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1 INTRODUCTION 

Teeth are highly mineralised tissues located at 
the entrance of the alimentary tract in both 
invertebrates and vertebrates [1]. Teeth are the 
elements of dermal skeleton that are present in a 
wide range of jawed vertebrates [2]. Though the 
main function of teeth is in chewing food, yet, 
they are also associated with defence, display of 
dominance as well as in the vocalisation in 
humans [3]. The human dentition comprises 20 
teeth in the primary dentition and 32 in the 
permanent dentition [4, 5, 6]. Tooth agenesis 
denotes missing tooth/teeth as a result of 
developmental failure that results in decreased 
number of normal complement in human dentition 
[7]. Conversely, a supernumerary tooth denotes 
any tooth or odontogenic structure that is formed 
from a tooth germ resulting in more than the 
usual number of any given region in a dental arch 
[4, 5, 6].  

A search was made in databases using the 
keywords ‘supernumerary teeth, mouse, humans, 
genetics’. The articles collected were subjected to 
a systematic review to analyse the genetic basis 
of supernumerary teeth. Supernumerary teeth 
can be seen in many genetic disorders; but they 
are more common in syndromes like Gardner’s 
syndrome, cleft lip and palate and cleidocranial 
dysplasia (CCD) and less commonly seen in 

Fabry disease, Nance-Horan syndrome, Ellis-Van 
Creveld syndrome, Rubinstein-Taybi syndrome 
and trichorhinophalangeal syndrome [8]. Genetic 
entities that represent supernumerary teeth as a 
salient finding have been attributed to autosomal 
dominant inheritance, X chromosome inheritance 
and to both the inheritance patterns based on 
their locus heterogeneity [9]. Also, there are many 
reports supporting the theory of familial tendency 
to supernumerary teeth which were more evident 
in the relatives of the affected individuals [10]. 
Moreover, Seema Gupta and Praveen Kumar 
reported based on their study that in 8.6% of 
cases, there was a history of the same 
abnormality observed in other members of the 
family, which ascertained the hereditary nature of 
hyperdontia to occur [11]. 

2 CONTROLLING MECHANISM OF TOOTH 
DEVELOPMENT  

Teeth develop due to progressive interactions 
between the ectoderm and the underlying 
ectomesenchyme tissue [12]. Subsequently, the 
ectomesenchyme forms the dental laminae giving 
rise to human deciduous teeth at six weeks in 
utero [13]. The permanent successors, on the 
other hand, develop as lingual extensions of 
these primary laminae which occurs between 20 
weeks in utero until the age of five [14]. The early 
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stage of tooth development or odontogenesis at 
the embryological stage is regulated by a series 
of signals occurring between tooth-forming 
epithelium and the neural crest-derived 
ectomesenchyme [12]. Each tissue layer then 
instructs the other to differentiate into incisors, 
canines, premolars, and molars [15]. The 
reciprocal interactions between ectoderm and 
ectomesenchyme regulate the different phases 
involved in odontogenesis [16] as well as in 
regulating the tooth number [17]. The different 
phases are Initiation phase which determines 
the tooth region and numbers; morphogenesis 
phase which determines the tooth type, size, 
shape, dimension and cusp number, and the 
cytodifferentiation phase which determines the 
tooth structure such as enamel and dentine 
formation and mineralization. Thus, 
odontogenesis is a complex process under tight 
control of genetic and molecular events.  

Research on the roles of signals and tissue 
interactions in cultured tissue explants and in 
mutant mice have shown inductive signalling and 
hierarchies in downstream transcription factors 
during odontogenesis. The development of tooth 
occurs through a chain of signalling interactions 
between the oral epithelium as well as neural 
crest-derived mesenchyme, genetically controlled 
by various signalling molecules and pathways 
[18]. More than 200 genes have been found to 
have active functions in developing tooth. Most of 
the expression patterns can be viewed in a 
comprehensive graphical database of gene 
expression profiles at 
http://honeybee.helsinki.fi/toothexp [19]. The roles 
of signalling molecules and the expression of 
homeobox genes in odontogenesis indicate a 
complementary interaction between the ‘field’ and 
’clone’ theories [15]. The ’field’ theory was first 
proposed by Butler [20], who postulated that each 
tooth within a class, e.g. molars, develop number, 
shape, size, and order of development because it 
belongs to a common field [21]. Nevertheless, a 
field gradient exists depending on the position of 
tooth in the field. Clone theory was proposed by 
Osborne [22], who reported that a single pre-
programmed cell clone is responsible for the 
development of a specific class of tooth [23].  

