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PENGUBAHSUAIAN KAWALAN PROSES BERSTATISTIK UNTUK 

PROSES UJIAN DAN PENGUKURAN JANGKA PENDEK BAGI 

MENGURANGKAN PENGGERA PALSU 

 

ABSTRAK 

 

Ciri-ciri utama bagi proses ujian dan pengukuran (T&M) ialah proses 

pengeluaran secara singkat, merangkumi pelbagai kelompok produk dan ujian melalui 

beberapa stesen kerja. Carta kawalan Shewhart yang klasik, iaitu carta x̄ dan carta R 

telah digunakan secara meluas dalam kawalan proses berstatistik (SPC). Proses 

pengeluaran yang beroperasi jangka pendek dalam T&M mengakibatkan 

ketidakcekapan carta kawalan ini di mana ianya tidak dapat menjamin had kawalan 

yang berkesan dengan data yang terhad. Ralat pengukuran ini akan meningkatkan 

risiko dalam keputusan penerimaan dan penolakan yang salah, secara tidak langsung 

mewujudkan masalah lain seperti proses pelarasan yang tidak perlu dan hilang 

keyakinan dalam SPC. Industri membenarkan pemasangan band kawalan seperti yang 

diamalkan dalam Panduan Ekspresi Ketidakpastian Dalam Pengukuran (GUM) untuk 

mengurangkan julat had penerimaan supaya ia dapat mengimbangkan ralat 

pengukuran secara tidak langsung. Kajian lalu yang menerangkan kaedah pemerhatian 

piawai amat disyorkan disebabkan keringkasannya dan kepraktisannya. Namun, ia 

telah menjadi satu kebimbangan kerana kaedah ini memerlukan data yang mencukupi 

untuk mengira had kawalan dan ia tidak mengatasi masalah ralat pengukuran. 

Berdasarkan premis ini, matlamat penyelidikan ini adalah bertujuan untuk 

membangunkan pengubahsuaian model SPC dengan mempertimbangkan 

ketidakpastian pengukuran dalam carta kawalan (carta Z dan carta W) yang diubahsuai 

bagi proses jangka pendek T&M dalam pelbagai stesen kerja. Pelaksanaan model ini 



xv 

 

melibatkan dua fasa. Fasa I analisis restrospektif mengira parameter input, contohnya 

sisihan piawai ketidakpastian pengukuran, sasaran pengukuran, dan anggaran sisihan 

piawai populasi. Seterusnya, tetapan Band-5 and Faktor-S dicadangkan untuk 

membuat anggaran bagi sisihan piawai proses untuk memaksimakan peluang 

mengesan sebab tertentu dengan kadar penolakan palsu yang rendah. Akhirnya, 

pengubahsuaian carta Z dan carta W dijanakan dalam Fasa II dengan menggunakan 

kaedah pemerhatian piawai dengan sasaran pengukuran dan anggaran sisihan piawai 

proses. Ujian dijalankan berdasarkan peraturan Nelson untuk mentafsirkan carta 

kawalan. Untuk ujian pengesahan, tiga kes kajian, dilabelkan Kes I, Kes II dan Kes III 

telah dijalankan dengan perbezaan nisbah sisihan piawai dalam ketidakpastian 

pengukuran dan populasi untuk menunjukkan keberkesanan model yang dicadangkan. 

Sampel data daripada produk yang diuji pada stesen yang berlainan telah dikumpul 

selama setahun di kilang pembuatan T&M di Bayan Lepas, Pulau Pinang. Bagi Kes I 

dengan ralat pengukuran yang boleh diabaikan dan tidak menjejaskan sisihan piawai 

proses; keputusan menunjukkan bahawa tiada titik penggera palsu yang ditemui dalam 

semua kaedah. Dalam Kes II dengan ralat pengukuran yang mungkin mempengaruhi 

sisihan piawai proses secara nyata, dan keputusan menunjukkan bahawa model dengan 

tetapan Band-5 and Faktor-S mengurangkan kadar penggera palsu sebanyak 100% 

berbanding dengan kaedah Shewhart yang klasik, kecuali tetapan Band-5 yang 

mempunyai peralihan kecil yang berterusan (25% penggera palsu) telah dikesan secara 

palsu di stesen WH05. Dalam Kes III dengan ralat pengukuran yang lebih tinggi dan 

lebih ketaranya mempengaruhi sisihan piawai proses; keputusan menunjukkan bahawa 

kedua-dua kaedah yang dicadangkan memberi prestasi yang baik dalam 

pengubahsuian carta Z  dan carta W, dengan mengurangkan kadar penggera palsu 

sebanyak 50% bagi stesen WH05, 0% bagi stesen WH06 dan 37.5% bagi stesen 
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WH07. Kesimpulannya, penyelidikan ini telah mencadangkan dan menunjukkan 

bahawa pengubahsuaian model SPC dapat menangani isu-isu di bawah kajian yang 

disebabkan oleh proses pengeluaran jangka pendek dan ralat pengukuran. Model ini 

adalah praktikal untuk kilang pembuatan T&M bagi mengurangkan penggera palsu 

dan mengelakkan proses pelarasan yang tidak perlu. 
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MODIFIED STATISTICAL PROCESS CONTROL FOR SHORT RUNS 

TEST AND MEASUREMENT PROCESS TO REDUCE FALSE ALARM 

 

ABSTRACT 

 

The key characteristics of test and measurement (T&M) manufacturing are 

short production runs, multi-product families and testing at multi-stations. Classical 

Shewhart control charts, namely x̄ chart and R chart have been widely used in 

statistical process control (SPC). Short production runs in T&M render these charts 

inefficacious as inherent meager data do not warrant meaningful control limits. 

