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CARTA-CARTA BAHARU SISIHAN PIAWAI HASIL TAMBAH LARIAN 

DENGAN SELANG PENSEMPELAN BERUBAH DAN PEKALI VARIASI 

MULTIVARIAT HASIL TAMBAH LARIAN 

 

 

ABSTRAK 

 

 Dalam Kawalan Proses Berstatistik (SPC), teknik carta kawalan ialah kaedah 

yang berkesan untuk menyelesaikan isu-isu kualiti dalam industri pembuatan dan 

perkhidmatan. Carta-carta R dan S sering digunakan untuk memantau varians proses 

dalam industri kerana carta-carta tersebut mempunyai rekabentuk yang mudah dan 

kepekaan yang tinggi terhadap anjakan besar. Walau bagaimanapun, carta-carta 

tersebut tidak peka terhadap anjakan kecil dan serderhana dalam varians proses. 

Sebaliknya, carta-carta yang lebih canggih, seperti carta purata bergerak berpemberat 

eksponen (EWMA) S dan carta hasiltambah longgokan (CUSUM) S adalah sangat 

berkesan untuk mengesan anjakan kecil dalam varians proses. Walau bagaimanapun, 

kebanyakan pengamal kualiti tidak menggunakan carta-carta sedemikian dalam 

aplikasi sebenar kerana rekabentuknya yang rumit. Di atas kelemahan ini, pendekatan 

selang pensempelan berubah (VSI) digabungkan dengan carta hasil tambah larian (RS) 

S bagi mencadangkan suatu carta yang berkesan dan mudah untuk mengesan anjakan 

kecil, sederhana dan besar dalam varians proses. Selain itu, pekali variasi (CV) 

merupakan suatu ciri kualiti yang penting untuk diambil kira apabila min dan sisihan 

piawai proses adalah tidak malar, walaupun proses masih berada dalam kawalan. 

Sesetengah penyelidik telah memperkenalkan carta-carta CV univariat untuk 

memantau CV proses. Walau bagaimanapun, masih terdapat kekurangan dalam 

kesusasteraan berkaitan dengan carta CV multivariat. Sebenarnya, hanya terdapat satu 

carta dalam kesusasteraan carta-carta multivariat untuk memantau CV multivariat. 
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Bagi mengatasi kekurangan ini, kaedah RS digunakan untuk mencadangkan suatu 

carta CV multivariat yang lebih cekap. Objektif-objektif utama tesis ini adalah untuk 

mencadangkan (i) carta VSI RS S dan (ii) carta CV multivariat RS. Prosedur 

pengoptimuman diperkenalkan untuk mengira parameter optimum dan skor untuk 

carta-carta yang dicadangkan berdasarkan model rantai Markov. Prosedur 

pengoptimuman ini membolehkan para pengamal kualiti untuk merekabentuk carta 

terbaik yang dapat mengesan anjakan proses dengan kelajuan yang paling tinggi. 

Tambahan pula, rekabentuk carta-carta yang dicadangkan melibatkan dua situasi, iaitu 

apabila saiz anjakan yang tepat boleh ditentukan dan apabila ia adalah tidak diketahui. 

Pembinaan dan pelaksanaan carta-carta yang dicadangkan akan ditunjukkan dengan 

contoh-contoh ilustrasi berdasarkan set-set data sebenar. Prestasi carta-carta yang 

dicadangkan diukur dan dibandingkan dengan carta-carta yang sedia ada, untuk kes-

kes keadaan sifar dan keadaan mantap. Secara amnya, hasil perbandingan 

menunjukkan bahawa carta-carta yang dicadangkan mempunyai prestasi yang lebih 

baik daripada carta-carta yang sedia ada. 
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NEW VARIABLE SAMPLING INTERVAL RUN SUM STANDARD 

DEVIATION AND RUN SUM MULTIVARIATE COEFFICIENT OF 

VARIATION CHARTS 

 

 

ABSTRACT 

 

 In Statistical Process Control (SPC), the control charting technique is an 

effective method to solve quality issues in manufacturing and service industries. The 

R and S charts are commonly used to monitor the process variance in industries due to 

the charts’ simplicity and high sensitivity toward large shifts. However, these charts 

are not sensitive toward small and moderate shifts in the process variance. On the other 

hand, the more sophisticated charts, such as the exponentially weighted moving 

average (EWMA) S chart and the cumulative sum (CUSUM) S chart are very effective 

in detecting small changes in the process variance. However, most quality practitioners 

do not adopt these charts in real applications due to their design complexity. In view 

of this setback, the variable sampling interval (VSI) approach is incorporated into the 

run sum (RS) S chart, in order to suggest an effective, yet a simple chart, for detecting 

small, moderate and large shifts in the process variance. Apart from that, the 

coefficient of variation (CV) is an important quality characteristic to take into account 

when the process mean and standard deviation are not constant, even though the 

process is in-control. Some researchers have introduced univariate CV charts to 

monitor the process CV. However, there is a scarcity in the literature concerning the 

multivariate CV chart. In fact, there is only one chart in the existing literature of 

multivariate charts, for monitoring the multivariate CV. To circumvent this limitation, 

the RS method is adopted to suggest a more efficient multivariate CV chart. The main 

objectives of this thesis are to propose the (i) VSI RS S chart and (ii) RS multivariate 
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CV chart. Optimization procedures are introduced to compute the optimal parameter 

and scores of the proposed charts, based on the Markov chain model. These 

optimization procedures will enable quality practitioners to design the best chart that 

detects a desired process shift at the quickest speed. In addition, the design of the 

proposed charts involves two situations, i.e. when the exact shift size can be specified 

and when it is unknown. The construction and implementation of the proposed charts 

are demonstrated with illustrative examples, based on real datasets. The performances 

of the proposed charts are evaluated and compared with the existing charts, for the 

zero state and steady state cases. In general, the comparative studies show that the 

proposed charts perform better than their existing counterparts. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 An Overview on Statistical Quality Control Charts 

