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Abstract 
 

Amongst Portulaca species are weeds but also medicinal herbs and ornamentals. Differentiation between 
weeds and crops enable early removal of weeds preventing retardation of crop growth. Authenticating 
medicinal herbs prevents the sale of substitutions that lowers the effectiveness of the medicine, and 
potentially endangers lives. Species identification thus helps attain Sustainable Development Goals 2, 3, 
14, and 15 of the United Nations. Identification using DNA barcoding is recommended, but barcoding may 
fail depending on plant groups, sampling regions, loci and data analysis methods used. Thus, BLAST and 
tree topology was used to test DNA markers of nuclear loci (ITS1 and ITS2) and chloroplast loci (rbcl and 
trnL-F) for their ability to identify or differentiate Malaysian plant species morphologically characterised 
as Portulaca oleracea, Portulaca umbraticola, and Portulaca grandiflora. The locus ITS1 enabled the 
identification of two of the species correctly using standard BLAST scores and discriminated all three 
species using tree topology. ITS2 could identify all three species accurately but only using a BLAST, based 
on secondary structure alignment. The rbcl locus was unable to identify or discriminate the species due to 
lack of variability between sequences of different species. While trnL-F could not identify using BLAST 
because the database is currently not populated with sequences for all species, resulting in identification to 
the most closely related species with sequences on the database, which was incorrect. Thus, we recommend 
the use of ITS1 and ITS2 loci for identifying Portulaca species until trnL-F sequences of more species 
populate the database for dependable species identification.  
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1. Introduction 

Morphological features have been the basis of species identification for the past 250 years (Hebert 

& Gregory, 2005), using features such as stems, fruits, and flowers (Waldchen et al., 2018). However, 

difficulties in species identification arise when different species share similar morphological characters 

(Jinbo et al., 2011), or members of the same species look different due to phenotypic plasticity (Sdouga et 

al., 2018). 

Species misidentification has been reported among Portulaca species, for example, the 5th. Edition 

of the Sunset Western Garden Book (October 1988) mislabelled Portulaca umbraticola as Portulaca 

oleracea (Menkins, 2013). The genus Portulaca Linnaeus includes more than 100 taxa (Kokubugata et al., 

2015; Mabberley, 2017; Ocampo & Columbus, 2012), though there is no consensus on this number. The 

three species P. umbraticola, P. oleracea and P. grandiflora, for example, each have numerous synonyms 

(The Plant List, 2013), reflecting that even experienced taxonomist may misidentify (Friedheim, 2016; 

Pečnikar & Buzan, 2013).  

P. grandiflora and P. umbraticola are ornamental, while the species P. oleracea may be considered 

a weed which can infest crop fields and cause economic losses (Uddin et al., 2014), or a medicinal source 

(Zhou et al., 2015). Identification of weeds at the early stages of growth for removal with species-specific 

methods would improve crop growth (Armstrong & Ball, 2005). Authentication of medicinal species such 

as Portulaca would prevent incorrect species usage, which may have adverse health effects (Ghorbani et 

al., 2017). Thus, species need a fast and efficient method of identification. Therefore, traditional 

morphology-based taxonomy should be supported by using DNA based species assignment (Packer et al., 

2009). DNA barcoding is a method which involves the use of short DNA sequences to identify species 

through the comparison of this DNA to the DNA of the same locus of other individuals of the same and 

different species (Hebert et al., 2003). 

There are limited studies on barcoding of this genus. Sdouga et al. (2018) worked mainly on trnH-

psbA and ITS of P. oleracea. Nyffeler (2007) worked on the DNA markers matK and ndhF on five Portulaca 

species which included P. oleracea and P. grandiflora. Ocampo and Columbus, (2012) worked on 59 

Portulaca species, which included the species in this study, but except for ITS the loci involved were 

different (ndhF, trnT-psbD spacer, and ndhA intron). Machate et al. (n.d.) presented data on the relationship 

of P. oleraceae and P. grandiflora to other members of the same family using matK and rbcl. Additional 

information on Portulaca species is available from large scale environmental studies which sample across 

species. For example, the study of Newmaster et al. (2008) contributed sequences of rbcL and ITS2 for P. 

oleraceae. Sequences have also been uploaded on databases without accompanying publications such as 

from Choi and Park (2013) for P. oleracea trnH-psbA sequence (GenBank: KF954535.1). The review on 

the work on Portulaca shows that aside from the work of Ocampo and Columbus, (2012) on 59 Portulaca 

species, only P. oleracea has been widely studied. 

