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KETAKSAMAAN BOHR DAN PELANJUTAN

ABSTRAK

Jika f (z) = ∑
∞
n=0 anzn merupakan peta diri analisis pada unit cakera U , maka

d(∑∞
n=0 |anzn|, |a0|)≤ d(a0,∂U) bagi |z| ≤ 1/3, dengan d menandakan jarak Euklidan

dan ∂U bulatan unit. Pernyataan ini disebut sebagai Teorem Bohr, yang dibuktikan

oleh Harald Bohr pada tahun 1914. Tesis ini memberi tumpuan kepada pengitlakan

Teorem Bohr. Andaikan h sebagai fungsi univalen yang tertakrif pada U . Andaikan ju-

ga R(α,γ,h) sebagai kelas fungsi f analisis dalam U dengan f (z)+αz f ′(z)+γz2 f ′′(z)

yang tersubordinasi kepada h(z). Teorem Bohr bagi kelas R(α,γ,h) diperoleh untuk

h suatu fungsi cembung dan fungsi berbintang terhadap h(0). Teorem Bohr untuk ke-

las fungsi analisis yang memeta U ke domain cekung dan juga ke domain cakera unit

berliang diperoleh dalam bab yang seterusnya. Jejari klasik Bohr 1/3 ditunjukkan tak

berubah apabila jarak Euclidean digantikan sama ada dengan jarak sentuhan sfera atau

dengan jarak model cakera Poincaré. Tambahan lagi, teorem Bohr untuk set cembung

Euklidan ditunjukkan mempunyai analog dalam model cakera Poincaré. Akhirnya,

Teorem Bohr diperoleh untuk beberapa subkelas pemetaan harmonik dan logharmonik

yang tertakrif pada unit cakera U .

xii



BOHR’S INEQUALITY AND ITS EXTENSIONS

ABSTRACT

If f (z) = ∑
∞
n=0 anzn is an analytic self-map defined on the unit disk U , then

d(∑∞
n=0 |anzn|, |a0|)≤ d(a0,∂U) for |z| ≤ 1/3, where d denote the Euclidean distance

and ∂U the unit circle. The result is known as the Bohr’s theorem which was proved

by Harald Bohr in 1914. This thesis focuses on generalizing the Bohr’s theorem. Let

h be a univalent function defined on U . Also, let R(α,γ,h) be the class of functions

f analytic in U such that the differential f (z)+αz f ′(z)+ γz2 f ′′(z) is subordinate to

h(z). The Bohr’s theorems for the class R(α,γ,h) are proved for h being a convex

function and a starlike function with respect to h(0). The Bohr’s theorems for the class

of analytic functions mapping U into concave wedges and punctured unit disk are next

obtained in the following chapter. The classical Bohr radius 1/3 is shown to be in-

variant by replacing the Euclidean distance d with either the spherical chordal distance

or the distance in Poincaré disk model. Also, the Bohr’s theorem for any Euclidean

convex set is shown to have its analogous version in the Poincaré disk model. Finally,

the Bohr’s theorems are obtained for some subclasses of harmonic and logharmonic

mappings defined on the unit disk U .

xiii



CHAPTER 1

INTRODUCTION

1.1 Analytic Functions

Let C be the complex plane and U := {z ∈ C : |z|< 1} be the unit disk. Let f be a

function on U and z0 ∈U . We say that f is differentiable at z0 if the derivative of f at

z0 given by

f ′(z0) = lim
h→0

f (z0 +h)− f (z0)

h

exists. If f is differentiable at every point of U , then f is said to be analytic in U

since U is an open set. Let H(U) denote the class of all analytic functions defined on

U . By using the Cauchy integral formula, it can be shown that if f ∈ H(U), then f is

represented by the power series

f (z) =
∞

∑
n=0

anzn, z ∈U, (1.1)

where

an =
f (n)(0)

n!
=

1
2πi

∮
|ζ |=r

f (ζ )
ζ n+1 dζ , n≥ 0,

for any fixed r, 0 < r < 1.

Write U = ∪∞
n=0Kn where K0 = {0} and Kn = {z : |z| ≤ rn < 1} for n ≥ 1 where

(rn)n≥1 is a strictly increasing sequence of positive real numbers such that rn→ 1 as

n→ ∞. The space H(U) can be made into a complete metric space by defining the

1



metric on H(U) as

ρ( f ,g) =
∞

∑
n=1

1
2n
‖ f −g‖n

1+‖ f −g‖n
, f ,g ∈ H(U),

where ‖ f − g‖n = supz∈Kn
| f (z)− g(z)|. The topology on H(U) given by the metric

ρ is then equivalent to the topology of uniform convergence on compact subsets of U

(see [14, p. 221]). Finally, it follows from theorems of Weiestrass and Montel that this

space is complete [76, p. 38].

