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PENGESANAN POLIMORPHISME INTERLEUKIN-10 DEGAN JANKITAN 

Plasmodium falciparum DI ARDAMATA IDP CAMP DI SUDAN BANDAR 

AL-GENEINA 

 

ABSTRAK 

 

Malaria merupakan penyebab utama kematian dalam kalangan penduduk Sudan. Penyakit 

ini telah menyumbang kepada 7.5 juta kes malaria dan 35,000 kematian setiap tahun, 

terutama akibat jangkitan Plasmodium falciparum (P. falciparum). Genetik perumah dan 

patogen merupakan dua faktor penting yang menyumbang kepada keparahan sesuatu 

penyakit. Dalam promoter atau kawasan pengkodan gen sitokin, polimorfisme nuklear 

tunggal (SNP) mengubah pengaktifan transkripsi dan menghasilkan sitokin yang berbeza. 

Interleukin-10 (IL-10) merupakan sitokin anti-radang yang mungkin memainkan peranan 

penting dalam jangkitan P. falciparum. IL-10 mempunyai polimorfik yang tinggi pada 

peringkat promoter, antaranya pada gen 1082 G/A, 819 C/T dan 592 C/A. Walau 

bagaimanapun, polimorfisme yang paling kerap dikaji adalah pada gen 1082 G/A kerana 

kemampuan polimorfisme pada gen ini dalam merangsang penghasilan IL-10 dan berkait 

rapat dengan kerentanan atau perlindungan terhadap penyakit. Oleh itu, adalah penting 

untuk memahami kaitan antara jangkitan P. falciparum dan polimorfisme gen IL-10 bagi 

menentukan sama ada polimorfisme ini ada kaitan dengan jangkitan P. falciparum, supaya 

vaksin yang lebih berkesan dapat dibangunkan terhadap parasit ini. Ujian rantaian 

polimerase (PCR) merupakan salah satu kaedah yang paling biasa digunakan untuk 

membezakan parasit malaria daripada pelbagai spesies dan untuk pengesanan 

polimorfisme gen pada spesies tertentu. Kajian ini bertujuan untuk menyiasat kaitan antara 

jangkitan P. falciparum dengan polimorfisme gen IL-10-1082 G/A dalam kalangan 

penduduk Sudan. Tiga puluh empat (34) darah pesakit malaria dari Kem IDP Ardamata di 
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Bandar Al-Geneina, Sudan terlibat dalam kajian ini. Sampel darah pada awalnya 

ditentukan sama ada positif malaria atau tidak, sebelum disahkan berpunca daripada 

jangkitan 

  
P. falciparum dengan menggunakan kaedah PCR bersarang (nPCR). PCR kemudian 

dilakukan untuk menilai polimorfisme gen IL-10 -1082 G/A pada sampel tersebut. 

nPCR menunjukkan daripada 34 sampel yang dikaji, 17 adalah positif malaria, dan 17 

adalah negatif. Kesemua 17-sampel positif malaria telah disahkan dijangkiti P. 

falciparum. Walaupun nPCR dikatakan lebih sensitif dan spesifik, jumlah sampel 

positif yang dikesan menggunakan kaedah ini kurang berbanding kaedah mikroskopi 

dan analisis ICT. Analisis PCR juga mengesahkan tidak terdapat mutasi IL-10 -1082G 

/ A pada sampel DNA yang positif malaria, yang menunjukkan tidak ada hubungan 

yang signifikan antara polimorfisme IL-10 -1082G / A dengan jangkitan P. falciparum 

dalam sampel yang dikaji. 
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DETECTION OF INTERLEUKIN-10 POLYMORPHISM AND Plasmodium 

falciparum INFECTION IN ARDAMATA IDP CAMP IN AL-GENEINA 

TOWN SUDAN 

 

ABSTRACT 

 

Malaria is the main cause of Sudanese morbidity and death. It contributes an estimated 

7.5 million cases and 35,000 deaths annually, mainly because of Plasmodium 

falciparum (P. falciparum). Host and pathogen genetic factors are linked to the 

severity of the disease. In the promoter or coding region of cytokine genes, single 

nuclear polymorphisms (SNPs) alter their transcriptional activation and produce 

differential cytokine. Interleukin-10 (IL-10) is an anti-inflammatory cytokine that may 

play an active role in P. falciparum infection. IL-10 polymorphisms are associated 

with several diseases, including malaria. IL-10 has a highly polymorphic promoter 

with variations gene transcription, including 1082 G/A, 819 C/T, and 592 C/A. 

However, polymorphism at 1082 G/A gene is the most extensively studied because of 

this polymorphism's ability to increase IL-10 production, which correlated with 

susceptibility or protection against infection. Therefore, it is important to understand 

the association of P. falciparum infection and IL-10 gene polymorphism to confirm if 

this polymorphism plays a role in the incidence of P. falciparum infection to develop 

a more efficient vaccine against the disease. Polymerase Chain Response (PCR) is one 

of the most common methods for distinguishing malaria parasites from species levels 

and gene polymorphism detection in specific species. This study aimed at investigating 

the association of P. falciparum infection with IL-10 gene promoter 1082 G/A 

polymorphism in the Sudanese population. Thirty-four (34) blood smears of malarial 

patients from the Ardamata IDP Camp in Al-Geneina Town, Sudan, were enrolled in 
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this study. The samples were first confirmed with nested PCR (nPCR) for Plasmodium 

infection before proceeding with P. falciparum identification. Further, PCR was then 

performed to evaluate IL-10 gene 1082 G/A polymorphism in the samples. nPCR 

showed that out of 34 samples, 17 were malaria positive, and 17 were negative. 