Measurement errors increase the risks of false acceptance and rejection, thereby 

leading to consequences such as unnecessary process adjustment and loss of 

confidence in SPC. Industry practice allows the installation of Guard band, e.g., 

through Guide to the Expression of Uncertainty in Measurement (GUM) to reduce the 

width of acceptance limit, as an indirect way to compensate the measurement errors.  

Past related works which presented standardized observations technique is highly 

recommended due to its simplicity and practicality. However, the concern is that this 

technique requires sufficient data to calculate the control limits and it does not deal 

with the effect of measurement errors. Based on this premise, the research objective is 

to develop a modified SPC model by considering measurement uncertainty in modified 

control charts (Z chart and W chart) for short runs T&M process in multi-stations. The 

implementation of this model involves two phases. Phase I retrospective analysis 

computes the input parameters, such as the standard deviation of the measurement 

uncertainty, measurement target and estimate of the population standard deviation.  

Thereafter, Five-band setting and S–factor are proposed to estimate process standard 

deviation to maximize the the opportunity to detect assignable causes with low false-
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reject rate. Lastly, the modified  Z chart and W chart are generated in Phase II using 

standardized observations technique that considers the measurement target and the 

estimated process standard deviations.  Run tests based on Nelson’s rules to interpret 

the control charts.  In terms of validation, three case studies, labeled as Case I, Case II 

and Case III were conducted with different ratios of standard deviations in 

measurement uncertainty and population to demonstrate the effectiveness of the 

proposed model. A complete year’s data samples were collected from products tested 

at multi-stations in a T&M manufacturing facility at Bayan Lepas, Penang. For Case I 

with the measurement error is negligible and does not affect the process standard 

deviation; the results indicate that there were no false alarm points found in all 

methods. In Case II with the measurement error may noticeably affect the process 

standard deviation, and the results show that the model with Five-band setting and S-

factor reduced the false alarm rate by 100% in comparison to the classical Shewhart 

method, except for the Five-band setting which has a smaller sustained shift (25% false 

alarm) was falsely detected in station WH05. In Case III with the measurement error 

is relatively larger and appeared to be more significantly affecting the process standard 

deviation; the results reveal that both proposed methods performed well in modified Z 

and W charts, which reduced false alarm rate by 50% for station WH05, 0% for station 

WH06 and 37.5% for station WH07. As a conclusion, the research has proposed and 

demonstrated the modified SPC model can address the understudied issues caused by 

short production runs and measurement errors. The model is practical for T&M 

manufacturing to reduce false alarms and to prevent unnecessary process adjustment.  
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      CHAPTER ONE  

1 INTRODUCTION 

 

 

1.1 Background 

Quality is increasingly a defining factor for a company’s survival and success 

in today’s competitive market. Such significance is particularly relevant to electronic 

test and measurement (T&M) manufacturing processes where advanced systems have 

to be developed to ensure products meeting customer and industry quality 

requirements. Statistical process control (SPC) is a normative quality control approach 

to monitor and statistically examine manufacturing processes. Three key 

characteristics of T&M manufacturing processes are short production runs, multi-

product families and testing at multi-stations. These characteristics often entail 

insufficient data to construct meaningful control limits in traditional SPC charts. The 

inherent measurement error in processes is another critical concern. Therefore, these 

issues increase the complexity of real-time SPC in T&M manufacturing. 

 

1.2 An Overview of Test and Measurement (T&M) 

T&M equipment provides decisional information to verify whether the 

product’s specifications and functionality are fulfilled. Measurement is defined as the 

process to experimentally obtain one or more quantity values that can be reasonably 

attributed to a quantity (JCGM 200:2012, 2012). The process transforms a physical 

variable into symbolic output using an instrument called electronic test equipment 

(ETE) (Webster, 1999). ETE can be either a basic setup of test instrument such as 

digital multimeter and oscilloscope, or complicated and automated system containing 

multiple test instruments. Automatic test equipment (ATE), a computer-controlled 
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ETE, has been widely used to replace manual measurement in many areas such as real-

time monitoring. This is to ensure 100% conforming test, which is necessary to prevent 

non-conforming parts from reaching customers (Wadsworth et al., 2002). Accuracy in 

measurement is a critical consideration for the choice of ETE in an application. Other 

parameters are also considered such as sensitivity, linearity, and changes in reaction to 

ambient temperature (Morris & Langari, 2011).  

T&M equipment market was expected to grow from USD 23.51 Billion by 

2017 to USD 28.98 Billion by 2023 at a CAGR of 3.55% (MarketsandMarkets, 2017). 