 Quality improvement is vital in manufacturing and service industries to drive 

business growth, sustaining competitiveness and ensuring success. The eight 

dimensions of quality emphasized by Garvin (1987) are reliability, durability, 

serviceability, performance, features, aesthetics, conformance to standards and 

perceived quality. Practitioners need to identify and understand the characteristics that 

are affecting the quality of products produced or services provided. There are two 

factors, called the common causes and assignable causes that induce variability in all 

processes, leading to quality deterioration. The common causes of variation are 

inherent in the production and are unavoidable. On the other hand, assignable causes 

of variation can be eliminated by identifying the sources, such as machine wear out, 

human errors and defective raw materials (Montgomery, 2009). 

 Statistical Process Control (SPC) is used to reduce variability in processes and 

to ensure that products or services produced are of high quality. SPC is also known as 

the magnificent seven as it consists of seven powerful statistical tools that can assist 

practitioners to detect changes in a process. These seven statistical tools are the check 

sheet, cause-and-effect diagram, stem-and-leaf diagram, scatter diagram, histogram, 

Pareto chart and control chart (Gupta and Walker, 2007). These statistical tools are 

easy to implement and are suitable to shop floor personnel who may have little 

knowledge on statistics, yet providing significant results in quality improvement. SPC 

techniques have been widely applied in manufacturing and service industries to raise 

a company’s profit by reducing the number of nonconforming products produced. 
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 A control chart is the most popular technique among all the statistical tools in 

SPC that are used to monitor a process. A basic control chart is a diagram that consists 

of the upper and lower control limits, center line and sample points. The history of 

control charts started with the introduction of the first control chart by Walter A. 

Shewhart in 1924. Subsequently, researchers developed other types of control charts 

to meet a variety of quality issues encountered in different industries. Control charts 

can be classified into two categories, which are variable control charts and attribute 

control charts. A variable chart is used to monitor variable quality characteristics that 

can be measured in a continuous scale, such as width, volume and height. Some 

examples of variable control charts are X , S and R charts. On the other hand, an 

attribute chart is used to monitor attribute quality characteristics, such as the number 

of defective items. Commonly used attribute charts are the p, c and u-charts. 

Control charting methods have also been extended to monitor multivariate 

quality characteristics. For instance, the multivariate exponentially weighted moving 

average (MEWMA), multivariate cumulative sum (MCUSUM) and Hotelling’s 
2  

charts have received great attention from practitioners and researchers worldwide. This 

multivariate type charts can be used to monitor two or more quality characteristics in 

a process simultaneously, in order to meet new quality improvement requirements. 

 Two distinct phases of process monitoring, i.e. Phase I and Phase II, are 

encountered in the use of control charts for process monitoring. In Phase I, a historical 

dataset is taken to compute trial control limits. These trial control limits are suitable 

for monitoring a future process in Phase II, if the Phase I historical dataset shows that 

the process is statistically in-control. In Phase II, the control chart is used to monitor a 

future process by comparing the plotted sample statistics in Phase II with the trial 

control limits established in Phase I. 
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 Statistical control charts are widely used by practitioners in various industries 

to guard against process deterioration. For instance, an engineer can use a control chart 

to detect assignable causes in production lines while an investment broker may apply 

control charting techniques to identify the presence of abnormal market behavior in 

the stock market. It is noteworthy that statistical control charts enable the user to 

identify assignable causes quickly and to prevent the process from operating in an out-

of-control condition. 

 

1.2 An Overview on S Type Charts 

 Nowadays, quality improvement strategies in manufacturing and service 

industries not only require process monitoring of the mean but also the variability. This 

is because a large number of nonconforming items will be produced when a process is 

operating with a high variability. On the contrary, a low process variability 

environment can improve process capability (Acosta-Mejia et al., 1999). Therefore, 

several S type control charts have been developed by researchers, in order to reduce 

process variability. A more advanced chart was proposed by Crowder and Hamilton 

(1992) which was the exponentially weighted moving average (EWMA) S chart. The 

EWMA S chart involves a logarithmic transformation of the sample variance. It was 

shown that the EWMA S chart can detect small increasing shifts in the process standard 

deviation quicker than the usual range chart or 
2S  chart. Subsequently, Klein (2000) 

proposed three modified S-charts that outperform the traditional Shewhart S chart, in 

detecting a shift in the standard deviation. Huang and Chen (2005) introduced the 

synthetic S chart that consists of an S chart and a conforming run length (CRL) chart 

to monitor the process dispersion more effectively. A variable sampling interval (VSI) 

scheme was also incorporated into the synthetic S chart to further enhance its 
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performance. Shu and Jiang (2008) modified the traditional EWMA S chart by 

truncating negative normalized observations to zero to propose a new EWMA S chart. 

