (Crisp et al., 1974; Pires et al., 2004; 

Zainuddin et al., 2009). When the glass powder and the PAA solution are spatulated 

into each other, a paste is produced, which signifies the beginning of an acid-base 

reaction. The GIC sets and hardens via metal ions transfer from the glass particles to 

matrix which results in gelation of the aqueous phase (Anusavice, 2003; Craig et al., 

2006; Wilson  and Kent, 1971; Wilson  and Kent, 1972; Wilson  and McLean, 1988; 

Wilson  and Nicholson, 1993; Wilson, 1991; Wilson and Crisp, 1975). 

 

During the cascading transfer of these ions, the cement matrix is vulnerable to 

moisture because the liberated metal ions are in a soluble form. Desiccation of the 

cement is another cause of early solubility as it causes water loss which can disrupts 

the cement architecture. However, desiccation after cement maturation is no longer a 

concern. The acid and powder when mixed attacks the surface of the basic glass 

particles producing a paste like mixture. Several authors have verified the existence of 
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three phases during the setting of GICs (Kent et al., 1979; McLean and Gasser, 1985; 

Mount, 2002; Smith, 1998; Wilson  and Kent, 1971; Wilson  and Kent, 1972; Wilson  

and McLean, 1988; Wilson and Nicholson, 1993; Zachariasen, 1932). 

 

2.6.1 Ion-Leachable Phase 

 

The first phase is best described as the ion extraction phase as the metal ions 

are released during this stage. The ionization of the carboxylic acid liberates H+ 

protons from the carboxyl (COO) group. These H+, when they reach a saturation point, 

attack the surface of the glass particles releasing a cacophony of  Al3+, Ca2+, Na+, F- in 

non-sequential manner (Figure 2.4), and H2PO- 4 ions into the matrix (Wilson and 

Prosser, 1982).  

 

In a study it was found that this acid attack was nonuniform and appeared to 

be concentrated at Ca+ rich sites on the glass surface as these were the more basic sites 

(Barry et al., 1979). Regardless of the location of the attack, it results in the production 

of silicic acid (SiO4) which later forms a silicious hydro gel (Si(OH)4•X(H2O)) around 

the unreacted glass crystals which then act as fillers (Wasson and Nicholson, 1990; 

Wilson and Nicholson, 1993).  

 

The setting reactions can be represented by the following equations (Darvell, 2018): 

  

Glass + H+ 
→

 Ca2+ + Al3+ + SiO4
4-    (2.1) 

nSiO4
4-  + 4nH+

→
 (SiO2) x 2nH2O    (2.2) 
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Figure 2.4: Schematic illustration of what is thought to occur during the setting  

                        reaction of GICs. 

 

A couple of studies tried to determine the quantity of glass particles consumed 

in the acid attack. One group of researchers predicted that roughly in the range of 20-

30% glass particles are consumed, while in another study, Billington et al., (2007) 

countered that approximately 7% of the glass is degraded within the cement matrix. 

This degradation of the glass particles and cross-linking of the polyacids chains with 

poly salt bridges is accompanied with a rise in the viscosity and pH of the cement paste 

(Billington et al., 2007; Crisp and Wilson, 1974) 
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