The prediction is somewhat similar to the two individual studies by HNY Research 

(2018) and Technavio (2017) which forecasted a steady market grow within the same 

period.  According to Business Wire (2017), the current top five leading vendors in the 

global T&M market are Anritsu, Bureau Veritas, Fortive, Keysight Technologies, and 

National Instruments. There are several impetuses for such growth. Firstly, huge 

market potential is in various end-use applications such as healthcare, IT and 

telecommunications, and automotive. These are attributed to the increasing 

technological advancement toward networking and communication, increased R&D 

spending, increased penetration of modular instrumentation, the development of 5G 

mobile network and rapid penetration of IoT devices (PRNewswire, 2017). Secondly, 

increased quality awareness, greater adoption of metrology in the manufacturing 

process, and safety and regulatory requirement have anticipated the repair and 

calibration market in North America and Europe to reach $3.98 billion by 2022 (Frost 

& Sullivan, 2018). Lastly, the aerospace and defense sectors are identified to be two 

of the primary factors driving the growth of T&M market in 2018 (Technavio, 2017). 

In these sectors, test equipment are much needed to verify the performance of 
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command execution, communication network, surveillance application, and computer 

intelligence. 

All ETEs are subjected to various degrees of error and measurement 

uncertainty. Furthermore, readings taken from an ETE may drift from their specified 

values over time (Cheatle, 2006). Therefore, the performance of the ETE should be 

monitored to decide on the right moment to perform periodical calibration. The 

calibration adjusts the output or indication of an ETE to concur with the reference 

measurement standard, within a specified accuracy (Kegel, 1996). Measurement errors 

are never be known exactly. In some instances, they may be estimated and tolerated or 

corrected for; or they may simply be acknowledged as being present. Regardless which 

treatment is given, its existence introduces a certain amount of measurement 

uncertainty (Castrup, 1995).  

 

1.3 Quality Control in Test and Measurement (T&M) 

Crosby (1979) defines quality as “conformance to requirement”. Juran and 

Gryna (1988) define quality as “fitness for purpose”.  American Society of Quality 

(ASQ) defines quality in the early version of ISO9000 as “the totality of features and 

characteristics of a product or service that bear on its ability to satisfy stated or 

implied needs” (ISO8402:1986, 1986). Deming (1986) interprets Good quality as “a 

predictable degree of uniformity and dependability at a low cost with a quality suited 

to the market”. In modern definition, quality is “inversely proportional to variability” 

(Montgomery, 2013). In essence, by reducing variability, quality improves, 

subsequently the production cost reduces.  

In T&M industry, quality is defined as conformance to specification at the time 

of performance verification (Fasser & Brettner, 2003). ISO/IEC 17025 and 

http://en.wikipedia.org/wiki/Instrument_error
http://en.wikipedia.org/wiki/Measurement_uncertainty
http://en.wikipedia.org/wiki/Measurement_uncertainty


4 

 

ANSI/NCSL Z540 are two primary standards governing the production of ETE. They 

provide the measurement service (calibration) with established laboratory set up 

(ISO/IEC 17025:2017, 2017; ANSI/NCSL Z540.3:2006, 2006). The compliance 

involves testing and laboratory calibration to operate a quality management system in 

line with ISO 9001 for their testing and calibration activities. Also, quality control and 

measurement system must be instituted and maintained to ascertain the qualities of 

products or services are within the stated error bounds (Morris, 1991). This includes 

evaluating main contributors to measurement uncertainty by the international 

guidelines, with full disclosure of such information on the calibration certificates. 

Quality assurance is a quality system with its purpose to assure that the overall quality 

control had been efficiently performed (Wadsworth et al., 2002).  

 

 

1.4 Quality Control Methods 

Statistical Quality Control (SQC) is arguably one of the most cost-effective 

ways to achieve quality standard (Chandra, 2001). The four primary SQC methods are 

acceptance sampling, statistical process control (SPC), process capability study and 

design of experiments (DOE) (Woodall & Montgomery, 1999; Reis et al., 2006). 

Acceptance sampling is one of the earliest quality monitoring techniques with product 

inspection and testing in conformance to specification. With the increased emphasis 

on SPC as an evidence of conformance to meet the quality requirement, the need for 

acceptance sampling had declined (Besterfiled, 2009). Process capability study 

quantifies the process variability to product requirement or specification. The main 

outputs of process capability study are process capability indices which provide a 

statistical measure of whether a production process is within the specification limits 

(Kane, 1986). DOE is a powerful tool capable to reduce the variability in processes 
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and products rapidly (Fisher, 1935). DOE is an offline quality control tool nonetheless, 

frequently used during development activities and the early stages of production, rather 

than as a repetitive online monitoring (Montgomery, 2013).  

SPC is a robust collection of problem-solving tools that can be applied to any 

process in achieving process stability and improving capability. Seven major SPC tools 

(Magnificent Seven) consist of a histogram or stem-and-leaf plot, check sheet, Pareto 

chart, cause and effect diagram, defect concentration diagram, scatter diagram and 

control charts (Madanhire & Mbohwa, 2016). Amongst them, the control charts are 

primary (Montgomery, 2013). Control charts serve three key functions (Shewhart, 

1931; Wadsworth et al., 2002). First, it shows the amount and nature of variation of a 

specific time-series data collected over time; second, it indicates whether these data 

fall into statistical control limits and finally it enables pattern interpretation and early 

detection of changes in the process. The best point of control charts is its ability to 

detect fault or error quickly in the presence of disturbance. The disturbance includes 

shift (occurrence of a bias from process mean), drift (occurrence of a progressively 

decreasing or increasing trend), cyclical or periodical changes (Massart et al., 1998). 