   

2. Problem Statement 

Misidentification creates problems for conservationists, ecologists, and various types of agencies 

that deal with food safety, and invasive plants (Hebert & Gregory, 2005). DNA barcoding to supplement 
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morphological identification is suggested (Thompson & Newmaster, 2014). Among the reasons for 

incorporating DNA based methods in species identification, is that molecular identification can be more 

efficient, as shown by a taxonomic survey where 202 species were identified using molecular data, but only 

142 species were identified using morphology (Thompson & Newmaster, 2014). The molecular 

identification not only identified more species but was at the same time, 37% less expensive (Thompson & 

Newmaster, 2014). However, DNA barcoding sometimes fails in species identification (Percy et al., 2014; 

Stallman et al., 2019). Part of the reason for failure could be the influence of geographical locations of the 

sample. In P. oleraceae, there was a correlation between the DNA and the geographic areas of the samples 

(Sdouga et al., 2018). Thus, species from specific regions may show a high level of deviation from the 

sequences on the National Center of Biotechnology Information, NCBI (Yang et al., 2017). It is crucial to 

understand if such sequence deviations would impact the utility of DNA barcoding. And as barcoding 

requires a universal DNA region that can be utilized across all plant taxonomic groups, it is important to 

test the recommended DNA markers for barcoding (CBOL Plant Working Group, 2009). These 

recommended barcodes were not used in the study on Portulaca, which covered various species (Ocampo 

& Columbus, 2012). Additionally, since a variety of DNA data analysis methods exist (Sandionigi et al., 

2012) and perform differently (Stallman et al., 2019), methods need to be compared to ensure the reliability 

of results.   

 

3. Research Questions 

The question then is, will the DNA sequences of ITS1, ITS2, rbcl, and trnL-F analysed using 

BLAST or maximum-likelihood tree topology identify and discriminate the three morphologically 

identified Portulaca species commonly found in Malaysia? We hypothesised that the identification of these 

three Portulaca species sampled in Nilai, Negeri Sembilan, Malaysia using the DNA sequences of ITS1, 

ITS2, rbcl, and trnL-F would correspond to species assignment using leaf and flower morphology when 

using either BLAST of tree topology. 

 

4. Purpose of the Study 

The study aimed to;  

(i) characterise three Portulaca species found in Malaysia using leaf and flower morphology  

(ii) determine if the nuclear (ITS1, ITS2) and chloroplast (rbcl, trnL-F) loci can be amplified, 

sequenced, and analysed using the Basic Local Alignment Search Tool (BLAST) and maximum likelihood 

tree topology, to corroborate the identify or discriminate the morphologically delimited Portulaca species.  

 

5. Research Methods 

Morphological characterisation, followed by molecular characterisation and their comparison was 

carried out, as explained in the next sections. 
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5.1. Sample selection, morphological characterisation, and identification 

Nine samples were collected in Negeri Sembilan, three from each of the morphologically different 

Portulaca species. The samples were morphological characterised based on observations made by the naked 

eye and under a light microscope. 

 

5.2. Molecular characterisation 

• DNA extraction, Amplification and Sequencing 

DNA was extracted using the modified cetyltrimethylammonium bromide (CTAB) method (Doyle 

& Doyle, 1987). Polymerase Chain Reactions (PCR) using My Taq™ Mix (Bioline, USA) were performed 

according to manufacturer’s protocols using primers and thermocycling conditions reported for rbcl (Kress 

et al., 2009), trnL-F (Taberlet et al., 1991), ITS1(Cheng et al., 2015), and ITS2 (Chen et al., 2010). PCR 

products confirmed by agarose gel electrophoresis were purified and sequenced at MyTACG Bioscience 

Enterprise. 