The comparative results show that the new EWMA S chart is superior to the traditional 

EWMA S chart, in monitoring the process standard deviation. The k-of-k runs rule was 

incorporated into the standard S chart by Acosta-Mejia and Pignatiello (2009) to 

improve the standard S chart’s sensitivity towards small shifts in the process standard 

deviation. This was followed by Antzoulakos and Rakitzis (2010) who applied the 

general runs rules schemes on the Shewhart S chart to further enhance its performance 

in monitoring the process standard deviation. Furthermore, recommendations were 

also provided on the choice of the optimal runs rules scheme, based on a specified shift 

size where a quick detection is deemed important. 

Schoonhoven et al. (2011) developed a chart with estimated process 

parameters that is robust against contamination to monitor the process variance. 

Besides that, Rakitzis and Antzoulakos (2011) presented one-sided adaptive S charts 

that are effective in monitoring both increasing and decreasing shifts in the process 

variance. They considered the VSI, variable sample size (VSS) and variable sample 

size and sampling interval (VSSI) schemes, both with and without runs rules. The 

CUSUM and EWMA charts are well-known for their efficiency in detecting small and 

moderate process shifts. Abbas et al. (2013) combined both the CUSUM and EWMA 

techniques into a single new control chart, called the CS-EWMA chart, where the latter 

prevails over the two former charts in detecting increasing and decreasing shifts in the 

process variance. Kuo and Lee (2013) introduced several different adaptive schemes 

for the Shewhart S chart to improve its sensitivity towards small increases in the 

process standard deviation. The simple random sampling and double sampling 

techniques were applied by Ahmad et al. (2013) to variance type charts to monitor the 
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process variance more effectively. Ahmad et al. (2013) conducted their study using 

auxiliary characteristics and in the presence of contaminated data. Rakitzis and 

Antzoulakos (2014) incorporated signaling and switching rules into the one-sided VSI 

S chart, in order for the chart to outdo more advanced charts, like the VSI synthetic S, 

VSI CUSUM-S and VSI EWMA-ln 
2S  charts, in detecting small shifts in the process 

variance. Recently, the synthetic double sampling S chart was proposed by Lee and 

Khoo (2017) to monitor increasing shifts in the process variance more effectively. 

 

1.3 An Overview on Variable Sampling Interval Charts 

 Traditional charts are designed based on the fixed sampling ratio (FSR) scheme 

in monitoring a process. Thus, all samples taken from a process are of fixed sample 

size n and each sample is taken after a fixed sampling interval 0d . In order to further 

enhance the performance of traditional charts, researchers started to design control 

charts based on the variable sampling rate (VSR) scheme. The most commonly used 

VSR features on control charts are the VSI, VSS and VSSI methods as a function of 

prior sample information. Many research works have shown that the VSI, VSS and 

VSSI schemes have significantly reduced the average time to detect process changes. 

The VSI X  chart was proposed by Reynolds et al. (1988), where it was found to be 

superior to the standard fixed sampling interval (FSI) X  chart. The usual VSI policy 

involves two different sampling intervals which are the short sampling interval 1d  and 

the long sampling interval 2d . The next sample is taken after a short sampling interval 

if the current sample shows that a process change is likely to occur. This allows 

practitioners to detect assignable causes at a shorter time period so that rework and 

scrap costs can be reduced. On the other hand, the next sample is taken after a long 

sampling interval if the current sample does not show any sign of a potential process 
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change. This means that the production line is not interrupted when the process is in-

control. In practice, process changes usually occur after the production line has been 

running for some time even though it may also happen at the beginning of the process. 

Therefore, Stoumbos et al. (2001) presented the steady state optimal VSI charts and 

suggested that only two sampling intervals are considered. Göb et al. (2006) studied 

the process distribution of the time to failure under the Weibull distribution for the VSI 

Shewhart charts. 

An adaptive VSI CUSUM chart was proposed by Luo et al. (2009), where the 

chart is robust against unknown shift sizes and it performs substantially better than the 

traditional FSI chart in monitoring a range of mean shifts. In addition, Li and Wang 

(2010) introduced an EWMA chart supplemented with the VSI scheme, where the 

chart is robust and effective in detecting various types of shifts, which include intercept 

shifts, slope shifts and standard deviation shifts. In the existing literature, the 

sequential probability ratio test (SPRT) chart is well-known for its ability to detect 

moderate mean shifts quickly as compared to the more advanced CUSUM chart. Ou 

et al. (2011) applied the VSI scheme on the SPRT chart to further enhance its detection 

effectiveness. The VSI X  chart with estimated process parameters was proposed by 

Zhang et al. (2012). 

 Recently, Lee et al. (2015) combined the CRL chart with the VSI X  chart to 

propose the VSI synthetic X  chart that is superior to the VSI X  chart in detecting 

moderate and large mean shifts. Liu et al. (2015) presented the Phase II VSI 

nonparametric EWMA chart that is efficient in monitoring a wide range of shifts 

regardless of the underlying process distribution. Patil and Shirke (2015) introduced 

the VSI policy on the economic design of the moving average X  chart to monitor a 

process having a non-normal quality characteristic. It was shown that the proposed 



7 
 

chart results in a substantial percentage of savings in cost as compared to the chart’s 

FSI counterpart. Peng et al. (2015) proposed the VSI generalized likelihood ratio (GLR) 

chart that is effective in monitoring mean shifts regardless of the shift size. The VSI 

feature has also been extended to attribute type control charts to monitor the number 

of nonconforming items in a process. For example, Lee and Khoo (2015) incorporated 

both the VSI and runs rules schemes into the cumulative count of conforming (CCC) 

chart. 