 

 

1.5 Problem Statement 

SPC methods in T&M manufacturing processes are not as prevalent as in 

continuous process environment (high volume products in the long run). Due to the 

T&M industry context, the manufacturing processes are performed in short runs, with 

testing often occurs at multiple stations. This process is highly affected by 

measurement error.   

Control chart requires sufficient subgroup data to estimate process parameters 

( and ) and establish reliable control limits (Quesenberry, 1993). It is difficult to 
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adopt classical SPC method in short runs due to inherent data deficiency (Khoo et al., 

2005).  This may result in a high false alarm rate (underestimation) or insensitive to 

detect process shifts (overestimation) (Gu et al., 2014). Another problem faced in short 

runs is that it entails a large number of charts for different product families and multiple 

stations. The mundane routines of plotting, monitoring and administration could be 

overwhelming. 

Furthermore, All ETEs used in measurement processes are subjected to various 

measurement errors influenced by material, variations in ETEs, and environmental 

conditions. It increases the variations in the measurement processes and introduces a 

certain amount of measurement uncertainty. Costa and Castagliola (2011) underscore 

growing risk of false acceptance in SPC due to measurement error. This leads to 

consequences such as unnecessary process adjustment and loss of confidence in SPC. 

Therefore, to control manufacturing processes in T&M production based on 

measurement data, the implication of measurement uncertainty and short runs should 

be considered when implementing SPC for quality control.  

 

 

1.6 Research Objectives 

The aim of this research is to propose a modified SPC model to be integrated 

into T&M manufacturing system to monitor test stations and control quality of the 

product. Objectives of this research are as follows: - 

i. To develop a modified SPC model primarily to maximize the chance of 

detecting true alarms (the assignable causes) with low false alarms (false-reject) 

rate. 

ii. To demonstrate the effectiveness of the new model through actual 

implementation of several case studies in real industry. 
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1.7 Research Scope 

The proposed model focuses on maximizing the chance of detecting the true 

alarms (the assignable causes) with low false-reject rate in short production runs and 

process variations that cannot be effectively monitored due to effect of measurement 

error.  The SPC model will focus on control chart techniques with univariate data 

subgroups (subgroup size more than one). A general assumption is that the process 

data (measured values) are independent and normally distributed. The data will be 

normalized via standardized observations technique before the process can be 

monitored. Guard band with measurement uncertainty will be articulated in the model 

design based on Guide to the Expression of Uncertainty in Measurement (GUM). 

Implementation of case studies is carried out in a single manufacturing premise due to 

stringent industry data disclosure policy and elusiveness of suitable cases elsewhere.  

 

 

1.8 Significance of the Study 

The study contributes towards knowledge development in SPC methods for 

short runs T&M process in multi-stations. Issues of short runs and measurement errors 

were addressed in this research. First, incorporation of measurement uncertainty from 

Guard band into control chart has created a new research path in quality control 

theories and practices.  

Second, Five-band setting and S-factor were introduced to estimate process 

standard deviation. These were used for rescaling responses in the modified Z chart 

and W chart.  These methods are also used to maximize the chance of detecting the 

assignable causes with comparatively low false-reject rate. Both methods are practical 

for T&M manufacturing process as the case studies have demonstrated the possibility 
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to embed the system in automated quality control system in an efficient and effective 

manner. 

Although many researchers have studied the effects of measurement errors in 

SPC, to the best of the author’s knowledge, there is no known research on using Guard 

band or measurement uncertainty to alleviate the accompanying impacts of 

measurement errors for short runs process in multi-stations. Recent research on SPC 

short runs approach focuses mainly on estimation of the process parameters (µ and σ) 

using method such as student t-distribution to optimize the control chart performance. 

This research presents a new technique to estimate the process parameters to improve 

control chart in short runs process. 

 

1.9 Thesis Organization 

This thesis is organized into seven chapters. The arrangement of the contents 

largely conforms to the conventional thesis structure, in hope to provide the best 

readability of the research work. Firstly, this chapter introduces the background of test 

and measurement along with problem statement, research objectives and contributions. 

In Chapter 2, the literature relevant to the topics in this research is reviewed. Important 

concepts are synthesized and clarified. Following that, limitations and gaps in the 

previous studies are identified. Chapter 3 covers the research methodology of how the 

proposed model was developed. In Chapter 4, modified SPC model are proposed and 

implementation details are described. Chapter 5 consists of validation through three 

case studies involving different number of test stations in real industry and presents 

the results analysis and discussion. Lastly, Chapter 7 concludes this thesis and suggests 

possible directions for future research. 
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      CHAPTER TWO 

2 LITERATURE REVIEW 

 

 

2.1 Overview 

A thorough literature review in short runs SPC and Guard band would be 

presented here. Content analysis method is used to identify and classify the quality 

control approaches found in the literature. The flow was structured in Figure 2.1. The 

complication of T&M industry in quality control was examined in Section 2.3. It is 

then followed by a discussion on the various quality control approaches found in 

literature. Short runs SPC approaches are focused next due to its prominence and 

prevalence in industries. The final section of this chapter centers on the critical findings 

of the literature review.  