Interestingly, all the 17-malaria positive samples were confirmed as P. falciparum. 

Although nPCR has been claimed to be more sensitive and specific, the number of 

positive samples detected using this method was less than microscopy and ICT 

analysis. PCR analysis also confirmed that no gene mutation occurs in the malaria 

positive samples, indicating there was no significant association between IL-10 -

1082G/A polymorphism and P. falciparum infection in these samples. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Study background 

Malaria is a severe tropical parasitic disease. It is the main cause of morbidity and 

mortality in Sudan, contributing to 50% of all malaria cases in the country (Abdalla et 

al., 2007).  malaria in Sudan was estimated to be about 9 million incidents in 2002, 

and the number of deaths due to malaria was about 44,000. Children under five years 

of age had the highest burden and males had the highest incidence and mortality 

(Abdalla et al., 2007). Symptomatic malaria accounts for 20-40% of outpatient clinic 

visits and around 30% of hospital admissions (Elfatih Mohd Malik et al., 2016). 

 

The whole population of Sudan is at risk of malaria, although this occurs with different 

places. In the northern and western states, malaria is mainly low to moderate. In 

southern Sudan, malaria is moderate to high or highly intense, generally with the 

perennial transmission (Malik et al., 2006). In eastern Sudan, malaria transmission and 

intensity are perennial and moderate (Himeidan et al., 2005). In addition, there was a 

significant positive correlation between malaria cases with heavy rains (Himeidan et 

al., 2007). Malaria in Sudan mainly causes by Plasmodium falciparum (P. falciparum), 

whereas P. ovale is occasionally distributed. P. malariae is mainly correlated with 

Southern Sudan, while in Eastern Sudan, P. vivax is widely spread (Mohamed et al., 

2016). 

 

Human malarial parasites develop through two stages in humans: a liver stage and a 

blood stage. However, the asexual blood stage of the parasite is the cause of malarial 
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pathologies. Therefore, it is important to prevent the replication of the parasite at this 

stage. It is necessary to understand the mechanism of protective immunity against the 

blood stage of the parasite  

during malaria infection. Over the centuries, the high prevalence of malaria infections 

in Africa has placed selective pressure on human genome. Several studies have shown 

that polymorphisms in cytokines lead to Plasmodium infections (Medina et al., 2011; 

de Paulo Ribeiro et al., 2016). Interleukin-10 (IL-10) is reported to be elevated in 

individuals with Plasmodium infection (Medina et al., 2011; Riccio et al., 2013). IL-

10 is a dominant cytokine that was reported as being related to reduced risk of cerebral 

malaria and extreme anemia associated with malaria (Couper et al., 2008). The IL-10 

gene is situated on chromosome 1q31-q32 of the promoter region with several variants 

associated with variable IL-10 manufacturing and infection phenotypes (Jin et al., 

20120). Thus far, very limited studies investigating the combination of IL-10 genetic 

variants in Sudanese population with the incidence of P. falciparum clinical malaria. 

Therefore, in this study the association between IL-10 gene-polymorphisms in the 

Sudanese population will be determined to get more clear information on the SNP 

affect the disease susceptibility. 

 
 

 

1.2 Objective of the study 

 

 

1.2.1 General objective 

 

To determine the association between IL-10 gene polymorphism and P. falciparum 

infection in malaria patients of Ardamata IDP Camp, Al-Geneina City, Sudan. 

 

 



3 

 

1.2.2 Specific objectives 

 

1. To determine Plasmodium falciparum infection in blood samples of malaria 

patients from Ardamata IDP Camp, Al-Geneina City, Sudan using nested 

polymerase chain reaction (nPCR) 

2. To determine the association between IL-10 gene (1082A/G) polymorphism with 

Plasmodium falciparum infection in malaria patients of Ardamata IDP Camp, Al-

Geneina City, Sudan 

 

 

1.3 Flowchart of the study 

 

 

All the activities are summarized in Figure 1.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.1: Flow chart of the study 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Malaria 

 

Malaria is a vector borne infectious disease caused by protozoan parasites of the genus 

Plasmodium and is transmitted by an infected female Anopheles mosquito. Until the 

late 19th Century, the contributory agent for malaria was largely unknown. The 

medieval Italian term, mala aria, meaning "bad air", or commonly known as march 

fever (Reiter & Compartments, 2001). was used to describe the flu-like symptoms, 

such as headaches, fever, shivering, joint pain, vomiting, haemolytic anaemia, 

jaundice, haemoglobin in the urine, retinal damage, and convulsions of patients 

infected with malaria (Price, 2008). It was not until 1880 that the true cause of malaria 

was discovered (Ghosh, 2014). 