1.2 Univalent Functions

An analytic function f is said to be univalent in a domain D if f (z) 6= f (w) when-

ever z 6= w for all z,w ∈ D. In particular, f is locally univalent at a point z0 ∈ D if it

is univalent in some neighborhood of z0. The existence of a unique analytic function

which maps U conformally onto any simply connected domain strictly contained in C

follows from the Riemann Mapping Theorem:

Theorem 1.1. [14, p. 230] (see also [69, p. 11]) Given any simply connected domain

D which is not the whole plane, and a point z0 ∈ D, there exists a unique analytic

function f in D, normalized by the conditions f (z0) = 0 and f ′(z0) > 0, such that f

defines a one-to-one mapping of D onto the unit disk U.

As a consequence of this theorem, the study of analytic univalent functions on a

simply connected domain D can now be reduced to the study of analytic univalent

functions on the unit disk U .

The post-composition of a univalent function with the affine map αz+β defined

2



on C, α,β ∈ C with α 6= 0, is again a univalent function. Thus, the study of analytic

univalent functions can be further restricted to the class S which consists of all analytic

univalent functions f (z) = z+∑
∞
n=2 anzn, z ∈U . The Koebe function

k(z) =
z

(1− z)2 = z+
∞

∑
n=2

nzn, z ∈U

is a function in S which maps U conformally onto C\(−∞,−1/4]. Indeed, the Koebe

function and its rotations e−itk(eitz), t ∈ R, appear as extremal functions for various

research problems arisen in exploring the class S.

One such problem is to determine the maximum value of |an| in S for n≥ 2. This is

a well-defined problem as S is a compact subset of H(U) (see [76, Theorem 4.1]) and

the function J( f )= an defined on S has a maximum modulus, that is, there exists a f0 ∈

S such that |J( f )| ≤ |J( f0)| for all f (see [76, Theorem 4.2]). In 1916, Bieberbarch[33]

obtained the estimate for a2:

Theorem 1.2. (Bieberbarch Theorem)[69, Theorem 2.2] If f ∈ S, then |a2| ≤ 2, with

equality if and only if f is a rotation of the Koebe function.

In the same paper, Bieberbarch made a conjecture:

Theorem 1.3. (Bieberbarch Conjecture)[69, p. 37] If f ∈ S, then |an| ≤ n, with equal-

ity if and only if f is a rotation of the Koebe function.

The Bieberbarch theorem is applied to prove theorems regarding the class S such

as the Koebe one-quater theorem [69, Theorem 2.3], the distortion theorem [69, The-

orem 2.5] and the growth theorem [69, Theorem 2.6]. Consequently, the researchers

3



reckoned that the Bieberbarch conjecture is true because of the extremal role played

by Koebe function (and its rotations) in those theorems. A proof of Bieberbarch con-

jecture was eventually given by Louis de Branges [48] in 1985.

1.2.1 Starlike and Convex Functions

In the effort of validating the Bieberbarch Conjecture, researchers considered cer-

tain subclasses of S which are determined by natural geometric conditions.

A domain D is called a starlike domain with respect to w0 ∈D if tw+(1−t)w0 ∈D

whenever w ∈ D for all 0 ≤ t ≤ 1. A univalent function f in U is called a starlike

function with respect to w0 ∈ f (U) if f (U) is a starlike domain with respect to w0. In

particular, if w0 = 0, then f is known as a starlike function. Let S∗ denote the subclass

of S which consists of starlike functions. An analytic characterization of S∗ is given

as follows.

Theorem 1.4. [76, Theorem 2.2] A function f ∈ S∗ if and only if f ∈ S and

Re
(

z f ′(z)
f (z)

)
> 0, z ∈U.

Since S∗ contains the Koebe function and it is a compact subset of H(U) (see

[76, Theorem 4.1]), it can be proved that the Bieberbarch’s Conjecture is true for the

subclass S∗ (see [76, Theorem 2.4]).