 

 

Figure 2.1: Literature review structure 
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2.2 Content Analysis 

Literature is reviewed using content analysis in quality control, with attention 

on SPC and Guard band approaches. Content analysis is an observational research 

method, which systematically reviews the content of all forms of recorded 

communication (Kolbe & Brunette, 1991). It helps to ensure the quality of the work 

developed and to provide a suitable analysis of the decisions, procedures, and 

conclusions. Hachicha and Ghorbel (2012) presented the procedure for conducting 

content analysis is based on two steps. First, a definition of sources and procedures for 

the search of articles to be analyzed is determined; second, a definition of instrumental 

categories for the classification of the selected articles is made. 

 

2.2.1 Literature Search Procedure 

The selection of papers was carried out through an exhaustive search using 

ACM Digital Library, IEEE Xplore, JSTOR, ProQuest, Scopus, Science Direct, 

Springer, Taylor & Francis, and other online databases. The final updated set of papers 

for the review was compiled on January 2018.  

Statistical Process Control or SPC are used as keywords in primary search, 

resulting more than five thousand papers appeared in these online databases. To search 

literatures related to particular subtopics, further refinements applied alternative 

keywords such as: “short runs”, “measurement error”, “control chart”, “standardized”, 

“nominal”, “self-starting”, “quality control”, “quality standard”, “multi-stations”, “test 

and measurement”, “conformance to specification”, “guard band”, “measurement 

variation”, and “measurement uncertainty”. Approximately two thousand papers were 

identified. 
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Papers were filtered out if it does not match all the criteria as below: -  

i. The paper is written in English and was published in a peer-reviewed 

journal.  

ii. The paper applies univariate Shewhart control chart. Multivariate 

techniques were not considered. 

iii. The paper applies a SPC method addressing issues caused by short runs 

or measurement errors. 

 In addition, books, eBooks, Google Scholar, Wikipedia, and online training 

material are treated discreetly as alternative sources of information, mostly for the 

fundamental knowledge.  

 

2.2.2 Classification Categories 

Finally, about two hundred papers remain in the selection. Short runs SPC 

approaches are critically reviewed due to its prominence and prevalence in industries. 

The approaches are sorted according to the following categories:  

i. Approach of quality control 

ii. Techniques description and principles 

iii. Application of the approach 

iv. Performances criteria 

v. Robustness in practical use 

 

2.3 Complication of T&M Industry in Quality Control 

Several product characteristics intrinsic to T&M industry make quality control 

particularly challenging. The products are relatively costly; demand unpredictable and 

with substantially strict regulatory compliance standards. Meanwhile, the 

manufacturing processes are short runs of high-mix low-volume and short product life 
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cycles. Typically, a digital multimeter would have more than a hundred product 

varieties, which each having monthly order in the range of ten to hundred units. A 

common product life would be two years. Furthermore, products may be inspected at 

multiple test stations, and the measured values are profoundly affected by accuracy 

and precision of the designated ETE (Webster, 1999). These implications are explored 

in the following sections. 

 

2.3.1 Short Runs 

In quality control, short runs generically means a manufacturing situation in 

which product is produced in low volume (Del Castillo et al., 1996). Some invariably 

referred it as short production runs (Del Castillo & Montgomery, 1994) or short runs 

production (Khoo & Moslim, 2010). The term “short runs” would be used hereafter 

for sake of consistency. In a short runs environment, to establish reliable control limits 

is difficult due to inherent data deficiency (Khoo et al., 2005). Short runs may not 

reach a recommended baseline of 80 to 100 samples needed to secure meaningful 

control limits (Chen, 1997; Tsai et al., 2005; Montgomery, 2013). 

Another major problem faced in short runs is the need to chart different 

processes for individual product families, entailing a considerably large number of 

charts. Even more charts are expected if different test stations are deployed. The 

onerous routines of plotting, monitoring and administration could be overwhelming. 

Furthermore, the control limits have to be constantly reviewed and revised. To address 

these matters, Khoo and Moslim (2010) provide two suggestions. First, startup control 

chart of which process parameters ( and ) initiated from a few units; second, plotting 

of all statistics on a standard scale, thus permitting different process variables to appear 

on a same control chart.   
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2.3.2 Multi-stations 

Process control for multi-stations manufacturing processes is markedly 

challenging due to the variations caused by measurement error. Several studies have 

proposed a systematic approach using the stream of variation (SOV) model to 

overcome the limitations faced by SPC in multi-stations manufacturing processes (e.g. 

Jin & Shi, 1999; Camelio et al., 2003; Djurdjanovic & Ni, 2006; Zhang et al., 2007; 

Abellan-Nebot et al., 2011; Jiao & Djurdjanovic, 2011). The SOV model utilises a 

state-space representation to describe the critical control characteristics induced 

variations, their propagation along multiple operations and the accumulation of the 

control characteristics (Abellan-Nebot et al., 2011). The SOV model is beneficial in 

establishing a connection between the process level parameters and measured product 

quality (Djurdjanovic & Ni, 2006). However, the SOV models are mainly developed 

to lessen the dimensional variability in assembly and machining processes.  