 

 

2.1.1 Global malaria 

 

Malaria is a fatal disease. People who get malaria are typically, very sick with high fevers, 

shaking, chills, and flu-like illness. Because malaria causes so much illness and death, the 

disease is a great drain on many national economies (Suliman et al., 2016). At global scale, 

3.4 billion people are at risk of contracting malaria (Figure 2.1). As reported by the WHO 

(World Health Organization, 2016), the majority of malaria cases and deaths are found in 

sub-Saharan Africa. In 2015, the region was home to 90% of malaria cases and 92% of 

malaria deaths. Children under five years of age are particularly vulnerable, accounting 

for an estimated 70% of all malaria deaths. Diagnostic testing enables health providers to 

rapidly detect malaria and prescribe life-saving treatment ( 316هبر,    C.E.).. In 2015, 51% 

of children at a public health facility in 22 African countries received a diagnostic test for 
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malaria, compared to 29% in 2010 (Kastrati & Sahiti, 2019). Despite decades of control 

measures and intensive interventions, malaria continues to cause extensive morbidity 

and mortality throughout the widespread regions where it is endemic. The vast 

majority of research has been directed towards P. falciparum, which is the primary 

contributor to disease burden throughout sub- Saharan Africa (Sama et al., 2006). 

 

Most countries of the Asia-Pacific region have P. vivax malaria infection and they account 

for over 80% of the global burden of P. vivax malaria (Mendis et al., 2001). Among these 

countries, India alone accounts for an estimated 24 million cases per year (WHO 

Factsheet, 2012). South America is also home to a significant number of malaria cases, 

where an estimated 427,000 cases, with 82 recorded deaths were reported in 2013 (WHO 

world malaria report, 2014). On the other hand, Europe has achieved a complete 

interruption of indigenous malaria transmission with the drastic drop of indigenous 

malaria cases from 90,712 in 1995 to zero cases in 2015 (WHO, 2015a). Despite these 

mixed pictures of success and failure with malaria painted above, one interesting fact is 

that the disease is no more confined to the so-called malaria-endemic regions; it has gone 

beyond its traditional enclaves. Increased globalization and population dynamics have 

increased the risk of malaria for many people from non-endemic areas of the world making 

it a global menace(Gowda, 2007). For example, an eight-year study found that most 

patients with severe malaria in Europe were tourists or migrants acquiring the infection in 

West Africa (Kurth et al., 2017). 

 

 

2.1.2 Malaria in Sudan 

 

Malaria mortality rates have fallen by 47% globally since 2000 and by 54% in the 

WHO African Region. Based on WHO estimation in 2010, the number of deaths due 
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to malaria in the Eastern Mediterranean Region were 15 000 (range 7000–24000 

deaths), of which 70% were in children under 5 years of age. The reported deaths due 

to malaria were only 1148 with more than 53% from Sudan. The majority of malaria 

cases occur in Sudan are caused by P. falciparum ~95%, while cases caused by P. 

vivax is relatively rare, only ~5% (Suliman et al., 2016). However, current data showed 

that the incidence of P. vivax infection is rising in Sudan and has increased from about 

5% in 2013 to 26% of the total malaria cases (Elgoraish et al., 2019). 

 

 

Figure 2.1: Global malaria distribution (Source: WHO, 2016). 
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2.2 Malaria parasite 

 

An understanding of the Plasmodium life cycle is a major tool in malaria vaccine 

development. As pointed earlier, human malaria is caused by members of the 

Plasmodium species, a genus of unicellular parasites (CDC, 2015b). The malaria 

parasite, an obligate intracellular parasite has a complex life cycle which utilises two 

hosts in the cycle: a Dipteran insect; the Anopheline host and the human host. During 

the Plasmodium life cycle, sexual stage reproduction occurs in the Anopheles 

mosquito, making it the definitive host (CDC, 2015c). This host requirement is 

fundamental to all the five identified species of Plasmodia causing malaria in humans 

namely: P. falciparum, the causative agent of malignant tertian malaria and the one 

responsible for the highest global malaria rate, P. vivax, the major cause of benign 

tertian malaria, P. ovale, the minor cause of benign tertian malaria, P. malariae, the 

identified cause of benign quartan malaria and the relatively newer addition, P. 

knowlesi, the causative agent of severe quotidian malaria in South East Asia (Collins, 

2012). 

 
 

 

2.2.1 Plasmodium life cycle 

 

The malaria parasite life cycle involves two human and one mosquito stages (Figure 

2.2). The first human asymptomatic stage called pre-erythrocytic or exo-erythrocytic 

stage occurs in the liver, while the second; the symptomatic stage occurs in the red 

blood cells and thus is called the erythrocytic stage (Haque & Engwerda, 2014). The 

stage in the mosquitos, called the sporogony stage involves the gametes fusion and 

oocyst formation. During her egg nurturing blood meal, a malaria-infected female 

Anopheles mosquito inoculates the Plasmodium cells called sporozoites into the 
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human host. The Sporozoites travel towards the liver and infect the liver cells. The 

sporozoites now replicate and mature into schizonts, which rupture (Peter et al., 2010) 

and release merozoites in a process called exo-erythrocytic schizogony. The released 

merozoites invade the red blood cells and infect them. Within the red cells, the 

parasites undergo asexual multiplication, a process called erythrocytic schizogony, 

expanding the trophozoites population six to 20 times per cycle (Simpson et al., 2002). 

The ring stage trophozoites now mature into schizonts, which rupture releasing 

merozoites which infect more red blood cells. The manifestations of clinical symptoms 

of malaria, including fever occur at the point of rupture of the infected erythrocytes 

and the release of erythrocyte and parasite debris. Thus, the blood-stage parasites are 

responsible for the clinical manifestations of malaria, which can occur as early as three 

days from the beginning of the erythrocytic stage (Simpson et al., 2002). 