Another kind of function which is closely related to the starlike function is the

convex function. A univalent function f in U is called a convex function if f (U) is a

4



convex domain, that is, tw1+(1−t)w2 ∈ f (U) for all w1,w2 ∈ f (U) and 0≤ t ≤ 1. Let

K denote the subclass of S which consists of convex functions. Similarly, an analytic

characterization of K is given by

Theorem 1.5. [76, Theorem 2.6] A function f ∈ K if and only if f ∈ S and

Re
(

1+
z f ′′(z)
f ′(z)

)
> 0, z ∈U.

A close connection between classes S∗ and K is shown in Alexander’s theorem

[69, Theorem 2.12] which states that f ∈ K if and only if z f ′(z) ∈ S∗. The relation is

then applied to deduce the coefficient bounds from the previously known coefficient

bounds of S∗ giving |an| ≤ 1, n≥ 2 for all f ∈ K.

1.3 Differential Subordinations

The famous Noshiro-Warschawski theorem states that if f is analytic in a convex

domain D and

Re f ′(z)> 0, z ∈U,

then f is univalent in D (see [69, Theorem 2.16]). This theorem suggests the character-

ization of an analytic function through its derivative which is a type of the differential

implications [95, p. 1]. Another example is the lemma proved by Miller, Mocanu and

Reade [96]: if α is real and p ∈ H(U) such that

Re
[

p(z)+α
zp′(z)
p(z)

]
> 0 for all z ∈U ,
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then Re p(z) > 0. Let H = {z ∈ C : Rez > 0} denote the right half-plane. In other

words, if

p(z)+α
zp′(z)
p(z)

∈H for all z ∈U ,

then p(U)⊆H .

Let H(U,U) denote the class of of all analytic self-map on U . Before making any

further progress, recall that for functions f ,g ∈ H(U), g is said to be subordinate to

f , written g ≺ f , if g = f ◦ φ for some φ ∈ H(U,U) with φ(0) = 0. Further, if f is

univalent in U , then g≺ f if g(0) = f (0) and g(U) ⊆ f (U). Miller and Mocanu [95,

p. 3] introduced the notion of differential subordination, which is the complex ana-

logue of differential inequality by replacing the real variable concept with the theory

of subordination.

Let Ω and ∆ be sets in C, let p ∈H(U) with p(0) = a for some constant a ∈C and

let ψ(r,s, t;z) : C3×U → C. Then the following relation

{
ψ(p(z),zp′(z),z2 p′′(z);z) : z ∈U

}
⊂Ω ⇒ p(U)⊂ ∆, (1.2)

is a general formulation of function characterization. There are three problems that can

be stated based on the inclusion (1.2).

(i) Given Ω and ∆, find the condition on ψ so that (1.2) holds. Such a ψ is called

an admissible function.

(ii) Given ψ and Ω, find the smallest ∆ so that (1.2) holds.

(iii) Given ψ and ∆, find the largest Ω so that (1.2) holds.
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If Ω is a simply connected domain and Ω 6= C, then the Riemann mapping the-

orem ensures the existence of a unique conformal mapping h of U onto Ω such that

h(0) = ψ(a,0,0;0). Further, if ψ(p(z),zp′(z),z2 p′′(z);z) ∈ H(U), then in terms of

subordination, (1.2) can be rewritten as

ψ(p(z),zp′(z),z2 p′′(z);z)≺ h(z)⇒ p(U)⊂ ∆.

If p is analytic in U , then p is called a solution of the (second-order) differential subor-

dination. Further, if q is conformal mapping of U onto ∆ such that q(0) = a, then (1.2)

becomes

ψ(p(z),zp′(z),z2 p′′(z);z)≺ h(z)⇒ p(z)≺ q(z),

and the univalent function q is called a dominant if p ≺ q for all solutions p. Also,

the best dominant q̃ is the dominant such that q̃ ≺ q for all dominants q (see [95, p.

16]). The monograph [61] by Milller and Mocanu and references therein are excellent

resources for the study on differential subordination.

1.4 Harmonic Mappings

Recall that a real-valued function u(x,y) : R2→ R, with continuous second partial

derivatives, is (real) harmonic if it satisfies Laplace’s equation:

∆x,y u =
∂ 2u
∂x2 +

∂ 2u
∂y2 = 0.

A complex-valued function f (x,y) = u(x,y)+ iv(x,y) is harmonic if both u and v are

(real) harmonic. Write z = x+ iy. The Wirtinger derivatives (differential operators) are
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defined as follows:

∂

∂ z
=

1
2

(
∂

∂x
− i

∂

∂y

)
and

∂

∂ z̄
=

1
2

(
∂

∂x
+ i

∂

∂y

)
.