Major signalling molecules involved in the 
regulation of tooth embryogenesis belong to the 
bone morphogenetic protein (BMP), fibroblast 
growth factor (FGF), sonic hedgehog (SHH), and 
wingless-type (WNT) families. BMPs and FGFs 

are the most important molecules of 
odontogenesis that are expressed in both 
ectoderm and ectomesenchyme, whereas, SHHs 
and WNTs are expressed only in the ectoderm 
[24]. Supernumerary tooth and tooth agenesis 
occur due to imbalance in the expression of these 
four major signalling pathways and their 
inhibitors. Their roles in regulating odontogenesis, 
in turn, determine the tooth number and 
patterning [16]. Various genes that play a role in 
causing dental anomalies are presented in Table 
1 and a diagrammatic representation of the genes 
and signalling pathway involved in odontogenesis 
is shown in Fig. 1. 
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3 MAJOR SIGNALLING MOLECULES 
INVOLVED IN THE FORMATION OF 
SUPERNUMERARY TOOTH  

3.1 Bone morphogenetic protein  
One of the first signals identified in inductive 
interactions between epithelium and 
ectomesenchyme are growth factors belonging to 
the family of BMPs. The BMP family comprises a 
large group of proteins that are frequently 
expressed during tooth morphogenesis. For 
example, BMP2, BMP4 and BMP7 are expressed 
in the dental epithelium, BMP2 and BMP7 are 
expressed during the bud stage, and BMP4 is 
expressed during the thickening of the dental 
lamina. Also, BMPs can function as bidirectional 
signalling factors between the epithelium and 
ectomesenchyme. In ectomesenchyme, the 
BMPs stimulate the expression of transcription 
factors muscle segment homeobox 1 (MSX1), 
muscle segment homeobox 2 (MSX2), early 
growth response 1 (EGR1), and high mobility 
group (HMG) domain of the lymphoid enhancer-
binding factor 1 (LEF-1) gene or transcription 
factor [21].  

Among the BMP family, BMP4 is essential 
for normal tooth development. BMP4 is required 
to induce several target genes in the dental 
ectomesenchyme including MSX1. Any 
breakdown that occurs in these inductive 
interactions will arrest tooth development during 
the bud stage. The expression of BMP4 is 
initiated in the epithelium; however, the 
expression will then switch to the 
ectomesenchyme when inductive possibilities are 

acquired from the latter which suggests the ability 
of this molecule to induce its own expression in 
ectomesenchymal cells. The intense 
mesenchymal expression of BMP4 during the bud 
stage can be linked to the subsequent transfer of 
the inductive ability to the epithelium which leads 
to the formation of enamel knot [21], and later, 
the supernumerary tooth. Ectodin is a BMP-
antagonist which is widely expressed in 
developing tooth germ, but noticeably absent 
from enamel knots. Mice with lack of function of 
Ectodin displayed several anomalies including the 
presence of a supernumerary molar. Similarly, 
supernumerary tooth develops due to failure in 
normal Ectodin-mediated inhibition from the 
adjacent ectomesenchyme. Ectodin can inhibit 
WNT signalling and the correct modulation of this 
pathway is critical in determining the correct 
number of tooth formation [25]. Murashima-
Suginami et al., [26] reported that supernumerary 
teeth occurred due to increased BMP signalling in 
USAG-1-deficient mouse model. 