 

At the third stage, the gametocyte, or sexual stage, in a small percentage of the 

merozoite-infected blood cells, the asexual reproduction would stop, and the 

plasmodia now mature into sexual forms of the parasites known as male and female 

gametocytes (Carter & Miller, 1979). The gametocytes which are divided into 

microgametocytes, the male gametes and macrogametocytes, the female, assume an 

Anopheles mosquito ingests various shapes as they mature during a blood meal. They 

travel to the mosquito's stomach. Within the mosquito's stomach, the 

microgametocytes fuse into the macrogametocytes forming a zygote which undergoes 

some morphologic changes and turn into an ookinete. These ookinetes invade the 

midgut wall of the mosquito, where they replicate and mature into oocysts. The 

matured oocysts then grow and rupture to release sporozoites. This cycle of 

multiplication in the mosquito is called the sporogonic cycle. All Plasmodium species 
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undergo a similar life cycle except P. vivax and P. ovale which have a quiescent liver-

stage called the hypnozoites. 

 

 

Figure 2.2 Life cycle of a Plasmodium parasite (Source: CDC, 2016). 

 

2.3 Malaria prevention and control 

 

2.3.1 Anti-malarial drugs  

 

The only drug known to act effectively against pre-erythrocytic forms of Plasmodium is 

Primaquine which eliminates hypnozoites (Wells et al., 2010). Drugs that act against the 

blood-stage parasites are chloroquine, pyrimethamine, quinine, sulfadoxine, mefloquine, 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjC6pftqarYAhWHpo8KHYR9BpMQFggtMAA&url=http%3A%2F%2Fwww.cochranelibrary.com%2Fapp%2Fcontent%2Fspecial-collections%2Farticle%2F%3Fdoi%3D10.1002%2F(ISSN)14651858(CAT)na(VI)SC000038&usg=AOvVaw0on16-2TKyphpywuPo9kbL
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or halofantrine. As a result of the appearance of parasites that were multi-drug resistant, 

various drug combinations were used, and the antimalarial properties of Artemisinin were 

discovered. Primaquine effectively eliminates the gametocytes of all Plasmodium (White, 

2008). However, chloroquine and quinine are effective against P. malariae and P. vivax 

but not P. falciparum (Hunja, 2013). 

 

 

2.3.2 Vector control strategies 

 

Insecticide-treated nets (ITNs) kill or remove mosquitoes that come into contact with 

them as they are insecticide-treated nets. One type of net is a net treated 

conventionally, infused with an insecticide that has a temporary effect, and treatment 

needs to be repeated every three months or at least once a year to ensure a stable 

insecticide effect. Another type is a long-lasting insecticide-treated net (LLINs), 

impregnated with insecticide with the ability to maintain its efficacy for up to three to 

five years (WHO, 2007). Compared to untreated nets, ITNs have been shown to help 

reduce malaria cases by up to 50% (Greenwood et al., 2008). ITNs have helped to 

reduce child mortality by approximately 44% (Fegan et al., 2007). Residual indoor 

spraying (IRS) removes or kills mosquitoes that enter and rest in areas where the 

insecticide has been used. It is therefore considered to be most effective against 

endophilic vectors such as Anopheles gambiae (Pluess et al., 2010). 

 

2.4 Pathophysiology of malaria 

 

A single bite of infected mosquito inoculates about 100–200 sporozoites in human 

skin, most of which are destroyed by an innate immune system (Risco-Castillo et al., 

2015). The blood-stage merozoite erythrocyte invasion process defines the onset of 
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malaria pathogenesis and all symptoms associated with the disease (White et al., 

2014b). Successful invasion of red blood cells leads to the development of anaemia, 

which is the most frequent complication of malaria (Quintero et al., 2011), because of 

haemolysis and splenic sequestration of malaria-parasitized red blood cells. This 

destruction of red blood cells results in the release of toxins that cause endothelial 

damage and stimulate the production of pro-inflammatory cytokines by macrophages 

and other immunological cells, such as IL-1, IL-12, TNF-5-007 and the malaria-

activating factor (Dondorp et al., 2004) responsible for malaria-associated 

pathophysiology (CDC, 2015a). 

 

 

In uncomplicated malaria, red cell destruction is usually compensated for by 

erythropoiesis. Anaemia develops when this compensation is not sufficient (Chang et 

al., 2004). Increased sequestration of red blood cells compromises the blood supply, 

which in turn causes hypoxia and lactic acidosis and causes metabolic disturbances. 

These complications may affect multiple organs of the body, such as the brain, lungs, 

and placenta in the uterus. Hypoxia in the organs triggers vasodilation to improve the 

flow of blood through the affected organs. The immune response of the host and the 

parasite virulence mechanisms determine the progression of malaria. Thus, malaria 

may be asymptomatic or exhibit a prodrome of fever , chills, sweating, headache , and 

muscle aches that may degenerate into some serious life-threatening complications 

such as hyperparasitemia, hypoglycaemia, and hyperlactaemia that may lead to kidney 

failure, metabolic acidosis, cerebral malaria, severe malaria anemia, and respiratory 

distress in some cases (WHO, 2000). 
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2.5 Immunity to malaria 

 

Humans with no previous experience of malaria almost invariably become ill on their 

first exposure to the parasite. They develop a febrile illness, which may become severe 

and, in a proportion of cases, may lead to death. In malaria-endemic areas, young 

children are particularly susceptible, and it has been estimated that a quarter of all 

childhood deaths are due to malaria (Duffy & Mutabingwa, 2005). However, with 

exposure, older children and adults develop essentially complete protection from 

severe illness and death, although sterile immunity is probably never achieved. 