Then for a complex-valued function f , f is harmonic if

fzz̄ =
∂ 2 f
∂ z∂ z̄

=
1
4

∆x,y f = 0.

If f is a complex-valued harmonic function defined on a simply connected domain

D⊂ C, then f can be expressed as

f (z) = h(z)+g(z) = a0 +
∞

∑
n=1

anzn +
∞

∑
m=1

bmzm,

where h and g are analytic in D. If D is the unit disk U and h(0) = f (0), then the

representation is unique and is called the canonical representation of f (see [66, p.

7]). The Jacobian of f is given by

J f (z) = |h′(z)|2−|g′(z)|2.

It is well known that (see [66, p. 2] or [92]) a complex-valued harmonic function f

is locally one-to-one in D if and only if J f is nonvanishing in D. Further, if J f > 0

in D then f is said to be locally univalent in D, that is, locally one-to-one and sense

preserving in D. A complex-valued harmonic function f is said to be univalent in D if

f is one-to-one and sense preserving in D.
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A complex-valued harmonic function can also be viewed as a solution to a partial

differential equation as stated in the following result:

Theorem 1.6. ([81, Lemma 2.1]) A complex valued function f defined in a domain

D is open, harmonic and sense preserving in D if and only if there is an a ∈ H(U,U)

such that f is a non-constant solution of

(
∂ f
∂ z

)
= a

∂ f
∂ z

.

The theory of complex-valued harmonic functions serves as an active research area

which can be seen from [11, 46, 66, 67, 68, 80, 81] as such mappings are closely related

to the theory of minimal surfaces (see [99, 100]).

Throughout this thesis, we shall use the term harmonic function to indicate a

complex-valued harmonic function.

1.5 Logharmonic Mappings

A logharmonic mapping defined in U is a solution of the nonlinear elliptic partial

differential equation

fz

f
= a

fz

f
,

where a ∈ H(U,U) is called the second dilatation function. Thus the Jacobian

J f = | fz|2 (1−|a|2)
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is positive and all non-constant logharmonic mappings are therefore sense-preserving

and open in U . In [44], the class of locally univalent logharmonic mappings is shown to

play an instrumental role in validating the Iwaniec conjecture involving the Beurling-

Ahlfors operator.

When f is a nonvanishing logharmonic mapping in U , it is known that f can be

expressed as

f (z) = h(z)g(z), (1.3)

where h and g are in H(U). In [94], Mao et al. introduced the Schwarzian derivative

for these nonvanishing logharmonic mappings. They established the Schwarz lemma

for this class and obtained two versions of Landau’s theorem. Denote by PLH the class

consisting of logharmonic mappings f in U of the form (1.3) satisfying Re f (z) > 0

for all z ∈U . The subclass PLH(M) defined by

PLH(M) =

{
f : f = h(z)g(z) ∈PLH ,

∣∣∣∣h(z)g(z)
−M

∣∣∣∣< M, M ≥ 1
}

was recently investigated in [101].

If f is a non-constant logharmonic mapping of U which vanishes only at z = 0,

then [2] f admits the representation

f (z) = zm|z|2βmh(z)g(z), (1.4)

where m is a nonnegative integer, Reβ >−1/2, and h and g are analytic functions on

U satisfying g(0) = 1 and h(0) 6= 0. The exponent β in (1.4) depends only on a(0) and
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can be expressed by

β = a(0)
1+a(0)

1−|a(0)|2
.

Note that f (0) 6= 0 if and only if m = 0, and that a univalent logharmonic mapping in

U vanishes at the origin if and only if m = 1, that is, f has the form

f (z) = z|z|2β h(z)g(z), z ∈U,

where Reβ >−1/2, 0 /∈ (hg)(U) and g(0) = 1. This class has been widely studied in

the works of [1, 2, 3, 4, 5]. In this case, it follows that F(ζ ) = log f (eζ ) are univalent

harmonic mappings of the half-plane {ζ : Reζ < 0}.

1.6 Spherical Chordal Distance

Let S denote the unit sphere {Z = (Z1,Z2,Z3) ∈ R3 : |Z|2 = 1} and N = (0,0,1)

be its north pole. Then every point in the complex plane C corresponds to an unique

point on S\{N} via stereographic projection from N. Let Lz(t) = (tx, ty,1− t) be the

line segment connecting N and z = x+ iy ∈ C with coordinate (x,y) in the xy-plane.