 

1.4 An Overview on Run Sum Charts 

 The run sum control charting technique is a special technique that involves 

partitioning the in-control region of a chart into several regions to enhance the chart’s 

sensitivity. The run sum concept involves assigning score to each of the regions and 

then the cumulative score is computed by summing up all the scores based on the 

regions where the sequence of past samples fall into till the current sample. The process 

of computing the cumulative score continues until the cumulative score reaches or 

exceeds a critical value, where an out-of-control signal is triggered. Davis et al. (1990) 

studied the performance of the run sum chart and concluded that the chart is superior 

to the Shewhart chart with the common runs rules. Davis et al. (1994) introduced a 

model which consists of the fast initial response (FIR) feature and score vectors that 

improves the competitiveness of the run sum chart. Ho and Case (1994) extended the 

run sum chart based on the economic criterion to jointly monitor the process mean and 

variance more effectively. Champ and Rigdon (1997) highlighted that by adding more 

regions and scores, the run sum X  chart can be made more sensitive than the CUSUM 

and EWMA charts. As both process location and variability are important factors that 

affect the production quality, Aguirre-Torres and Reyes-López (1999) presented the 



8 
 

RS charts that are able to monitor both the sample mean  X  and sample range (R) 

statistics simultaneously. 

 In practice, a process mean that changes linearly over time can also lead to 

process deterioration. Davis and Krehbiel (2002) compared the performance of the 

Shewhart charts with supplementary runs rules to that of run sum charts when the 

process mean changes linearly over time and concluded that the latter surpasses the 

former. Acosta-Mejia and Pignatiello (2010) proposed the RS R chart that is superior 

to R charts with runs rules, in monitoring the process dispersion. In certain situations, 

practitioners need to monitor two or more related quality characteristics 

simultaneously. In view of this, Khoo et al. (2013) proposed the RS Hotelling’s 
2  

charts with and without the fast initial response (FIR) feature that are more efficient 

than the 
2  chart with runs rules and the synthetic 

2  chart. Sitt et al. (2014) 

introduced the RS t chart that provides sufficient robustness against estimation errors 

in the process standard deviation while Acosta-Mejia and Rincon (2014) presented a 

simplified version of the RS scheme which is a one-parameter continuous RS chart. 

Chew et al. (2015) applied the VSI policy to enhance the RS X  chart’s sensitivity 

towards a mean shift in the process. Lastly, the RS S chart was proposed by Rakitzis 

and Antzoulakos (2016) to monitor the process variability more effectively. 

 

1.5 An Overview on Coefficient of Variation Charts 

 Nowadays, process monitoring is becoming more complicated and challenging. 

As a result, control charting techniques have undergone various modifications and 

extensions in order to meet the present industrial requirements. In certain scenarios, 

practitioners not only need to monitor the process mean μ and standard deviation σ but 

also the coefficient of variation (CV). The need to monitor the CV arises when the 
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process mean and standard deviation are not constant but the process is still deemed 

as in-control. In other words, the process standard deviation σ is a function of the 

process mean μ, i.e.   . Therefore, the aim of monitoring the CV is to maintain 

a constant CV, 





 , while providing flexibility for the mean and standard deviation 

to vary. In line with this aim, Kang et al. (2007) proposed a CV chart to monitor the 

process CV. A shortcoming of this CV chart is its inability to detect small shifts in the 

CV quickly. Thus, a CV-EWMA (CV-exponentially weighted moving average) chart 

was introduced by Hong et al. (2008), for a quicker detection of small shifts in the CV. 

Instead of monitoring the CV itself, Castagliola et al. (2011) developed an EWMA-

2  chart that monitors the coefficient of variation squared, i.e. 
2 , where this chart 

performs generally better than the CV-EWMA chart in detecting a shift in the CV. 

The double exponentially weighted moving average-CV (DEWMA-CV) chart 

was presented by Hong et al. (2011a) to outdo the CV-EWMA chart in detecting small 

CV shifts. Hong et al. (2011b) also proposed the generally weighted moving average-

CV (GWMA-CV) chart that is superior to both the CV-EWMA and DEWMA-CV 

charts. Subsequently, Calzada and Scariano (2013) proposed the synthetic CV chart 

that is more efficient than the standard CV chart and the former also surpasses the 

EWMA-
2  chart in detecting large shifts in the CV. Castagliola et al. (2013a) 

introduced the runs rule CV chart and suggested the best runs rule scheme based on 

the desired shift size in the CV. The VSI scheme was incorporated into the CV chart 

by Castagliola et al. (2013b) in proposing the VSI CV chart that is more efficient than 

the FSI CV chart. Zhang et al. (2014) modified the EWMA-
2  chart to propose a new 

EWMA chart to monitor the CV, where the latter prevails over the former in the 
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detection of shifts in the CV. A method was developed by Park et al. (2014) to enhance 

the CV-EWMA chart’s precision and accuracy. 