Although vaccines may not be limited to mimicking natural immunity, as clear a 

picture as possible of the mechanisms of such immunity is an important starting point. 

 

An important body of literature was generated using induced malaria in the treatment of 

neurosyphilis in the early twentieth century. Those studies have informed the paradigm of 

how humans respond to malaria, and re-analysis of the data has provided new insights into 

the immune response (Collins et al., 2004). At present, induced malaria in volunteers 

forms an important aspect of testing of some malaria vaccines and offers the opportunity 

of detailed studies of possible protective mechanisms (Krause et al., 2007). After an 

infected mosquito bite through the skin, sporozoites rapidly move from the dermis to the 

liver, where they go through an asymptomatic stage of rapid division before the parasite 

reenters the bloodstream. In the blood, exponential expansion of parasite populations leads 

to febrile illness. Typically, acute infection is controlled, and chronic infection is 

established at reasonably low parasite density, with intermittent episodes of fever 

associated with peaks of higher parasitemia (Miller et al., 2000). Such peaks are of 

progressively lower density until the infection is eliminated, usually after many 

months. There is the relatively rapid acquisition of immunity to the homologous 
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parasite, demonstrated as more rapid control of successive infections at lower parasite 

densities and less-severe or even absent clinical illness. Although less profound in 

terms of parasitological indices, there is also evidence of early acquisition of 

heterologous immunity, particularly in terms of clinical symptoms (Michon et al., 

2007). 

 

2.5.1 Innate immunity to malaria 

 

Innate immune responses being the first line of defense against invading pathogens limit 

the initial phase of parasite replication, and lead to parasite elimination and the resolution 

of infection (Urban et al., 2005) as well as improve host survival (D'Ombrain et al., 2008) 

via IFN-γ derived from natural killer (NK) cells and/or γδ T cells (Fell and Smith, 1998). 

The wave of parasitaemia elicited following the inoculation of sporozoites is believed to 

be controlled by the onset of innate immune responses preceding the development of 

adaptive immune responses (Stevenson & Riley, 2004). Generally, malaria is associated 

with increased pro-inflammatory cytokines such as IL-1β, IFN-γ, and TNF-α (Crutcher et 

al., 1995), as well as the anti-inflammatory cytokines; IL-4 and IL-10 (Rodrigues-da-Silva 

et al., 2014). During the early phase of the P. falciparum infection, Th1 subsets are 

activated in which IFN-γ, IL-12 and TNF-α are elevated, controlling primary parasitaemia, 

while the Th2 subset modulates cytokine IL-4 rise in the later stage of the infection 

(Mohapatra et al., 2014). In fact, malaria pathogenesis and the observed clinical 

manifestations are essentially due to excess inflammation (Stanisic et al., 2014) which can 

be elicited by Plasmodium parasite and vaccine administration through a poorly defined 

pattern (Kasturi, 2011). This immune reaction is initiated by the recognition of 

pathogen-associated molecular patterns, PAMPs by the specialised pattern recognition 

receptors, PRRs (Kumar et al., 2011) such as the two important sentinel cells; 

macrophages, which effect their functions via phagocytosis, cytokines production and 
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presentation of antigens (den Haan & Kraal, 2012) and dendritic cells (DCs) which are 

also primarily involved in recognizing pathogens, initiating cytokine responses, and 

processing and presenting antigens (Shortman & Heath, 2010). Once parasitaemia is 

under control the pro-inflammatory phase of the innate immune response is countered 

by a timed response by type 2 cytokines such as IL-10, transforming growth factor 

(TGF)-β, and IL-4, to avoid inflammatory host damage (Clark et al., 2006). 

Essentially, immunity to infection with blood-stage malaria is dependent on a well-

coordinated, accurately timed release of IFN-γ, TNF-α, IL-12, in both innate, (Riley 

& Stewart, 2013) and adaptive immune responses (Langhorne et al., 2004) acting via 

dendritic, natural killer, CD4+ T helper, and B cells (McCall & Sauerwein, 2010). 

Thus, higher levels circulatory pro-inflammatory cytokines, such as TNF-α and IL-6 

are observed in severe malaria alongside low levels of anti-inflammatory cytokines, 

such as IL-10 (Mbengue et al., 2016). While severe malarial anaemia induces higher 

production of IL-10 and TNF-α than cerebral malaria (Philippe et al., 2012). In 

essence, the principal component of innate immunity utilised in controlling malaria 

blood-stage infection and parasitic replication involves dendritic cells (Stevenson and 

Urban, 2006), monocytes/macrophages and neutrophils which act via phagocytic 

activity and antigen presentation (Serghides et al., 2003; Stevenson & Riley, 2004) as 

well as the release of cytokine and other inflammatory mediators (Chua et al., 2013). 

 

2.5.2 Adaptive immunity to malaria 

 

Naturally acquired immunity to malaria takes as long as 10-15 years of exposure to 

develop (Casals-Pascual et al., 2006). However, this acquired immunity is non-sterile 

and is species-, stage-, strain-, and variant-specific (Casals-Pascual et al., 2006). 

Residents in malaria-endemic areas frequently have premunition (parasitemia and 
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antibodies without symptoms (Casals-Pascual et al., 2006). Acquired immunity to 

malaria involves both antibody-mediated and cell-mediated immunity. 