 
3.2 Fibroblast growth factor (FGF) 
In mammals, the FGF family comprises of 19 
growth factors (FGF 1–19). FGF plays a 
significant role in regulating the growth and 
morphogenesis of tooth germ. They regulate 
gene expression in ectomesenchyme and 
stimulate the epithelial cellular division and 
proliferation. These take place during the different 
stages of tooth development; the early phases of 
morphogenesis, early epithelial invagination 
which generates tooth bud, and during the 
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assessment of epithelial folds which generates 
the dental cuspids [27]. FGF4 and FGF9 in the 
primary enamel knot epithelium induce 
proliferation of both dental epithelium and 
ectomesenchyme, and then, later regulate the 
cuspid development, whereas FGF3 and FGF10 
in the underlying ectomesenchyme stimulate only 
cell division in dental epithelium to form the dental 
papillae. These signals are required for the 
expression of SHH in the primary enamel knot 
epithelium [25]. Study on mice showed that 
intracellular FGF antagonists such as Sprouty 
(SPRY) genes are produced in response to FGF 
signalling and modulate the transduction in target 
cells [28]. SPRY2 and SPRY4 are expressed in 
the epithelium and ectomesenchyme of 
developing tooth respectively. Any functional 
breakdown of these genes results in the 
formation of extra tooth [24].  
 
3.3 Sonic hedgehog (SHH) 
Early signalling interactions between oral 
epithelium and neural crest cells are envisaged to 
establish information pattern along the developing 
dental axis [19]. At this stage, high SHH 
expression acts as a mitogen that is essential for 
normal proliferation of tooth bud because it 
invaginates into the underlying ectomesenchyme 
[19]. Hedgehog signal transduction through SHH 
may influence tooth number. In the absence of 
normal SHH signal transduction, tooth 
development will be arrested. Appropriate 
restriction of SHH activity is important to ensure 
the correct number of tooth formation in the right 
positions [29]. Once the early tooth bud is formed, 
continuous and reiterative signalling between 
epithelium and ectomesenchyme enables further 
growth and morphogenesis, with the bud stage 
progressing into the cap and bell stage [30]. 
Therefore, dysregulation of SHH activity plays a 
key role in the formation of supernumerary tooth 
[25].  

SHH signals are mediated by the presence 
of primary cilia, that projects from the surface of 
all eukaryotic cells. Mutations in several genes 
including the ciliary protein IFT88/Polaris can 
result in changes in SHH signalling activity and 
the development of teeth in mice [25]. Ciliary 
protein IFT88/Polaris encodes essential 
functional components of the primary cilia. 
Besides, research [29], has shown that the 
upregulation of SHH activity in diastema 
mesenchyme can produce ectopic tooth in mutant 
mice which suggests that the SHH signalling may 
play a role in tooth position. Another link between 

SHH signal transduction and the presence of 
additional teeth has been provided by runt-related 
transcription factor (RUNX2) in mutant mice. 
RUNX2 is essential for the normal differentiation 
of bone-forming osteoblasts [31, 32]. In mice, 
RUNX2 is expressed in mesenchymal 
compartment of a tooth and a complete loss of 
function is associated with arrested tooth 
development; however, in the heterozygous 
mutant, rudimentary supernumerary tooth 
formation takes place lingual to the first molar 
tooth germ. RUNX2 transcription in the 
mesenchyme can repress SHH signalling in the 
epithelium. Thus, in the absence of adequate 
suppression of SHH transduction in these mice, 
additional teeth can develop in these regions [25]. 
Maisa Seppala and colleagues reported that SHH 
interacts at the molecular level with various other 
signalling pathways, Fgf and Wnt in particular, for 
normal progression of tooth development [33]. 

 
3.4 Wingless integrated (WNT) 
WNT proteins form a large family of secreted 
ligands that activate several intracellular 
signalling pathways [34]. WNT signals drive 
multiple stages involved in odontogenesis, from 
the initiation stage until the tooth differentiation, 
which are broadly expressed in oral as well as 
dental epithelium. WNT pathways work through 
several mediators. For instance, β-catenin 
stabilization and activation of LEF1 transcription 
factor activates the canonical signalling, crucial in 
normal tooth development [25]. LEF1 is 
necessary for tooth development to progress 
beyond bud stage and inhibition of this WNT 
signalling pathway arrests odontogenesis. 
Evidence also suggests that the normal 
regulation of this pathway is important to 
determine the correct number of tooth formation 
[25]. Overexpression of LEF1 in the oral 
epithelium in transgenic mice produced multiple 
invaginations in tooth forming regions [35].  