Note that Lz intersects S at a unique point Z indicating t satisfies the equation

(tx)2 +(ty)2 +(1− t)2 = 1.

Thus t = 2/(1+ |z|2) giving

Z =

(
2x

1+ |z|2
,

2y
1+ |z|2

,
|z|2−1
1+ |z|2

)
=

(
z+ z

1+ |z|2
,

z− z
i(1+ |z|2)

,
|z|2−1
1+ |z|2

)
.
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Discussions on conformality and circles preserving properties of the stereographic pro-

jection can be found in [64, Problem 75]. The Euclidean distance between points Z

and W on S is known as the spherical chordal distance between z and w, denoted by

λ (w,z), where

λ
2(Z,W ) = (Z1−W1)

2 +(Z2−W2)
2 +(Z3−W3)

2 = 2−2(Z1W1 +Z2W2 +Z3W3).

If Z and W are the stereographic projections of z and w in C respectively, then

Z1W1 +Z2W2 +Z3W3 =
(z+ z)(w+w)− (z− z)(w−w)+(|z|2−1)(|w|2−1)

(1+ |z|2)(1+ |w|2)

=
2(zw+ zw)+ |zw|2−|z|2−|w|2 +1

(1+ |z|2)(1+ |w|2)

=
2(zw+ zw)+(1+ |z|2)(1+ |w|2)−2|z|2−2|w|2

(1+ |z|2)(1+ |w|2)

=
(1+ |z|2)(1+ |w|2)−2|z−w|2

(1+ |z|2)(1+ |w|2)
.

Thus

λ (z,w) =
2|z−w|√

(1+ |z|2)(1+ |w|2)
.

1.7 Poincaré Disk Model

Recall the classical Schwarz’s Lemma:

Theorem 1.7. [60, p. 4](see also [85, Theorem 2.1]) Let f be an analytic self-map of

U. If f (0) = 0, then | f (z)| ≤ |z| for all z ∈U and | f ′(0)| ≤ 1. Further, if | f (z0)|= |z0|

for some z0 ∈U\{0}, or if | f ′(0)|= 1, then f (z) = eiθ z for some constant θ ∈ R.

A generalization of Schwarz’s Lemma was presented by Pick [106], which is
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known as the Schwarz-Pick Lemma:

Theorem 1.8. [60, p. 5](see also [85, Theorem 2.3]) If f is an analytic self-map of U,

then

(i) ∣∣∣∣∣ f (z)− f (w)

1− f (z) f (w)

∣∣∣∣∣≤
∣∣∣∣ z−w
1− zw

∣∣∣∣ for all z,w ∈U ;

(ii)

| f ′(z)|
1−| f (z)|2

≤ 1
1−|z|2

for all z,w ∈U .

Equality occurs in both (i) and (ii) if f is an conformal automorphism of U. If equality

holds in (i) for one pair of points z 6= w or if equality holds in (ii) at one point z, then

f is a conformal automorphism of U.

The unit disk U with the hyperbolic metric (see [31])

λU(z)|dz|= 2|dz|
1−|z|2

,

is known as the Poincaré disk model. By (ii), the metric λU(z)|dz| is invariant under

conformal automorphism of U and induces a distance function dU on U by

dU(z,w) = inf
γ

∫
γ

λU(z) |dz|

over all smooth curves γ in U joining z to w. Similar to the invariance of Euclidean

distance under rotation and translation in C, dU is invariant under conformal automor-
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phism of U . It was shown in [31, Theorem 2.2] that

dU(z,w) = log
1+ pU(z,w)
1− pU(z,w)

= 2tanh−1 pU(z,w),

where the pseudo-hyperbolic distance pU(z,w) is given by

pU(z,w) =
∣∣∣∣ z−w
1− zw

∣∣∣∣ .

1.8 Bohr’s inequality

A series of the form ∑
∞
n=1 ann−s is an ordinary Dirichlet series, where an,s ∈ C.

Now, if the series converges for some s0 = σ0 + it0, then it is convergent for all s =

σ + it with σ > σ0 (see [79, Theorem 1]). Thus, the maximal domain of convergence

is exactly the half-plane {s ∈ C : Res > σc} where

σc = infs∈C

{
Res :

∞

∑
n=1

an

ns < ∞

}
.