 

 

Antibodies play a crucial role in mediating acquired immunity to malaria. Blood stage 

merozoite antigens and variant surface antigens (VSA) expressed on infected erythrocytes 

(IE) are important targets of this protective immunity. Antibodies to merozoite antigens 

inhibit invasion of red blood cells (RBCs), prevent intra-erythrocytic growth (Richards & 

Beeson, 2009), and promote opsonization for phagocytic clearance and complement 

fixation (Osier et al., 2014). Antibodies to merozoite antigens of sufficient magnitude and 

function appear to contribute to immunity (Richards et al., 2013). In young children or 

those with limited malaria exposure, they may instead act as biomarkers of malaria 

exposure (Richards et al., 2013; Reynaldi et al., 2019). with the potential to inform 

surveillance and control activities (Stanisic et al., 2015). Among the tested antigens, 

merozoite surface protein 1 (MSP1) is the most copious protein found on the merozoite 

(Proellocks et al., 2007). Crucial for the primary interaction between merozoites and RBCs 

in parasite invasion (Jaskiewicz et al., 2019). MSP1 is a major target of opsonizing 

following natural exposure (Blank et al., 2020). MSP2 is another abundant, GPI-anchored 

surface protein necessary for merozoite invasion. Increased IgG level against MSP2 was 

associated with increasing age, higher hemoglobin level, and reduced parasitemia 

suggesting its protective effect (O’Donnell et al., 2001). Erythrocyte binding antigen 175 

(EBA175) is released from micronemes (Reynaldi et al., 2019), and aggregates at the 

apical region of the merozoite surface. Antibodies to the RIII-V region of EBA175 

have also been associated with protection from malaria (Touré, Bisseye, et al., 2006; 

Additional Details on Decoupling, 2012). Rhoptry-derived Rh2A9 helps binding to the 

RBC receptors after the primary interaction between the RBC and merozoite surface 

proteins is completed. The level of IgG against Rh2A9 in children (5–14 years) was 
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associated with a lower risk of malaria (Abagna et al., 2018). Antibodies to VSA 

diminish malaria risk by obstructing cytoadherence to different host receptors 

(Quintana et al., 2016), and initiating phagocytic clearance of IE. Several studies have 

reported associations between levels of anti-VSA antibodies and protection against 

symptomatic malaria (Bull et al., 2013), but few studies have examined the dynamics 

of naturally occurring anti-VSA IgG in infants in a malaria-endemic setting 

(Nhabomba et al., 2014; Dobbs & Dent, 2016). In one study, children up to 24 months 

of age did not acquire antibodies to VSA but in a high-transmission area of Tanzania 

(Vestergaard et al., 2008). children had dramatic increases in antibodies to VSA from 

1 to 2 years of age. Recent studies in Papua New Guinea suggest that acquired 

antibodies to VSA play an earlier role in immunity to malaria than antibodies to 

merozoite antigens (Dent et al., 2016). 

 

2.6 The role of cytokines in immune pathogenesis of malaria 

 

Malaria disease is characterized by the production of a wide range of cytokines. 

Studies suggest that these come from both the innate arm and the adaptive arm of the 

immune system. Because parasites multiply very rapidly, the innate arm likely 

mediates early cytokines responses against malaria. An early interferon-gamma (IFN-

γ) response is important in protecting against the development of severe disease 

symptoms (Robinson et al., 2008; Hill et al., 2013). Natural killer cells (NK) have been 

implicated as the source of early proinflammatory responses such as IFN-γ and TNF-

α against malaria parasites (Artavanis-Tsakonas & Riley, 2002; Korbel et al., 2005). 

Activation of innate immunity depends on the broad recognition of pathogens. This 

recognition is driven by receptors that recognize pathogen-associated molecular 

patterns (PAMPs). Among the best characterized of these pattern recognition receptors 
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are Toll-like receptors (TLR). Upon recognition of PAMPs, TRLs induces a signaling 

cascade leading to secretion of proinflammatory cytokines, chemokines, and 

interferons. Malaria parasite glycophosphoinostol (GPI) has been shown to interact 

with TLR2 and, to some extent, TLR4 (Franklin et al., 2009; Krishnegowda et al., 

2005). While some studies suggest that hemozoin, a product of hemoglobin digestion 

by malaria parasites, interacts with TLR9 ((Wagner, 2010). It is also possible that 

malaria parasites can induce the innate immune system through interaction between 

other non-TLR receptors and AT-rich parasite DNA fragments (Sharma et al., 2012). 

 

γ After innate responses mediate early resistance to malaria infection, the adaptive 

immunity takes over with CD4+ T-cells becoming the main producers of cytokines. 