• Sequence Analysis 

The analysis used consensus sequences obtained using DNA Sequence Assembler version 5.15 

(2018) or if unavailable, uni-directional reads. Fragment length and GC content obtained using the MEGA 

X Software (Kumar et al., 2018), if consistent with reported values indicate the authenticity of loci (Buckler 

& Holtsford, 1996). Authenticity is also indicated by a lack of stop codons in the reading frame of the 

coding locus rbcl and was determined using the Barcode of Life Database (BOLD) (Ratnasingham & 

Hebert, 2007). Sequence homogeneity in evolution and substitution saturation were determined using the 

Disparity Index (ID) in MEGA (Kumar & Gadagkar, 2001) and the Iss statistics, in the DAMBE Software 

(Xia & Xie, 2001). 

To identify and differentiate species we used the BLASTN (Altschul et al., 1990) and created a 

maximum likelihood tree using MEGA X (Kumar et al., 2018). We assigned identities based on the highest 

score obtained when the sequences were queried using the BLAST (via 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). In the case of ITS2, the ITS2 database was used to assign species 

name based on a BLAST which uses structure and sequence (Merget et al., 2012). 

The maximum likelihood tree was generated using sequences aligned with t-Coffee (Di Tommaso 

et al., 2011) according to the best-fit nucleotide substitution model selected based on the Akaike 

information criterion (AIC) calculated in MEGA X (Kumar et al., 2018). Sequences clustered in 

monophyletic clades in the tree enable species discrimination (Fazekas et al., 2008). Node support evaluated 

with bootstrapping (BS) (Felsenstein, 1985), was interpreted as giving relatively reliable support of the 

relationship when BS is between 70 and 85 and strong support when BS is more than 85 (Kress et al., 2002).    

 
6. Findings 

6.1. Provisional morphological identification 

The plant samples were assigned to the Portulaca genus, diagnosed by the contracted head-like 

inflorescence and the fruit’s dehiscent top portion shed intact as a lid (Nyffeler & Eggli, 2010). Morphology 

provided temporary species assignments to P. oleracea (PO), P. grandiflora (PG) and P. umbraticola (PU). 
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The temporary identification to P. oleraceae was based on several characteristics. The arrangement 

of the vascular bundles in a zig-zag manner seen in the leaf cross-section (Figure 01B), is a diagnostic 

character of the Olecaceae clade (Ocampo et al., 2013; Voznesenskaya et al., 2010). Species assignment 

within the clade was based on the alternate but pseudopposite leaves which are spatulate in shape (Fig 01C), 

and absence of hairs in the leaf axils when observed with the naked eyes as mentioned by Ocampo et al. 

(2013). The small yellow flower (Figure 01A), referred to by Cudney et al., (2017) also differentiated it 

from the other two species. 

 

 
Figure 01.  P. oleracea A. Floral appearance B. Leaf vascular bundle arrangement C. Leaf appearance 

 

The second species was first inferred to be in the Pilosa clade, based on conspicuous leaf axillary 

hairs (Ocampo et al., 2013), and vascular bundles arranged in a peripheral ring with the water storage cells 

located in the central part (Figure 02B, Ocampo et al., 2013). The terete-leaves leaves (Figure 02C) further 

narrowed identification to P. grandiflora or P. pilosa. The discrimination between P. pilosa and P. 

grandiflora is subjective. Sivarajan (1981) treated P. grandiflora as a subspecies of P. pilosa. However, 

there are references to the difference between the two. P. grandiflora, is recorded to have bigger flowers 

(Figure 02A), 29 ± 0.2mm in diameter (n = 10) in this study versus 25 mm diameter reported in P. pilosa 

(Wu et al., 2003). P. grandiflora also has a hypodermal layer of cells, which is absent in P. pilosa (Ocampo 

et al., 2013). Additionally, the leaf axils are densely pilose in P. pilosa (Wu et al., 2003), which were not 

observed in the samples in this study. Thus, the provisional conclusion is that the species used in this study 

is P. grandiflora (see Figure 2). 