 

 

2.3.3 Measurement Error 

Measurement error is the difference between the true value and the measured 

value of a quantity (Chakraborty & Khurshid, 2013).  The measurement error 

comprises two components: random and systematic. Succinctly, the random error 

causes spreading in the measurement results, whereas the systematic error causes bias 

(Chandra, 2001). Several possible error sources are ETE accuracy, operates mistakes, 

environment factors, and random noises.  

Measurement error is somewhat neglected in common SPC approaches 

(Wetherill & Brown, 1991), as both process variability and the error in the 

measurement system are being treated indifferently (Lanza et al., 2008; Chakraborty 

& Khurshid, 2013). In studying the effect of measurement error in chemical process 

control, Kanazuka (1986) noticed that the power of control limits in detecting the 
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change diminishes when the measurement variance surpasses the process variance. In 

other words, the measurement error affects control factor limits and increases the Type 

I error (Tricker et al., 1998). Type I error is the probability that control chart indicates 

process is out of control but in reality the process is in-control (Cai et al., 2002). In this 

regards, Bennet (1954) employed a blanket process average instead of batch-

dependent process average. Kanazuka (1986) proposed power graphs and larger 

sample sizes to recover the lost power. 

Maleki et al. (2017) commented that most of researches investigated the effect 

of measurement errors on the SPC performance, while some recent ones have 

attempted to present remedial approaches to compensate the measurement errors. One 

of the most common remedial approaches to mitigate the effect of measurement error 

is the multiple measurements approach, which was first introduced by Linna and 

Woodall (2001). Recently, Mezouara et al. (2015), Becket and Paim (2017) proposed 

Guard band, which is another approach by considering the measurement uncertainty 

to compensate effect of measurement error. The Guard band approaches will be 

discussed in Subsection 2.4.1(a).  

Linna and Woodall (2001) realized considerable statistical power by taking 

multiple measurements for individual items in a subgroup as long as the measurement 

error changes linearly with the assumed parameter. Khoo and Moslim (2010) 

suggested a start-up control chart from which process parameters initiated from a few 

units. Costa and Castagliola (2011) suggested that each sample should be measured at 

least four times to counteract the measurement error.  

A larger sample size (Kanazuka, 1986) or repeated measurement on different 

ETEs (Linna & Woodall, 2001; Costa & Castagliola, 2011) could be done at the 

expense of time and cost.  This approach could pose a challenge to T&M because the 
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testing is relatively long and often demands various combinations of test parameters 

and settings. For example, an oscilloscope requires over 100 test parameters and 

settings and each run from 4 to 10 hours depending on a product’s bandwidth. Many 

of these strategies are deployed in a new category of SPC called short-run SPC, which 

is exclusively reviewed in the next section. 

 

2.3.4 Measurement Uncertainty 

Formally, the accuracy of the ETE denotes as one of the key instrument 

specifications. On this ground, the inherent accuracy of the measurement made with 

the ETE is foremost important. Accuracy measurement implies the existence of 

standards measurement and the evaluation of uncertainties in a measurement process 

(Kirkup & Frenkel, 2006). As shown in Figure 2.2, the measurement uncertainty 

provides calculated confidence level in the measured value that allows judgment on 

the significance of the measurement error for the measurement falling within a stated 

amount above or below the true value (Cheatle, 2006; Nielsen, 2017).  

Measurement uncertainty is computed to establish traceability for a reference 

(JCGM 100:2008, 2008). Two primary standards (ISO/IEC 17025:2017 and 

ANSI/NCSL Z540.3:2006) require instrument manufacturing engineers or 

laboratories to evaluate the measurement uncertainty and report Test Uncertainty Ratio 

(TUR), the ratio between specification and measurement uncertainty. False accept risk 

is the principal metric to evaluate the quality of a test or calibration process (Dobbert, 

2008). ANSI/NCSL Z540.3:2006 addresses the requirements and responsibilities of 

the calibration system to establish 2% false accept risk and to control the accuracy with 

4:1 TUR (Castrup, 2007). Macii et al. (2003) provided guidelines to determine TUR 

in the measurement process to reduce the decisional risks stemmed from measurement 

errors. In addition, measurement uncertainty shall always be considered for assessment 
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of compliance with a specification (ILAC-G8:03/2009, 2009). The JCGM 100:2008 

establishes general rules for evaluating and expressing measurement uncertainty. 

 

 

Figure 2.2: Measurement error and measurement uncertainty (Nielsen, 2017)   

 

 

2.4 Quality Control Approaches in Literature  

Figure 2.3 summarises approaches developed for quality control in T&M 

manufacturing.  The two mainstreams are conformance to product specification using 

Guard band and SPC methods. These approaches will be explored in the next sections. 

 

 

 

 

 

 

Figure 2.3: Quality control approaches 
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2.4.1 Conformance to Specification 

Juran (1974) defines quality control as “the regulatory process through which 

we measure actual quality performance, compare it with standards, and act on the 

difference”. The quality characteristics are therefore often evaluated relatively to 

specifications. As the fundamental of the concept are well established, measuring 

quality based on the conformance to the specification is prevalent amongst 

manufacturers (Fasser & Brettner, 2003). As shown in Figure 2.4, both lower 

specification limit (LSL) and upper specification limit (USL) represent acceptable 

products limits where output measurement could tolerate.  

The product quality is assessed by measuring a particular parameter that 

indicates predefined product characteristics. In other words, a product is deemed to be 

of good quality if the measurement is within its specification limits and of bad quality 

if is not. 