Traditional control charts are designed based on the assumption of infinite 

production horizon and may not be suitable in the current industrial setting involving 

flexible manufacturing. To circumvent this problem, Castagliola et al. (2015a) 

developed the one-sided Shewhart-type charts for short production runs to monitor the 

CV. The VSS approach is an adaptive policy which requires the next sample having a 

large sample size to be taken if the current sample shows that a process shift is likely 

to occur, while requiring the next sample with a small sample size to be taken if the 

current sample does not show any sign of a potential process change. Castagliola et al. 

(2015b) incorporated the VSS scheme into the Shewhart chart to monitor the CV more 

effectively. Furthermore, Amdouni et al. (2015) modified the VSS CV chart to enable 

it to monitor the CV in finite production horizon. Lastly, Yeong et al. (2015) developed 

the first multivariate CV chart that is able to monitor two or more related quality 

characteristics simultaneously. This contribution enables the process CV of two or 

more correlated variables to be jointly monitored and the research by Yeong et al. 

(2015) has extended the monitoring of the process CV from the univariate case to the 

multivariate case. 

 

1.6 Problem Statements and Research Motivations 

 In process monitoring, the monitoring of the process variance is a vital factor 

to take into consideration besides the monitoring of the process mean. This is 

particularly true when dealing with increasing shifts in the process variance which 

result in process deterioration. The RS S chart proposed by Rakitzis and Antzoulakos 

(2016) is a simple and straightforward approach that can be easily implemented by 



11 
 

practitioners, yet having the desired feature of being more sensitive than the Shewhart 

S charts with and without runs rules. In view of the advantages of the RS S chart, the 

aim of this thesis is to further enhance the sensitivity of this chart by incorporating the 

VSI feature. 

 In addition, it is crucial to monitor the process coefficient of variation when the 

process standard deviation is directly proportional to the process mean. For instance, 

(i) a clinical surgeon relates the standard deviation to the mean amount of chemical in 

a patient’s blood, which varies among patients (Kang et al., 2007) and (ii) a dealer 

from an investment bank relates the volatility of the return on an asset to the expected 

value of the return in order to calculate the risk of a particular stock (Sharpe, 1994). It 

is meaningless to monitor the process mean or variance separately in such situations 

because both are not constants. In the literature, various control charts were proposed 

to monitor the univariate process CV. However, until now only one control chart is 

available to monitor the multivariate process CV, where this chart was proposed by 

Yeong et al. (2015). A main drawback of this multivariate CV chart is its lack of 

sensitivity toward small and moderate shifts in the multivariate process CV. To 

circumvent this problem, the RS multivariate CV chart is proposed in this thesis so 

that a more powerful chart for monitoring the multivariate CV is available in the 

literature. 

 

1.7 Objectives of the Study 

 The main objectives of this thesis are as follows: 

(i) To develop the VSI RS S chart that is more effective in detecting shifts in the 

process variance than existing charts available in the literature. 
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(ii) To develop the multivariate RS CV chart that is more sensitive than the existing 

chart for monitoring the multivariate process CV. 

 

1.8 Organization of the Thesis 

 This thesis consists of 5 chapters and the organization of the thesis is given in 

this section. Chapter 1 begins with an introduction on the background of Statistical 

Quality Control (SQC) and an overview on various control charts. Brief overviews on 

the S, VSI, RS and CV charts are provided in Chapter 1. This is followed by an 

explanation on the problem statements and research motivations, as well as the 

objectives of the study. 

 Chapter 2 provides a discussion on the performance measures of control charts, 

which include the average run length (ARL), steady-state ARL (SARL), average time 

to signal (ATS), steady-state ATS (SATS), expected average run length (EARL), 

expected steady-state ARL (ESARL), expected average time to signal (EATS) and 

expected steady-state ATS (ESATS). Chapter 2 also presents a detailed review on the 

related univariate S type control charts that are considered in Section 3.5 and the 

existing multivariate CV chart which is considered in Section 4.5. The S type charts 

reviewed here are the Shewhart S, RS S and EWMA S charts. 

 Chapter 3 gives an overview and a procedure to implement the proposed VSI 

RS S chart. A detailed optimal design procedure of the proposed chart is also discussed 

in this chapter. Consequently, a comparison of the performances of the proposed VSI 

RS S chart and existing S type charts, namely, the Shewhart S, RS S and EWMA S 

charts is explained in this chapter. This is followed by an illustrative example that 

demonstrates the use of the proposed chart in practice. 
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 The proposed RS multivariate CV chart is presented in Chapter 4. The 

construction of the proposed chart together with the computation of the chart’s optimal 

parameters are explained in this chapter. A performance comparison between the 

proposed RS multivariate CV chart and the existing multivariate CV chart is also given 

in Chapter 4. The last section of this chapter provides an illustrative example to show 

the procedure to implement the proposed chart in practice. 

 Finally, a summary drawn from the findings in Chapters 3 and 4 is given in 

Chapter 5. Apart from that, Chapter 5 also highlights the main contributions of this 

thesis, as well as provides suggestions for future research. 

 The last part of the thesis contains references and appendices. Numerous 

optimization (for computing optimal parameters) programs written in MATLAB and 

Statistical Analysis Software (SAS) for the VSI RS S and RS multivariate CV charts 

are given in Appendices A and B, respectively. In addition, programs written for 

competing charts, such as the Shewhart S, RS S, EWMA S and multivariate CV charts 

are provided in Appendices C, D, E and F, respectively. 
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CHAPTER 2 

A DISCUSSION ON PERFORMANCE MEASURES AND RELATED 

CONTROL CHARTS 

 

2.1 Introduction 

 Statistical Quality Control chart is one of the most popular tools used in 

manufacturing and service industries to guard against process deterioration, in order 

to improve quality. It is important for practitioners to select the best control chart that 

gives the quickest speed in detecting process changes, based on desired circumstances. 