The term σc is then known as the the abscissa of convergence for ∑
∞
n=1 ann−s. Simi-

larly, the quantity

σa = inf
σ

{
σ is real :

∞

∑
n=1

|an|
nσ

< ∞

}
,

is called the the abscissa of absolute convergence for ∑
∞
n=1 ann−s. Finally, the abscissa

of uniform convergence for ∑
∞
n=1 ann−s is defined to be the unique real number σu such

that the Dirichlet series converges uniformly in the half-plane {s ∈ C : Res > σu}.

In 1913, Harald Bohr published the absolute convergence problem [39] which
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asked for the value of

S0 := sup(σa−σu),

where the supremum is taken over all ordinary Dirichlet series. In fact, this problem

can be reduced to a problem on power series in an infinite number of complex variables

[39, 38], which allowed Bohr to obtain the inequality S0 ≤ 1/2 [39, Satz X]. While

attempting the absolute convergence problem, Bohr returned to the one dimensional

case and proved the Bohr’s inequality (or Bohr’s theorem):

Theorem 1.9. ([40]) If f (z) = ∑
∞
n=0 anzn ∈ H(U,U), then

∞

∑
n=0
|anzn| ≤ 1 (1.5)

for |z| ≤ 1/6.

The value 1/6 is further improved independently by Riesz, Schur and Wiener to

1/3 which is optimal. Other proofs can also be found in [102, 112, 115]. Thus 1/3 is

then known as the Bohr radius of H(U,U), and the class H(U,U) is said to have Bohr

phenomenon. The notion of the Bohr phenomenon was first introduced by Bénéteau,

Dahlner and Khavinson [32] for a Banach space X of analytic functions on the disk U .

The Bohr’s inequality (1.5) can also be put in the form

d

(
∞

∑
n=0
|anzn| , | f (0)|

)
≤ d( f (0),∂U), (1.6)

where d is the Euclidean distance and ∂U the unit circle. Further, the Bohr’s inequality
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can be paraphrased in terms of the supremum norm, ‖ f‖∞:

∞

∑
n=0
|anzn| ≤ ‖ f‖∞ = sup

|z|<1
| f (z)|. (1.7)

1.9 About the thesis

1.9.1 Background - Bohr and distances

For an analytic function f defined in U of the form (1.1), define its associated

majorant function [36] by

M f (z) :=
∞

∑
n=0
|an|zn.

If g(z) = ∑
∞
n=0 bnzn is another analytic function on U , then

M( f +g)(|z|)≤M f (|z|)+Mg(|z|);

M( f g)(|z|)≤M f (|z|)Mg(|z|).
(1.8)

Recall the classical Bohr’s theorem with Bohr’s inequality of the form in (1.6):

Theorem 1.10. If f ∈ H(U,U), then

d (M f (|z|), | f (0)|)≤ d( f (0),∂U)

for |z| ≤ 1/3, where d is the Euclidean distance, and ∂U is the boundary of U. The

radius 1/3 is sharp.

The research on investigating the Bohr’s theorem in distance form was initiated by

Aizenberg. He proved that
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Theorem 1.11. [17, Theorem 2.1] Let f be an analytic function from U into a domain

G⊂ C. Further suppose the convex hull G̃ of G satisfies G̃ 6= C. Then

d(M f (|z|), | f (0)|)≤ d( f (0),∂ G̃)

for |z| ≤ 1/3. The value 1/3 is the best, provided there exists a point p ∈ C satisfying

p ∈ ∂ G̃∩∂G∩∂D for some disk D⊂ G.

The result covered the case where G is a convex domain and so extended the clas-

sical Bohr’s theorem where G = U . The domain G was further extended by Abu-

Muhanna [6] by using the technique of subordination. He applied both the Koebe

one-quarter theorem and de Branges’s theorem, or the Bieberbarch’s conjecture, to

prove

Theorem 1.12. [6, Theorem 1] Let f be a univalent (analytic and injective) function

on U. If g≺ f , then

d (Mg(|z|), |g(0)|)≤ d( f (0),∂ f (U))

for |z| ≤ 3− 2
√

2 ≈ 0.17157. The sharp radius 3− 2
√

2 is attained by the Koebe

function z/(1− z)2.

Recently, Abu-Muhanna and Ali [7] studied the class H(U,Ω) where Ω is a domain

exterior to a compact convex set and proved

Theorem 1.13. Suppose that the universal covering map from U into Ω has a univalent

logarithmic branch that maps U into the complement of a convex set. If 0 /∈Ω, 1 ∈ ∂Ω

17



and f ∈ H(U,Ω) with f (0)> 1, then for |z|< 3−2
√

2≈ 0.17157,

λ (M f (|z|), | f (0)|)≤ λ ( f (0),∂Ω) ,

where λ is the spherical chordal distance. In particular, if G is the closed unit disk,

then the sharp radius 1/3 is obtained.