 

 
Figure 02.  P. grandiflora  A.  Floral appearance B. Leaf vascular bundle arrangement C. Leaf 

appearance 
 

P. umbraticola was provisionally identified based on the diagnostic character of a wing around the 

dehiscence line of the capsule (Figure 03A) (Ocampo & Columbus, 2012), and the arrangement of the 

vascular bundles in a nearly straight line (Figure 03B; Voznesenskaya et al., 2010). Also, as reported by 

A B  C  

A B  C  
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Legrand (1962), there was variation in flower colour in this species. The leaves of P. umbraticola (Figure 

03C) was not a defining characteristic for this species. 

 

 
Figure 03.  P. umbraticola. A. Floral appearance shows the wing around the dehiscence line of the 

capsule. B. Leaf vascular bundle arrangement C. Leaf appearance 
 

6.2. Molecular Identification 

§ PCR and sequencing success rate 

Barcoding depends on successful amplification and sequencing. This study found a 100% success 

in amplification, but sequencing was not always successful. Three rbcl amplicons failed to be sequenced. 

Further tests to determine the possible causes for the failure will have to be carried out. All reverse 

sequencing of ITS1 failed. Such consistent failure could be due to the primer sequence not precisely 

matching the primer region (Hollingsworth et al., 2011; Schori & Showalter, 2011). The universal primer 

set used may not have been specific enough. Though we obtained good quality trnL-F sequences, in 14 out 

of 18 cases, these sequences could not always form consensus sequences. The length of the sequence (Table 

01) may require the use of internal primers as carried out for Rosoideae by Eriksson et al., (2003). 

• Detection possible source of noise by sequence characterisation 

The length and percentage GC (Table 01), is within the range reported, increasing confidence that 

amplification was of the correct loci, although the possibility of pseudogenes cannot be ruled out. There 

were no violations of the assumption of homogeneity of nucleotide substitution or substitution saturation. 

Thus, causing no adverse effect on the accuracy of phylogenetic inferences (Kumar & Gadagkar, 2001; Xia 

et al., 2003). 

 

Table 01.  Fragment length and percentage composition of Guanine and Cytosine (% GC)  
Locus Parameter PO PG PU Range in literature 
ITS1 Length (bp) 370.6 358 370.3 100–681 (Wang et al., 2015);  
 % GC 61.5 59.7 61.2 26–79 (Wang et al., 2015) 
trnL-F Length (bp) 892.6 920 894 927 (Zhang et al., 2015) 
 % GC 29.9 30.7 30.0 27.80–32.20 (El-Bakatoushi, 2015) 
ITS2 Length (bp) 221 222 222.5 214–219 (Sun et al., 2010) 
 % GC 60.3 61.3 61.9 66.79–70.11 (Suesatpanit, et al. 2017) 
rbcl Length (bp) 264–450 490–507 490–533 552 (Spies & Spies, 2018) 
 % GC 43 45.5 42.7 43.18 (Spies & Spies, 2018) 

Note: PO is P. oleracea, PG is P. grandiflora and PU is P. umbraticola. 

 

A B C 
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• Species Identification 

BLAST analysis of all loci supported the identification of P. oleraceae (Table 02). The trnL-F and 

rbcl sequences obtained from P. umbraticola, were also most similar to P. oleraceae (Table 04), thus, were 

not useful for identifying P. olearaceae. However, this lack of utility is because of the absence of these 

sequences from the database, and may improve as the database extends its coverage of species and loci. 

 

Table 02.  Blast analysis of PO, P. oleracea: Scores, Query cover, E-value and Identity 
Loci Sample Best hit species Total score Query Cover E value Identity 
trnL-trnF PO1 P. oleracea 1646 100% 0.0 99.89% 
trnL-trnF PO2 P. oleracea 1700 100% 0.0 100.00% 
trnL-trnF PO3 Portulaca sp. 1273 100% 0.0 93.89% 
rbcl PO2 P. oleracea 900 100% 0.0 99.80% 
rbcl PO3 P. oleracea 898 100% 0.0 99.80% 
ITS1 PO1 P. oleracea 628 97% 3e-176 98.07% 
ITS1 PO2 P. oleracea 641 97% 4e-180 98.62% 
ITS1 PO3 P. oleracea 630 97% 9e-177 98.08% 
ITS2 PO1  P. oleraceae 819 100% 0.0 99.78% 
ITS2 PO2  P. oleraceae 848 100% 0.0 99.57% 
ITS2 PO3  P. oleraceae 854 100% 0.0 99.57% 