In view of this, the efficiency of the control charts studied in this thesis is evaluated 

based on performance measures under various conditions. A detailed discussion on the 

performance measures is given in Section 2.2. 

 Section 2.3 presents an overview on the related univariate S type control charts 

that are used in the performance comparison with the proposed chart in Chapter 3. This 

includes the Shewhart S, run sum S (RS S) and EWMA S charts that are reviewed in 

detail in Sections 2.3.1, 2.3.2 and 2.3.3, respectively. On the other hand, the 

multivariate CV chart which is the sole existing CV chart for multivariate process, in 

the literature, is reviewed in Section 2.4, where it is compared with the proposed chart 

in Chapter 4. 

 

2.2 Control Charts’ Performance Measures 

 In this section, several performance measures are used to assess and compare 

the effectiveness of control charts in detecting process shifts. A control chart is said to 

be superior if it is able to react to process changes at the shortest time. The performance 

measures considered in this study are ARL, SARL, ATS, SATS, EARL, ESARL, 
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EATS and ESATS. Note that, the common performance criteria for the FSI type charts 

are based on ARL, SARL, EARL and ESARL while the performance measures for the 

VSI type charts include ATS, SATS, EATS and ESATS. When the competing charts 

have the same in-control value, in terms of a certain performance measure, the superior 

chart has the smallest out-of-control value. 

 

2.2.1 Average Run Length (ARL) and Steady-State Average Run Length 

(SARL) 

 The performance measures to evaluate the efficiency and effectiveness of the 

FSI type charts are ARL and SARL, for the zero state and steady state cases, 

respectively. The ARL denotes the average number of samples that are plotted on a 

control chart until the chart triggers an out-of-control alarm (Montgomery, 2009). Note 

that the definition of ARL assumes that process changes occur at the beginning of the 

process, however, the majority of process changes happen at a random time after 

process monitoring activity is initiated. Hence, the SARL, which is defined as the 

“expected value” of the number of samples taken from the time the process shifts, that 

occurs at a random time, until the chart signals an out-of-control, is used to assess the 

performance of the chart under the steady state condition. When the process is in-

control, the average number of samples taken until the chart issues a false alarm is 

denoted as 0ARL  and 0SARL , for the zero state and steady state cases, respectively. 

On the other hand, the average number of samples required by the chart to signal when 

the process is out-of-control is denoted as 1ARL  and 1SARL , for the zero state and 

steady state cases, respectively. Therefore, it is desirable to have a large value of 

0ARL  or 0SARL  to reduce unnecessary inspection work and a small value of 1ARL  

or 1SARL  to identify assignable causes quickly. 
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2.2.2 Average Time to Signal (ATS) and Steady-State Average Time to Signal 

(SATS) 

 For VSI type charts, the common performance measures are the ATS for the 

zero state case and SATS for the steady state case. Unlike FSI type charts whose 

sampling intervals are fixed, the VSI type charts adopt different sampling interval 

lengths based on information obtained from the current sample. Therefore, it is more 

appropriate to measure the amount of time required by a VSI type chart to signal. The 

definition for the ATS is given as the expected amount of time from the beginning of 

the process monitoring activity until an out-of-control signal is triggered by the chart 

while the SATS is the steady state ATS (similar to the SARL explanation in Section 

2.2.1). The in-control ATS and out-of-control ATS are denoted as 0ATS  and 1ATS , 

respectively, for the zero state case. In addition, the 0SATS  and 1SATS  are used to 

represent the in-control SATS and out-of-control SATS, respectively, for the steady 

state case. An ideal control chart has the largest 0ATS  or 0SATS  value and the 

smallest 1ATS  or 1SATS  value. 

 

2.2.3 Expected Average Run Length (EARL) and Expected Steady-State 

Average Run Length (ESARL) 

 In an ideal situation, the size of the process shift where a quick detection is 

important can be specified in advance, so that the performance measures discussed in 

Sections 2.2.1 and 2.2.2 can be used to evaluate the efficiency of the charts. However, 

this situation may not be the case in real practice and is considered as too restrictive. 

The process shift size which is a random quantity that follows an unknown stochastic 

model and lack of historical data are the main reasons practitioners are unable to 

specify shift sizes precisely (Castagliola et al., 2011). In view of this, EARL and 
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ESARL are used to assess the performance of control charts when the shift size is 

unknown. The definition of EARL is given as the expected value of the ARL which is 

integrated over a density function of the shift size,  f   (see Chapters 3 and 4) while 

ESARL is the steady state EARL. The in-control EARL and ESARL are denoted as 

0EARL  and 0ESARL , respectively, while the out-of-control EARL and ESARL are 

denoted as 1EARL  and 1ESARL , respectively. Note that 0 0EARL ARL  while 

0 0ESARL SARL  when there is no process shift. A control chart is superior when 

it has a larger value of 0EARL  or 0ESARL  and a smaller value of 1EARL  or 

1ESARL . 