Traditionally mature CD4+ T-cells are placed in two groups that are associated with 

distinct cytokine profiles. Production of interferon-alpha/gamma (INF-α/γ), 

lymphotoxin-α (TNFβ), interleukin-12 (IL-12) defines type 1 helper cells (Th1). It is 

associated with a strong cell-mediated immunity while the production of IL-4, 5, 6, 9, 

10, and 13 define type 2 (Th2) associated with antibody production. However, because 

some T-cells and non-T-cells can produce both Th1 and Th2 cytokines, it may be more 

appropriate to talk of type 1 (TR1) or a type 2 response (TR2) (Vasel et al., 2014). In 

malaria, the TR1/TR2 dichotomy is most evident in the mouse-P. chabaudi model ((De 

Weerdt et al., 2001; Wagner, 2010). In this model, TR1 dominates the early response 

of mice to acute P. chabaudi infection, and parasite killing is mediated by INF-γ, tumor 

necrosis factor (TNF-α) and nitric oxide (NO) secreted by activated Th1 CD4+, 

macrophages, and natural killer cells. In P. berghei and P. yoelii models, TR1 response 

induced through sporozoites vaccination has been shown to provide strong protection 

against challenge infections (Wagner, 2010). On the other hand, a shift towards TR2 leads 

to less symptomatic chronic infections (Wagner, 2010). Along with inhibiting both INF-γ 
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and TNF-α, type 2 cytokines also stimulate B-cells to secrete antibodies (Fell and 

Smith 1998, (Wagner, 2010)(Wagner, 2010). The dual anti-parasite/ pathogenetic 

nature of TR1 is also evident in P. berghei infections (Wagner, 2010). Other murine-

malaria models display variable tendencies towards either type of response during 

acute or chronic infections (Wagner, 2010). 

 

The distinction between type 1 and 2 responses is less clear in human malaria. 

Increased IFN-γ is associated with the resolution of parasitemia in acute malaria 

episodes (Wagner, 2010). and delay reinfection (Wagner, 2010). at the same time, 

reduced levels accompany hyperparasitaemia in children ((Wagner, 2010). Similarly, 

levels of type 1 response were lower among Malawian malaria patients than among 

patients of other diseases, with a reverse trend being observed for the type 2 responses 

(Wagner, 2010). IFN-γ levels were found to be higher in pregnant women who did not 

have placental malaria t (Wagner, 2010). These observations argue for a possible anti-

parasite role of TR1 in humans. Furthermore, CD4+ secreted IL-2 and TNF−α are 

associated with the protection provided by the experimental vaccine RTS’S (Wagner, 

2010). On the other hand, IL-10 and IL-4, both type 2 cytokines, have been associated 

with protection against malarial anemia (Wagner, 2010). However, reduced secretion 

of INF-γ by immune T-cells in response to malaria led to the conclusion that reduced 

pathology in immune individuals may be attributable to the downregulation of TR1 

cytokines (Wagner, 2010). observed a striking increase in type 1 cytokines in immune 

adults (Wagner, 2010). Adequate immunity to malaria likely requires a balance 

between TR1 and TR2. 

 

2.6.1 Interleukin 10 (IL-10) 
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Interleukin-10 (IL-10) was initially identified as a cytokine synthesis inhibitory factor 

(CSIF) produced by mouse Th2 cells and inhibited Th1 cells cytokine production. It is 

primarily produced by cells of the monocyte/macrophage lineage and to a lesser extent 

by activated T and B cells (Lucey et al., 1996). IL-10 has extensively diverse effects 

mediated through specific cell surface receptor complex (IL-10Rα and IL-10Rβ) 

expressed on most hemopoietic cell types. It acts as a suppressor of immune responses, 

principally through down-regulating the expression of the MHC class II, the 

costimulatory molecules, and cytokine genes in the antigen-presenting cells (Rojas et 

al., 2017). For example, IL-10 is known to inhibit the secretion of IFN-γ by Th1 cells 

(Takayama et al., 2001). 

 

 

In various experimental models, induction or administration of IL-10 suppressed the 

antigen-specific T-cell proliferation. It contributed to the establishment 35 of persistent 

infection by several pathogens, including HIV, Mycobacterium tuberculosis (de Moreno 

de LeBlanc et al., 2011), Listeria monocytogenes Trypanosoma cruzi (Díaz et al., 2015). 

However, although generally perceived as an anti-inflammatory cytokine, IL-10 could 

have quite the opposite effects on some specific models [(Gabryšová et al., 2014). For 

instance, IL-10 was found to stimulate the expression of MHC-II molecules, the 

production of immunoglobulins in B cells (Rousset et al., 1992), and augment the 

proliferation cytotoxicity of NK cells when combined with IL-18 (Cai et al., 1999). 

Increasing evidence demonstrates the role of IL-10 in malaria protection and pathogenesis 

(Kossodo et al., 1997). Murine and in vitro studies have demonstrated IL-10’s ability 

to inhibit TNF-α production in response to malarial antigens and high levels early 

during malaria infection were found to inhibit Th1 type of immune responses in both 

mice and humans. 
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These raised levels were also associated with less effective clearance of Plasmodial 

parasites and subsequently, the development of severe malarial complications, 

particularly SMA (Hugosson et al., 2004). In contrast, IL-10 has been suggested to 

play a protective role against experimental cerebral malaria (Kossodo et al., 1997), and 

clinical studies associated insufficient IL-10 with acute and severe malaria (Nasr et al., 

2014). Moreover, it was demonstrated that, in individuals with SMA, plasma levels of 

TNF-α tend to exceed those of IL-10, and low ratios of IL-10: TNF were found to be 

a risk factor for both CM and SMA, whereas higher ratios were more frequent among 

hyperparasitemic individuals (Nasr et al., 2014). Interestingly, low circulating IL-10 

associated with high pro-inflammatory cytokine levels was noted in comatose patients 

with CM (Nasr et al., 2014), suggesting a protective effect on IL-10 against SM. 