 

The species morphologically identified as P. grandiflora, was only determined to this same species 

by trnL-trnF (Table 03), and the ITS2 secondary structure-based BLAST. Standard BLAST using ITS1, 

and ITS2 identified P. grandiflora as P. pilosa. This misidentification could be due to the inconsistent 

naming of species leading to sequences being attributed to the wrong species. Unlike ITS1, alternate naming 

of species is probably not the cause of misidentification using BLAST of ITS2 sequences as structure-

dependent BLAST of ITS2 enabled identification to the correct species. Structure-based BLAST, is more 

accurate (Keller et al., 2010), and should be used in preference to standard BLAST. 

 

Table 03.  Blast analysis of PG, P. grandiflora: Scores, Query cover, E-value and Identity  

Loci Sample Best hit species Total 
score 

Query 
Cover 

E 
value 

Identity 

trnL-trnF PG1 P. grandiflora 1642 100% 0.0 99.78% 
trnL-trnF PG2 P. grandiflora 1685 99% 0.0 99.15% 
trnL-trnF PG3 P. grandiflora 1685 100% 0.0 99.25% 
rbcl PG1 P. pilosa/ P. oleracea/P. grandiflora 446 94% 2e-121 98.81% 
rbcl PG2  P. grandiflora/ P. pilosa 832 100% 0.0 100.00% 
ITS1 PG1  P. pilosa 604 97% 5e-169 98.00% 
ITS1 PG2  P. pilosa 595 96% 3e-166 97.44% 
ITS1 PG3  P. pilosa 595 96% 3e-166 97.44% 
ITS2 PG1  P. pilosa 771 100% 0.0 97.76% 
ITS2 PG2  P. pilosa 771 100% 0.0 97.76% 
ITS2 PG3  P. pilosa 765 100% 0.0 97.54% 

 

The species morphologically identified as P. umbraticola was assigned to the closely related P. 

oleraceae and P. grandiflora based on BLAST using sequences from the loci trnL-F and rbcl (Table 04). 
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The incorrect identification was because trnL-F and rbcl sequences of P. umbraticola are not present in the 

database. An incomplete database reduces the accuracy of species identification in Portulaca, and needs to 

be addressed. Secondary structure-based BLAST of ITS2, as well as the standard BLAST of ITS1 (Table 

04), supported the morphological identification of P. umbraticola. 

 

Table 04.  Blast analysis of PU, P. umbraticola: Scores, Query cover, E-value and Identity 
 Sample Best hit species Total score Query Cover E value Identity 
trnL-trnF PU1 P. oleracea 1692 99% 0.0 99.89% 
trnL-trnF PU2 Portulaca sp. 1378 100% 0.0 94.18% 
trnL-trnF PU3 P. grandiflora 1264 95% 0.0 95.52% 
rbcl PU1 P. oleracea 976 100% 0.0 99.63% 
rbcl PU2 P. oleracea 939 100% 0.0 99.61% 
ITS1 PU1 P. umbraticola 614 91% 9e-172 99.12% 
ITS1 PU2 P. umbraticola 619 91% 2e-173 99.41% 
ITS1 PU3 P. umbraticola 617 92% 7e-173 99.41% 
ITS2 PU1 P. pilosa 671 99% 0.0 93.04% 
ITS2 PU2 P. pilosa 671 99% 0.0 93.04% 
ITS2 PU3 P. pilosa 584 100% 8e-163 93.20% 

 

Inferences from tree topology, in general, coincide with the deductions from BLAST. There is 

confirmation that the rbcL locus in Portulaca lacks enough variation to enable identifying at lower 

taxonomic levels (Figure 04) as in other taxons (Ghahramanzadeh et al., 2013; Kress et al., 2005; 

Newmaster et al., 2008). The variation in the rbcl locus, like other coding sequences, is functionally 

constrained (Chen et al., 2017). 