 

2.2.4 Expected Average Time to Signal (EATS) and Expected Steady-State 

Average Time to Signal (ESATS) 

 For VSI type charts, the EATS and ESATS enable practitioners to evaluate the 

performance of the charts, for the zero state and steady state cases, respectively, when 

the shift size where a quick detection is important cannot be specified in advance. The 

EATS is the expected value of ATS while ESATS is the expected value of SATS, 

where both involve integrals of the density function of the shift size over a range of 

possible shifts (between minimum and maximum shifts). The 0EATS  and 0ESATS  

are used to denote the in-control EATS and ESATS, respectively. On the other hand, 

the 1EATS  and 1ESATS  are used to denote the out-of-control EATS and ESATS, 

respectively. For in-control situations, 0 0EATS ATS  and 0 0ESATS SATS . A 

VSI type chart that has a large value of 0EATS  or 0ESATS  and a small value of 

1EATS  or 1ESATS  compared with the other charts, is said to be more efficient. 
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2.3 Univariate S Type Control Charts 

 In practice, monitoring process variance is vital to reduce the number of non-

conforming items produced. Hence, univariate S type charts were introduced to 

monitor the variance of a single quality characteristic in the process. This section gives 

an overview of three univariate S type charts that are used in the comparison with the 

proposed chart in Chapter 3, namely, the Shewhart S, RS S and EWMA S charts. 

 

2.3.1 Shewhart S Chart 

 Suppose that there exist independent and identically distributed samples, each 

of size n. Then the ith (for i = 1, 2, …) sample is represented by  1 2,, ,...,i i inX X X . 

The Shewhart S chart requires the iS  statistic, which is the standard deviation of the 

ith sample to be plotted on the chart. The computation of the ith sample mean and 

sample standard deviation are given as follows: 

     
1

1 n

i ij

j

X X
n 

     (2.1) 

and 

      
2

1

1

1

n

i ij i

j

S X X
n 

 

 ,  (2.2) 

respectively. Here, the successive samples are assumed to be independent and ijX  is 

assumed to follow the normal  2

1,N    distribution, where 1 0  , 1  is the 

process standard deviation and 0  is the in-control standard deviation. If τ = 1, the 

process is considered as in-control, where 1 0  ; while τ > 1 indicates an increase 

in the process variance (process deterioration) and 0 < τ < 1 indicates a decrease in the 

process variance (process improvement). 
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 Ryan (2000) suggested the use of probability limits for the Shewhart S chart 

because the distribution of the sample standard deviation, S, is skewed. The upper and 

lower probability limits of the two-sided Shewhart S chart are 

     

2

1;1 2

0UCL
1

n

n




 



   (2.3a) 

and     

     

2

1; 2

0LCL
1

n

n








,   (2.3b) 

respectively, where 
2

,v w  denotes the 100w-th percentile of the chi-square distribution 

with v degrees of freedom and α is the false alarm rate, i.e. 
0

1

ARL
   and 

0ARL  is 

a pre-specified in-control average run length. Due to the skewness of the S distribution, 

it is more appropriate to use the median of the S distribution to represent the median 

line (MDL) of the Shewhart S chart, where 

     

2

1;0.5

0MDL
1

n

n


 




.   (2.3c) 

Note that LCL < MDL < UCL. The S chart works by plotting sample standard 

deviations over a horizon of time and an out-of-control signal is triggered by the chart 

when a plotted point falls beyond the chart’s limits. 

 It is vital to detect an increasing shift in the process variance as it indicates 

process deterioration while a decreasing shift in the process variance indicates process 

improvement which is not a concern to practitioners. For this reason, besides the two-

sided S chart, the one-sided upward S chart is also discussed here. The one-sided 

upward S chart has the UCL only, which is given as 

     

2

1;1

0UCL
1

n

n


  




   (2.4) 
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and the MDL which is computed based on Equation (2.3c). 

 The performance of the Shewhart S chart is evaluated based on the ARL and 

the formula to compute the ARL is given as follows: 

     
1

ARL
p

 ,    (2.5) 

where p is the probability in which a sample standard deviation, iS  falls beyond the 

chart’s limits. The formulae to compute p, for the two-sided and the one-sided upward 

S charts are given as (Rakitzis and Antzoulakos, 2016) 

   
 

 

 

 

2 2

1 12 2

0 0

1 UCL 1 LCL
1 n n

n n
p F F

 
 

    
     

   
   

 (2.6) 

and 

     
 

 

2

1 2

0

1 UCL
1 n

n
p F




 
   

 
 

,  (2.7) 

respectively, where  1   nF    represents the cumulative distribution function (cdf) of 

a chi-square random variable with (n  ̶  1) degrees of freedom. It is noted that 1   (no 

process standard deviation shift) and 1   (a shift in the process standard deviation 

occurs) give the in-control and out-of-control conditions, respectively, in Equations 

(2.6) and (2.7). 

 

2.3.2 Run Sum S Chart 

 The two-sided RS S chart was proposed by Rakitzis and Antzoulakos (2016). 

The chart involves partitioning the regions above and below the MDL, each into k 

regions. The two-sided RS S chart consists of k UCL above the MDL, namely 

1 2UCL <UCL ... UCLk   and k LCL below the MDL, namely 

1 1LCL LCL ... LCLk k   , where UCLk   and LCL 0k  . Each region above 



21 
 

the MDL, i.e. 1UCL ,UCLm m  is assigned with a positive score mC , for m = 1, 2, …, 

k while each region below the MDL, i.e.  1LCL ,LCLm m  is assigned with a negative 

score mC , for m = 1, 2, …, k. The scores are set to satisfy the constraint 

1 10 ... k kC C C     and 
0 0UCL LCL MDL.   