There is a firm link associated between 
unregulated WNT signalling and hyperdontia in 
humans. In the case of Gardner’s syndrome, an 
autosomal dominant disorder characterised by 
multiple adenomatous polyps of the colon and 
rectum, patients exhibited dental anomalies such 
as multiple supernumerary teeth, odontomas, and 
tooth impactions. The causative adenomatous 
polyposis coli (APC) tumour suppressor gene is a 
known inhibitor of WNT signalling [36]. The 
expression of ectodysplasin-A (EDA) gene is also 
regulated by WNT family of proteins [37]. If WNT 
signalling is blocked during the early bell stage 
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when secondary enamel knots form, the 
expression of EDA is reduced and the molars 
form with flattened cusps. Therefore, WNT 
signalling is important for the development of 
molar cusps [38], while, overexpression of EDA 
leads to the formation of supernumerary tooth. 
Thus, overexpression of canonical WNT 
signalling, through the loss of function of its 
inhibitors or by overexpression of its effectors, 
leads to the formation of supernumerary tooth 
[15]. Multiple teeth have also been seen in the 
molar field where β-catenin has been 
overexpressed in mice [36]. According to Bei [15], 
the number of teeth that can develop from the 
molar field appears to be restricted by WNT 
signalling. Supernumerary teeth and altered 
morphology of the molar crown have been 
reported in WNT10A null mice, though it results in 
tooth agenesis phenotype in humans [39]. 

4 OTHER SIGNALLING MOLECULES  

4.1 Tumour necrosis factor pathway  
Mutation in the gene encoding EDA ligand (e.g. 
EDA1) or EDA-receptor can result in disruption of 
EDA signalling [40], which then can lead to the 
formation of a component of the tumour necrosis 
factor (TNF) pathway. EDA signalling is active in 
organs that develop through signalling between 
epithelium and ectomesenchyme [25] [19]. The 
levels of EDA signalling are important to 
determine the tooth number. Overexpression of 
EDA1 splice variant in the oral epithelium of 
transgenic mice produces supernumerary 
premolar-like tooth. Therefore, signals from 
epithelium are essential for the initiation of tooth 
development. Deficiency of EDA signalling results 
in hypodontia, while, too much EDA can produce 
supernumerary tooth [12]. 
 
4.2 Runt-related transcription factor gene 
Runt-related transcription factor (RUNX2) is a 
principal gene involved in bone and tooth 
development [41]. It is an osteoblast-specific 
transcription factor which is necessary for the 
differentiation of pluripotent mesenchymal cells 
into osteoblasts [42]. The presence of RUNX2 in 
fully differentiated cells establishes the fact that 
RUNX2 is also required in maintaining the full 
function of cells, especially those in bones [42]. 
RUNX2 is also crucial in the formation of tooth. It 
is a key mesenchymal factor that influences tooth 
morphogenesis and the subsequent 
differentiation of ameloblasts, odontoblasts and 
osteoblasts lining the bone in the periodontal 
space [41, 43]. The length of RUNX2 is 220 kb 

and has eight exons belonging to the runt domain 
(RUNX) family of genes. The genes, namely 
RUNX1, -2 and -3, exhibit high amino acid 
homology. Their protein products form a 
heterodimer with the core-binding factor β (CBF-
β). CBF-β is required for the function of RUNX2 in 
skeletal development, which allosterically 
enhances DNA binding by RUNX proteins at runt 
homology domain (RHD). Moreover, it plays an 
important role in stabilizing the RUNX proteins 
against proteolytic degradation by the ubiquitin-
proteasome system [43]. Several studies [31, 44, 
45, 46, 47, 48, 49], on mutational analysis of 
RUNX2 in cleidocranial dysplasia (CCD) patients, 
have shown that mutations in RUNX2 gene are 
accountable for this syndrome [31]. CCD is a 
syndrome that affects the development of bone 
and tooth. The most common features of CCD 
include delayed closure of skull sutures, 
hypoplastic or aplastic clavicles and multiple 
supernumerary teeth [50]. RUNX2 gene 
dysfunction in tooth-forming cells may directly 
result in dental anomalies in CCD patients [43]. 
Therefore, these dental abnormalities suggest the 
important role that RUNX2 plays during 
odontogenesis [51]. Under normal condition, 
RUNX2 acts as a cell growth inhibitor in immature 
osteoblasts by supporting an exit from the cell 
cycle and promoting increased expression of 
osteoblast phenotype [52]. Hence, RUNX2 
regulates cell proliferation and may have a 
specific control of the dental lamina and the 
subsequent formation of successive dentitions 
[43]. In-vitro genetic studies have proved that 
deletion or deficiency of RUNX2 in knockout mice 
arrested the tooth development at the bud or 
early cap stage, and the osteoblasts lining bone 
in the periodontal space [41, 53]. In contrast, 
another study has reported that loss of function of 
RUNX2 gene would support the proliferation of 
dental lamina. For example, the reduced function 
of RUNX2 gene caused the development of 
supernumerary tooth in CCD patients [42].  