 

Figure 2.4: The traditional way of assessing quality (Fasser & Brettner, 2003) 

 

2.4.1(a)   Guard Band Approaches 

In T&M processes, measurement error could be the main concerning issue. The 

most immediate approach to control the measurement errors is to select a more precise 

ETE to reduce the measurement variability (Mottonen et al., 2008). However, 
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implementing option along this line could also suggest a significantly more expensive 

ETE. Thus, a tradeoff is needed between the precision level and associated cost factors. 

Mezouara et al. (2015) proposed Guard band to reduce the width of acceptance limit 

(as shown in Figure 2.5). Industry practice allows the installation of Guard band, e.g., 

through Guide to the Expression of Uncertainty in Measurement (GUM), published by 

ISO in 1993 (JCGM 100:2008, 2008), as an indirect way to compensate the 

measurement error.  

 

Figure 2.5: Assessing quality with Guard band (Mezouara et al., 2015) 

The acceptable risk in Guard band setting is tied in with the presence of 

measurement error.  Two common approaches are adopted to evaluate the uncertainty 

of the measurement, namely Guide to the Expression of Uncertainty in Measurement 

(GUM) and Monte Carlo method (MCM). GUM approves the use of both partial 

derivatives (Type A and Type B) and MCM bases on the general concept of 

propagating probability density function (Sediva & Havlikova, 2013). GUM and 

MCM have been used rather extensively and effectively for many years. They are more 

easily interpreted rather than Markov chain Monte Carlo method (a more recent 

Bayesian approach) (Forbes, 2012). The integrations of these approaches into Guard 

band are explained below.  
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i.     Guard Band proposed in GUM 

In GUM, measurement uncertainties are standard deviations of probability 

distributions, interpreted by Type A and Type B evaluations (Bich et al., 2006). 

Underpinned these two evaluations are Bayesian probability theory which offers a 

unique, self-consistent method for quantitative reasoning on incomplete sets of 

information (Kacker & Jones, 2003). Further details about Type A and Type B 

evaluations will be discussed in Chapter 4. The measurement uncertainties from these 

evaluations can be aggregated mathematically through Summation in Quadrature 

(Bell, 2001) to form combined standard uncertainty. GUM requires a high level of 

confidence (referred as coverage probability) associated with measurement 

uncertainty (UKAS, 2007). Thus, the combined standard uncertainty needs to be 

multiplied by a coverage multiplier (k) to become the expanded uncertainty, which in 

turn provides the tolerance for a measurement. In general, the value of the k will be in 

the range 2 to 3 based on the level of confidence required (JCGM 100:2008, 2008). 

The measurement uncertainty must be characterized by a Gaussian distribution (or a 

scaled and shifted t-distribution) (Bich et al., 2006). 

 

ii. Guard Band generated through Monte Carlo Method (MCM) 

MCM is operated through experimental simulations instead of mathematical 

models (Silva Hack & Caten, 2012). MCM performs random sampling from the 

probability distribution of the input quantities and provides a probability density 

function for the output quantity (Cox & Siebert, 2006). It accommodates complicated 

distributions of input quantities such as U-shaped, asymmetric distribution. The main 

shortcoming of MCM is a large quantity of random numbers generator and the 

appropriate simulation software is needed (Sediva & Havlikova, 2013).   
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iii. Applying Guard Band in T&M Processes 

In T&M processes, Guard band is applied for managing false accept risk that 

the acceptance limits are more stringent than the specification limits (Dobbert, 2008). 

A common practice is to set the Guard band to a value equals to the 95% confidence 

level expanded uncertainty of the measurement process (ILAC-G8:03/2009, 2009). 

ISO/IEC 17025:2017 compliance requires a reading and its tolerance both fall within 

the specification limits, as in the case of first readings in Figure 2.6.  Noncompliance 

with the specification happens when the measured value exceeds the specification limit 

(discounted with the expanded uncertainty), as in the case of the fourth reading 

(reported as “Failed” in Figure 2.6). As long as its bounds of the expanded uncertainty 

overlap the specification limit, as in the cases of the second and third readings (Figure 

2.6), the state of compliance or non-compliance of a measured value cannot be 

determined. This is hence reported as “Undetermined”, and prompts for further study 

on the absolute quality compliance. Expanded uncertainty acts as a Guard band to 

reduce the width of acceptance limit.  

 

 
 

 

Figure 2.6: Specification compliance (ILAC-G8:03/2009, 2009) 

  

MU = Expanded Uncertainty 
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iv. Industry Applications of Guard Band 

The economic aspects of Guard band have been studied by several researchers 

(Deaver, 1995; Kim et al., 2007; Mezouara et al.,2015; Pou & Leblond, 2015) to ensure 

the acceptable risk in the product conformity. Deaver (1995) proposed using Guard 

band when maintaining 4:1 TUR of fails to prevent unjustified false rejection rate. 

Dobbert (2008) presented a Guard band strategy for managing false accept risk without 

requiring statistic knowledge to obtain the standard deviation for the a priori 

probability distribution. The false reject risk for the managed risk Guard band is 

significantly lower than expanded uncertainty Guard band. 