 The two-sided RS S chart involves plotting the cumulative scores iU  and iL , 

where the computations are given as follows: 

   
 1

0 if <MDL

if MDL

i

i

i i i

S
U

U C S S


 

 
  (2.8a) 

and          

   
 1

0 if >MDL

if MDL

i

i

i i i

S
L

L C S S


 

 
,  (2.8b) 

for i = 1, 2, …, while both  0 0U   and  0 0L   are the initial values. It is noted that 

a head-start feature can be activated by setting 0 0U   and 0 0L  , so that the 

cumulative scores are nearer to the critical value, H, in order to enhance the chart’s 

sensitivity towards an early process change. For simplicity, the no head-start feature is 

considered in this thesis, i.e. 0 0U   and 0 0L  . This is because the head-start feature 

will fade away in the steady state case. When the statistic iS  falls in the region 

1UCL ,UCLm m , the score function is assigned to a score mC , i.e.  i mC S C . 

Similarly, when the statistic iS  falls in the region  1LCL ,LCLm m , the score function 

is assigned to a score mC , i.e.  i mC S C  . The two-sided RS S chart contains a 

critical value H, where the chart signals an out-of-control situation when iU H  or 

iL H  . 
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The MDL of the two-sided RS S chart can be computed using Equation (2.3c). 

Rakitzis and Antzoulakos (2016) suggested the control limits of the two-sided RS S 

chart as follows: 

     
 RS 

2

1,

0UCL
1

Sn m

m
n





 




   (2.9a) 

and 

    
 RS 

2

1,1

0LCL
1

Sn m

m
n





 




   (2.9b) 

where       is the standard normal random variable and RS S  is a parameter 

computed based on a pre-specified 0ARL  value. 

 Let mp  denote the probability of iS  falling in the region 1UCL ,UCLm m  

and mp  denote the probability of iS  falling in the region  1LCL ,LCLm m , for m = 

1, 2, …, k. Rakitzis and Antzoulakos (2016) recommended the computations for both 

mp  and mp  as follows: 
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 (2.10a) 

and 
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, (2.10b) 

for m = 1, 2, …, k. 

 Similar to Section 2.3.1 for the Shewhart S chart, the one-sided upward RS S 

chart is included in this thesis so that a performance comparison with the proposed 

chart can be conducted. The one-sided upward RS S chart can be easily constructed by 

adopting the characteristics above the MDL and excluding all the characteristics below 
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the MDL of the two-sided RS S chart. Thus, the one-sided upward RS S chart involves 

only the cumulative score iU , positive scores 
1 10 ... k kC C C    , upper control 

limits 
1 2UCL <UCL ... UCLk   and the probability of iS  falling in the region 

1UCL ,UCLm m , i.e. mp , computed based on Equation (2.10a). When the statistic 

iS  falls below the MDL, the cumulative score iU  is reset to zero and P( iS  < MDL) is 

given as (Rakitzis and Antzoulakos, 2016) 

    
 

 
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0 1 2

0

1 MDL
n

n
p F




 
  

 
 

.   (2.11) 

 The Markov chain technique introduced by Champ and Ridgon (1997) is used 

to compute the ARL of the two-sided and one-sided upward RS S charts and the 

formula is given as follows: 

     
1

ARL T 
 e I Q 1  ,   (2.12) 

where  1,0,...,0T e  is the initial probability vector with the first entry equal to unity 

and zeros elsewhere, I is an identity matrix, 1 is a vector with all entries equal to unity 

and Q denotes the transition probability matrix (tpm) for the transient states. The 

computation of the transition probabilities together with the tpm using the Markov 

chain method is provided in Chapter 3. 

 

2.3.3 EWMA S Chart 

 The EWMA smoothing technique is considered as an advanced method that 

greatly enhances a control chart’s sensitivity towards small and medium shifts. The 

EWMA S chart’s statistics involve a logarithmic transformation of the quality 

characteristic and a smoothing constant is applied to it. For instance, the one-sided 
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upward EWMA S chart proposed by Crowder and Hamilton (1992) requires plotting 

the following statistics: 

       2

0 1max ln , 1i i iZ Z Y     ,  (2.13) 

where i = 1, 2, …; 0  denotes the in-control process standard deviation,  2

0 0lnZ  , 

2

2

0

ln i
i

S
Y



 
  

 
 and λ denotes the smoothing parameter, where 0 1  . Suppose that 

the random samples are normally distributed with the sample size n. Then the sample 

variance 
2

iS  follows a gamma distribution with the shape parameter 
 1

2

n
a


  and 

scale parameter 
 

22

1
b

n





. The mean and variance of iY  are given as follows 

(Crowder and Hamilton, 1992): 
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and 

   
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The use of symmetrical control limits of the two-sided EWMA S chart were 

recommended by Shu and Jiang (2008) after transforming 
2

iS  to 

2

2

0

ln iS



 
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 

. Thus, the 

two-sided EWMA S chart involves plotting iZ  that can be computed using Equation 

(2.13) based on the following limits: 

      EWMA UCL = E Var
2

i S iY Y
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
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  (2.16a) 

and 
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