 
Figure 04.  Maximum likelihood tree based on rbcL sequences inferred using the Jukes-Cantor model 

(Jukes & Cantor, 1969) with discrete Gamma distribution. Bootstrap value is shown next to 
the branch. PO, PG, and PU represent P. oleracea, P. grandiflora, and P. umbraticola, 
respectively 

 

The trnL-F sequences only formed a monophyletic clade for P. grandiflora (Figure 05). As there 

were no trnL-F sequences for P. grandiflora on the database, there was no comparison to samples from 

other geographical locations. Additionally, the trnL-F locus could not resolve the relationship of the other 

two species. The absence of monophyly found in P. oleracea has also been reported by Ocampo and 
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Columbus (2012) who explained its cause to different origins (North American and possibly African) of 

samples which leads to wide variation. P. oleracea has also been considered an aggregate composed of 

many sub-species (Danin et al., 1978). In future, the sample size should be increased to help confirm the 

inability or ability of this marker to identify the species. Zhang et al., (2010) have suggested that sample 

sizes widely used in DNA barcoding are inadequate to assess the genetic diversity of species, and hence 

will bias the identification. 

 
Figure 05.  Maximum likelihood tree generated using trnL-F sequences inferred by using the Tamura 3-

parameter model (Tamura, 1992), with a discrete Gamma distribution. Bootstrap values are 
shown next to the branches. PO, PG and PU represent P. oleracea, P. grandiflora, and P. 
umbraticola, respectively 

 

The ITS1 tree (Figure 06) shows three monophyletic clades, one for each species. However, the 

sequences of each species from this study formed a separate strongly supported clade from the downloaded 

sequences. Different mutational forces may be acting, such as the Portulaca improvement carried out by 

gamma irradiation and chemicals (Abraham & Desai, 1977; Wongpiyasatid & Hormchan, 2000). 

 
Figure 06.  The Maximum likelihood tree based on ITS1 sequences inferred using the Tamura 3-

parameter model (Tamura, 1992) with discrete Gamma distribution and some invariable sites. 
Bootstrap support is shown next to the branches. PO, PG, and PU represent P. oleracea, P. 
grandiflora, and P. umbraticola 
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The ITS2 based tree (Figure 07) discriminated all species with high bootstrap support. While the P. 

oleracea in this study formed a monophyletic group with sequences downloaded from NCBI, the other two 

species did not cluster together with members of their species from the database. However, with the 

secondary structure analysis with ITS2, identification improved. Keller et al. (2010), and Müller et al., 

(2007) reported that secondary structure prediction is advantageous for species identification, and Coleman 

(2009) explained the benefit as arising from its ability to detect sequencing errors, pseudogenes, and genetic 

footprints indicative of past hybridisation events. 

 

 
Figure 07.  The Maximum likelihood tree based on ITS2 sequences inferred using Hasegawa-Kishino-

Yano model (Hasegawa et al., 1985). Bootstrap support is shown next to the branches. PO, 
PG, and PU represent P. oleracea, P. grandiflora, and P. umbraticola, respectively 

   

7. Conclusion 

All loci, using either BLAST or the tree topology, identified the genus correctly. Secondary 

structure-based BLAST analysis and tree topology of ITS2 confirmed the morphological identification of 

all Portulaca species. As the standard BLAST of the same sequences could not identify any of the species, 

the method of sequence analysis had a detectable influence on identification. Identification — Whether it 

is? Or it isn’t?, currently, cannot depend solely on DNA barcoding, and needs the support of morphology. 

Morphology based identification, however, can be simplified when DNA barcodes narrow the scope of 

search from among the estimated 369,000 species of flowering plants currently known, to say within the 

genus of a few hundred species. In the study, the lack of a complete database impacted the ability to identify 

species, and the database needs to be further populated to provide coverage of all species, and also reflect 

the within-species diversity. Also, because taxonomist cannot agree on characters to discriminate species, 

different names may be given to the same species such as P. grandiflora and P. pilosa var. grandiflora, as 

encountered in this study. Sequences from the same species uploaded on the database under different 
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names, lead to confusion in species identification. DNA barcoding, however, may be seen as a way to flag 

species whose naming needs review. Thus, there is a need for continued effort in DNA barcoding. 
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