Meanwhile, a link was established between the Bohr’s inequality for classes of

analytic functions H(U,G) and the hyperbolic metric done by Abu-Muhanna and Ali

[8] in the following year. That paper discussed the case where G is the right half-plane,

the slit region and the exterior of U .

We end this subsection by stating the Bohr’s inequality for bounded harmonic map-

pings as proved by Abu-Muhanna [6].

Theorem 1.14. [6, Theorem 2] Let f (z) = h(z)+ g(z) = ∑
∞
n=0 anzn +∑

∞
n=1 bnzn be a

complex-valued harmonic function on U. If | f (z)|< 1 for all z ∈U, then

∞

∑
n=1
|eiµan + e−iµbn||z|n ≤ d(|Reeiµa0|,∂U), for any µ ∈ R,

for |z| ≤ 1/3. The radius 1/3 is sharp.

1.9.2 Scope of thesis

The aim of the research work is to extend Theorem 1.10 by

(a) establishing the Bohr’s theorem for the class of analytic functions mapping U

into some non-convex domain D,
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(b) replacing the Euclidean distance with other distances, and

(c) extending the Bohr’s theorem to some subclasses of analytic functions as well as

classes of non-analytic functions.

The thesis is divided into six chapters. Briefly, Chapter 2 discusses the Bohr’s

theorem for the class R(α,γ,h) consisting of functions f which are analytic in U and

satisfying the differential subordination relation

f (z)+αz f ′(z)+ γz2 f ′′(z)≺ h(z), z ∈U, α ≥ γ ≥ 0.

The Bohr’s theorems are developed for the case when h is a convex function in U as

well as the case when h is starlike with respect to h(0). The results are proved by

applying the Koebe one-quarter theorem and the theory of differential subordination.

Simply note that if α = γ = 0, then the Bohr radii 1/3 (convex h) and 3−
√

2 (starlike

h) are the known radii in Theorem 1.11 and Theorem 1.12, respectively.

Chapter 3 consists of two sections. The first section studies the Bohr’s theorem for

the class of analytic functions mapping the unit disk U to concave-wedge domains

Wα =
{

w ∈ C : |argw|< απ

2

}
, 1≤ α ≤ 2.

The Bohr radius is obtained by using the technique of subordination and has the value

(2
1
α − 1)/(2

1
α + 1). In particular, if α = 1, then the Bohr radius is 1/3 as stated in

Theorem 1.11 and 3− 2
√

2 for α = 2 as stated in Theorem 1.12. The next section

focuses on the class of analytic functions f that maps the unit disk U to the punctured
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unit disk U0 = U\{0}. The development of the Bohr’s theorem depends heavily on

the coefficient estimate obtained by Koepf and Schmersau [86, p. 248] as well as the

Herglotz representation theorem for analytic functions [76, Corollary 3.6].

Chapter 4 focuses on developing the Bohr’s theorem in non-Euclidean geometry.

The classical Bohr’s theorem with respect to the spherical chordal distance λ defined

by

λ (z1,z2) =
|z1− z2|√

1+ |z1|2
√

1+ |z2|2
, z1,z2 ∈U,

is shown to have value 1/3. The first section also shows that by replacing the Eu-

clidean distance d with λ , it is possible to slightly improve the constraint in a Bohr’s

theorem obtained in earlier chapter. The hyperbolic Bohr’s theorem is presented in the

following section. By defining the hyperbolic unit disk Uh in the Poincaré disk model,

an analogous Bohr’s theorem for the class of analytic self-maps of Uh is obtained and

the (hyperbolic) Bohr radius has the value tanh(1/2)/3. Further, Theorem 1.11 has

its hyperbolic version in the Poincaré disk model and the Bohr radius is shown to be

tanh(1/2)/3, implying the invariance of Bohr radius in hyperbolic geometry. Addition-

ally, the main theorem is applied to obtain the Bohr-type theorem for other hyperbolic

regions.