Studies showed that both RUNX2–/– and 
RUNX2+/– mice displayed lingual buds in front of 
upper molars, and these were much more 
prominent than those in the wild-type mice [54]. It 
was assumed that these buds represent the 
secondary dentition and that RUNX2 plays a role 
in inhibiting the formation of these buds [55]. It 
may appear contradictory that inhibition of 
RUNX2 gene function may arrest primary tooth 
development but stimulates the formation of 
secondary teeth [56]. Nevertheless, it is normal 
for the same gene to have different effects at 
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different developmental stages during the 
process of embryogenesis [54]. Thesleff [41], 
proposed that humans possess the potential to 
develop a third dentition which is normally 
inhibited by RUNX2 gene. This has been 
confirmed by Wang et al., [55] who showed that 
RUNX2 gene inhibits serial tooth formation [41, 
57]. Analysing the regulations, expressions and 
functions of RUNX2 gene, particularly in non-
syndromic patients with supernumerary tooth 
would enhance the understanding of tooth 
development in humans [41]. The lack of teeth, 
as well as formation of supernumerary teeth, 
were attributed to the mutations in AXIN2 and 
RUNX2, respectively, which occurred due to 
Wnt/β-catenin signalling modulation in dental 
mesenchyme [58]. They also reported that 
increased mesenchymal Wnt/β-catenin signalling 
can result in the inhibition of tooth initiation. 

5 RELEVANCE OF MOUSE MODEL TO 

HUMANS 

Jussila and Thesleff [59], based on the 
phenotypes of two syndromes, namely CCD and 
craniosynostosis syndrome, suggested that the 
potential for continued tooth replacement may be 
unlocked in humans. The presence of 
supernumerary teeth has been suggested to 
denote a third dentition in CCD and in 
craniosynostosis syndrome due to mutations in 
the transcription factor RUNX2 and the interleukin 
receptor IL11RA, respectively [60, 61]. However, 
in the mouse models of these syndromes, there 
are no supernumerary teeth; this could be 
attributed to the reason that the teeth in mouse 
are not normally replaced, and hence, unsuitable 
for studies involving tooth replacement [61, 62]. In 
mice, the number of teeth is lesser compared to 
humans and moreover, since mice have only a 
primary dentition, mouse models may not reflect 
the same to determine the cause of 
supernumerary teeth in humans [63]. Though in 
mouse models as well as in human syndromes, 
supernumerary teeth are induced by modulating 
signal pathways, this may not function in adult 
jaws, the reason being that these teeth are 
formed from the tissue associated with 
developing teeth which would not be present in 
the jaws of the adults [59]. D'Souza and Klein [64] 
reported that the use of multifaceted approaches 
involving mouse and human genetic researches 
were needed in order to reveal the precise 
aetiology of development of supernumerary tooth. 
Xi Lu and colleagues in their review reported that 
though the mouse dentitions were quite different 

from that of humans, exploration of the molecular 
mechanism in mouse was still useful. However, 
they suggested that animals such as 
chimpanzee, which have more similarities in the 
development patterns with humans, need to be 
investigated to identify the genetic basis of 
supernumerary teeth [65].  

6 CONCLUSIONS  

Recent studies have probed into the molecular 
mechanisms underlying tooth morphogenesis and 
differentiation. Although genetics may be 
implicated in the formation of supernumerary 
tooth, little is known about the initiation of tooth 
formation, the genetic regulation of successional 
teeth, as well as the underlying mechanisms 
involved in its formation. Nonetheless, a better 
understanding of the roles of these 
aforementioned signalling molecules, particularly 
WNT and RUNX2, will provide fundamental 
insights into the molecular genetics of 
supernumerary tooth in humans. This, in turn, 
may assist in future tooth regeneration and tooth 
engineering.  
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