Kim et al. (2007) and Mezouara et al. (2015) proposed models for the economic 

design of measurement systems by incorporating the concepts of measurement 

precision and Guard band to minimize the impacts of measurement errors. In Kim et 

al. (2007), the sensitivity analysis of an optical scanning device examined the effects 

of process parameters, such as false acceptance risk, rejection costs, and the expected 

total cost. In Mezouara et al. (2015), different economic aspects (at the cost of an 

increased risk of false rejection) of measurement errors were weighted in when 

selecting the precision level and determining the width of the Guard band with an 

acceptable customer risk. The results of indirect tensile tests of stiffness modulus 

showed that Guard banding ensures the good product would be accepted 99.23% with 

customer risk of 0.71%.  

The practice of Guard band can also be analyzed in terms of costs, impact and 

optimized measurement uncertainty. Pendrill (2014) introduced optimized 

measurement uncertainty in conformity assessment that deals with qualitative 

observations and economic risk. The optimized measurement uncertainty includes 
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economic assessments of test and measurement with the costs of incorrect decision-

making. 

ISO/IEC GUIDE 98-4 (2012) requires a metrologist to control the process by 

considering the customer and supplier risks. Pou and Leblond (2015) proposed Guard 

band to control of customer and supplier risks by analyzing the obtained experimental 

data using Bayesian approach and taking into account the measurement uncertainty. 

The method minimizes the weighted sum of two risks when the capability of the 

process of measurement cannot be held. On the other hand, Becket and Paim (2017) 

reviewed the acceptance criteria defined in reference manual of measurement systems 

analysis (MSA and VDA 5). Acceptance criteria have established an approval between 

customer and supplier for measuring system and measurement process. Based on the 

evaluations performed, they recommended including bias into the tolerance limits (the 

implement of Guard band). The bias is treated as a source of measurement uncertainty.   

In summary, Guard band is an established practice in production testing. 

However, Guard band increases chances for a conforming product to be erroneously 

classified as failed in testing (Williams & Hakins, 1993). Guard band lacks of function 

extension, such as integrating of Shewhart control charts to screen for assignable 

causes and to detect early quality deterioration in the process (Hossain et al., 1996).   

 

2.4.2 Statistical Process Control (SPC) Methods 

Statistical process control (SPC) using control charts, is one of the prevailing 

tools in quality control to monitor the variation in a process and ensure that the process 

is in a state of control (Srinivasu et al., 2011). Control chart was pioneered by Shewhart 

in the early 1920s (Shewhart, 1931). Classical control chart applications involve two 

distinct phases, Phase I and Phase II (Woodall & Montgomery 1999; Montgomery, 



23 

 

2013). Phase I is a retrospective analysis that constructs trail control limits with 

historical data to determine if the process is stable or vice versa. In Phase II, control 

chart is used to monitor new process outcomes.  

It may note in the passing that Shewhart control charts are often being 

compared with cumulative sum (CUSUM) chart (Page, 1954) and exponentially 

weighted moving average (EWMA) (Roberts, 1959) due to their function 

compatibility in detecting small shifts in measured values. Both methods require 

certain level of statistics skill and knowledge, therefore are comparatively less favored 

in manufacturing area.  

Control charts can be either univariate or multivariate. Univariate control chart 

is a single measurement characteristic to be monitored. Whereas, multivariate control 

chart measures multiple characteristics, monitoring two or more related measurement 

characteristics in a manufacturing process (Hachicha & Ghorbel, 2012). Practical 

implementation in the microelectronics industry is almost exclusively done by using 

univariate control charts although several multivariate approaches have been proposed 

(e.g., Khoo & Quah, 2002; Kalgonda & Kulkarni, 2004; Jaupi et al., 2013). With this 

reason, literature review will focus on techniques in univariate Shewhart x̄ chart and 

R chart.  

 

2.4.2(a)   Shewhart x̄ Chart and R Chart  

Shewhart control charts have been widely accepted in manufacturing processes 

to stabilize and monitor the mean of different processes when the response can be 

measured (Montgomery, 2013). Response is a statistic (e.g., mean, range) of 

measurements characteristic grouped by subgroup size (n) for the sample data taken 

from the measured value. The basic Shewhart control charts are X̄ chart for controlling 
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the process average and the R chart (or S chart) for controlling the process variability. 

They detect process shifts in the mean and variance (Haridy et al., 2016). Shewhart 

control charts plot a sequence of process measurements with the upper and lower 

control limits as shown in Figure 2.7. A response falling outside the control limits 

indicates the presence of a special cause (assignable cause) hence triggers containment 

and corrective actions (Madanhire & Mbohwa, 2016). 

 

Figure 2.7: Shewhart control chart (Montgomery, 2013) 

 

The control limits are usually set at ±3 standard deviations from central line, 

which produces a Type I error (false alarm) of a α = 0.0027 if the underlying 

distribution is normal (Montgomery, 2013; Cascos & López-Díaz, 2018). The center 

line (CL), upper control limit (UCL) and lower control limit (LCL) for the x̄ chart are 

computed by: 

CLx̄ = 𝑥̿                  (2.1) 

          UCLx̄ = 𝑥̿ + 3x̄ 

           LCLx̄ = 𝑥̿ - 3x̄ 

and R chart’s are computed by: 

CLR = 𝑅̅             (2.2) 
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