Chapter 5 is devoted to studying the Bohr’s theorem in the class of non-analytic

functions. The Bohr’s theorem for the class of harmonic functions mapping U into a

bounded domain in C can be found in the first section. In particular, if the bounded

domain is taken to be U itself, then the Bohr’s theorem is reduced to Theorem 2 in

[6]. The Bohr’s theorem for the class of univalent, harmonic, orientation-preserving
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mappings of U into the convex wedge

W = {w ∈ C : |argw|< π/4}.

is established as well. Both the Bohr’s theorems are shown to have the same Bohr

radius 1/3. The final section deals with the construction of Bohr-type inequality for

the class of univalent logharmonic functions f of the form f (z) = zh(z)g(z) mapping

U onto a domain which is starlike with respect to the origin. The distortion theorem

for this class of functions can also be found in this section.

Chapter 6 serves as a survey of the work on developing Bohr’s theorem. There are

several directions in extending the classical Bohr’s theorem. Among those researches,

the n-dimensional Bohr radii study is very much well developed and the first Bohr

radius (see Chapter 6, Section 6.1) has its asymptotic value proved to be
√

logn/n in

[30] recently.
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CHAPTER 2

BOHR AND DIFFERENTIAL SUBORDINATIONS

In this chapter, we shall investigate a special class of differential subordination

R(α,γ,h). For α ≥ γ ≥ 0, and for a given univalent function h ∈ H(U), let

R(α,γ,h) :=
{

f ∈ H(U) : f (z)+αz f ′(z)+ γz2 f ′′(z)≺ h(z), z ∈U
}
.

The investigation of such functions f can be seen as an extension to the study of the

class

R(α,h) =
{

f ∈ H(U) : f ′(z)+αz f ′′(z)≺ h(z), z ∈U
}

or its variations for an appropriate function h. This class has been investigated in

several works, and more recently in [114, 116]. It was shown in Ali et. al [23] that

f (z) ≺ h(z) whenever f ∈ R(α,γ,h). The notion of convolution will be needed to

deduce the latter assertion.

For two functions f (z) = ∑
∞
n=0 anzn and g(z) = ∑

∞
n=0 bnzn in H(U), the Hadamard

product (or convolution) of f and g is the function f ∗g defined by

( f ∗g)(z) =
∞

∑
n=0

anbnzn.
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The following auxiliary function will be useful: let

φλ (z) =
∫ 1

0

dt
1− ztλ

=
∞

∑
n=0

zn

1+λn
.

From [110] it is known that φλ is convex in U provided Reλ ≥ 0.

Now for α ≥ γ ≥ 0, let

ν +µ = α− γ, µν = γ,

and

q(z) =
∫ 1

0

∫ 1

0
h(ztµsν)dtds = (φν ∗φµ)∗h(z) ∈ R(α,γ,h). (2.1)

Let S(h) := { f ∈H(U) : f ≺ h} denote the class of analytic functions on U subordinate

to h. In [23], Ali et. al showed that

f (z)≺ q(z)≺ h(z)

for every f ∈ R(α,γ,h). Thus R(α,γ,h)⊂ S(h).

2.1 R(α,γ,h) with convex h

The following result gives the Bohr radius for R(α,γ,h) with convex function h.

Theorem 2.1. Let f (z) = ∑
∞
n=0 anzn ∈ R(α,γ,h), and h ∈ S be convex. Then

d(M f (|z|), | f (0)|) =
∞

∑
n=1
|anzn| ≤ d(h(0),∂h(U))
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for all |z| ≤ rCV (α,γ), where rCV (α,γ) is the smallest positive root of the equation

(φµ ∗φν)(r)−1 =
∞

∑
n=1

1
(1+µn)(1+νn)

rn =
1
2
.

Further, this bound is sharp. An extremal case occurs when f (z) := q(z) as defined in

(2.1) and h(z) := z/(1− z).

Proof. Let F(z) = f (z)+αz f ′(z)+ γz2 f ′′(z)≺ h(z). Then

F(z) =
∞

∑
n=0

[1+αn+ γn(n−1)]anzn,

and

1
h′(0)

∞

∑
n=1

[1+αn+ γn(n−1)]anzn =
F(z)−F(0)

h′(0)
≺ h(z)−h(0)

h′(0)
.

It follows from [69, Theorem 6.4(i)] that

∣∣∣∣1+αn+ γn(n−1)
h′(0)

∣∣∣∣ |an| ≤ 1, n≥ 1.

Hence

|an| ≤
|h′(0)|

1+(µ +ν)n+µνn2 , n≥ 1,

which readily yields

∞

∑
n=1
|an|rn ≤

∞

∑
n=1

|h′(0)|
1+(µ +ν)n+µνn2 rn.

Since H(z) = h(z)−h(0)
h′(0) is a normalized convex function on U , it follows from [69,
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