Therefore, while it may be detrimental by decreasing cellular immune responses to the 

parasite, IL-10 may equally be 36 beneficial in preventing excessive inflammation that 

underlies the SM. It is currently assumed that the levels and the timely production of 

IL-10 are crucial for controlling the parasite growth and replication and preventing 

excessive inflammatory responses to P. falciparum. 

 

 

2.6.2 Genetic polymorphism of Interleukin-10 

 

The IL-10 gene promoter is highly polymorphic, it contains two informative 

microsatellites, IL10.G and IL10.R and eleven single nucleotide polymorphisms 

(SNPs), of which the three proximal ones located at positions (-1082 G/A [rs 

1800896], -819 C/T 39 [rs 5289772] and -592 C/T [rs5289771]) are the most frequent 

points of mutations (Zienolddiny et al., 2004). Differences in the genotypes and allele 

frequencies in these SNPs were observed between different populations. These 

differences may influence the outcomes of certain infections in different populations 
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(Chong et al., 2004). Interestingly, the -1082G allele was associated with higher 

production of IL-10 compared to the A allele both in vitro and in vivo, whereas 

polymorphisms at positions -819 and -592 appear to have no influence on IL-10 

production (Koss et al., 2000). Several studies have demonstrated the relevance of 

these SNPs to susceptibility and/or severity of a number of diseases including the 

inflammatory bowel disease, psoriasis, primary Sjogren’s syndrome, rheumatoid 

arthritis, myocardial infarction, and systemic lupus erythematosus ((Myhr et al., 2003; 

Suárez et al., 2005). Similarly, several infectious diseases were associated with certain 

alleles in these SNPs. Genetic predisposition to high IL-10 expression has been 

reported to be associated with a higher rate of mortality in meningococcal disease 

(Westendorp et al., 1997). Chronically infected hepatitis C patients who are genetically 

predisposed to high IL-10 production were reportedly less likely to benefit from IFN-

α therapy [(Wang et al., 2011). Moreover, associations have been reported between 

IL-10 polymorphisms and Epstein– Barr virus infection , leprosy severe malaria 

(Wilson et al., 2005), and recurrence of hepatitis C in liver transplant patients. Of 

particular significance, is the A/G transition at position -1082 which has been 

associated with rheumatoid arthritis, systemic lupus erythematosus [(Suárez et al., 

2005), psoriasis , coeliac disease [369], graft-versus host disease and the severity of P. 

falciparum malaria in African children (Wilson et al., 2005). 
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CHAPTER 3 

MATERIALS AND METHODS 

 

3.1 Materials 

 

3.1.1 Equipment and reagents 

 

A variety of laboratory tools and apparatus was used throughout this study, including 

chemicals, kits, reagents, and  consumables, , all of which are listed in Tables 3.1, and 

3.2  respectively. 

 

 

Table 3.1: List of chemicals, kits and consumables 

 

Item Manufacture/ supplier 

100 bp DNA ladder Thermo fisher, USA 

Absolute ethanol SDFCL, India 

DNA loading dye SMOBIO, India 

Master Mix Bioline,U.K 

Pipette tips Eppendorf, Germany 

Automatic Micro Pipette Eppendorf, Germany 

PCR Tubes Eppendorf, Germany 

Latex Examination Gloves Iron skin, Malaysia 

Tris-base Fisher, U.K 
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Table 3.2: List of laboratory apparatus 

 

Item Manufacturer/ supplier 

Automatic Micro Pipette Eppendorf, Germany 

Centrifuge  Eppendorf, Germany 

Centrifuge mini spin Andreas Hettich, Germany 

Gel Electrophoresis system Bio-Rad, USA 

Gel image analyzer SYNGENE, U.S. A 

Microwave  ELBA,Italy 

PCR machine MJ Research, USA 

pH-meter  Hanna Instrument, USA 

Refrigerator (-20ºC) LG Electronics, South Korea. 

Sensitive Balance OHAUS,Germany 

Thermo cycler PCR mechine Eppendorf, Germany 

Tomy autoclave Nerima-ku, Japan 

Vortex mixer  Elmi skyline, U.S.A 

 

3.2 Preparation of buffer and stock solutions 

3.2.1(a) Ethanol 70% (v/v) 

A solution of 70% ethanol was prepared by mixing 700 ml of ethanol with 300 ml of 

ddH2O to make a solution of 1 L volume. The 70% ethanol solution was stored at 

room temperature. 
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3.2.2(b) 10X Tris Borate EDTA (TBE) buffer 

The 10X TBE buffer was prepared by mixing 50 ml TBE buffer from the original stock 

to 950 ml of distilled water, then pH was adjusted to 8.0 before the final volume was 

made up to 1000 ml with distilled water (dH2O) for gel preparation. 

 

3.3 Methodology 

3.3.1 Study Area 

This original study was conducted in Ardamata IDP camp established in Al-Geneina 

City, Sudan during July 2018 to December 2018. 

 

3.3.2 Study design 

This study was case control study design to study the Association between IL10- gene 

polymorphism and Plasmodium falciparum infection. 

 

3.3.3 Sample size 

A total of 34 samples, were used in the present study. Samples used this study were 

archived blood samples collected from Ardamata IDP Camp, Al-Geneina City, Sudan. 

 

3.3.4 Ethical Statements 

The study protocol was approved by ethical review committee of the research 

directorate, FEDERAL MINISTRY OF  HEALTH SUDAN (fmoh/nhrc/rd/rec 2018). 
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