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KAJIAN ANTIBAKTERIA DAN TINDAK BALAS SEL TERHADAP 

NANOPARTIKEL DAN TIUB NANO Ti02 

ABSTRAK 

Pada masa ini, sebahagian daripada masalah terbesar yang menjejaskan 

keseluruhan dunia adalah pencemaran udara dan juga mikrob bahan cemar. Setiap kali 

kita bemafas, kita mempertaruhkan kehidupan kita dengan menyedut bahan kimia 

berbahaya dan bahan cemar biologi yang telah merebak dengan cara mereka ke udara. 

Oleh itu dalam kerja-kerja ini , penggunaan bahan Ti02 fotomangkin untuk mengatasi 

pencemar udara dalaman teld1 dikaji. Larutan-nano Ti02 telah disediakan menggunakan 

kaedah sol-gel diikuti dengan proses peptitasi pada 85 °C selama 8 jam. Larutan-nano 

Ti02 dengan saiz zarah 3-6 nm dengan struktur anatase telah dihasilkan. Ti02 sahaja 

didapati tidak begitu berkesan dalam menunjukkan cirri-ciri antimikrobial. Oleh itu, 

kesan perak (Ag), zirkonium (Zr) dan perak- zirkonium (Ag-Zr) pada ciri-ciri 

antibakteria Ti02 di bawah cahaya pendarfluor telah dikaji. Kiraan koloni selepas 

dirawat dengan 0.1 Ag- Ti02 telah menunjukkan keupayaan bahan ini untuk membunuh 

bakteria lebih daripada 99.99 %. Kuasa pembunuhan merosot dalam urutan yang 

berikut: Ag-Ti02 > Ag-Zr-Ti02 > Zr-Ti02 > Ti02. Pemerhatian TEM dan SEM 

menunjukkan bahawa bakteria Gram-positif telah mudah reput berbanding dengan 

bakteria Gram-negatif. Nanopartikel Ag- Ti02 menunjukkan kesan tidak toksik terhadap 

CCD-18Co bahagian sel fibroblast. Selain daripada Ti02 dalam bentuk nanopartikel, 

kerja kajian telah dilanjutkan kepada struktur nanotubular. Tatasusunan Ti02 tiub nano 

telah dibentuk oleh kaedah penganodan dengan voltan berbeza-beza dari 20, 40 dan 60 

V. Diameter lebih besar dan tiub nano lebih panjang kemudiannya diresap ke dalam 

larutan perak untuk membentuk tiub nano Ag- Ti02. Ujian aktiviti antimikrob terhadap 

E. coli menunjukkan bahawa permukaan tiub nano Ag-Ti02 berkurangan 95.7 % 

xvii 



bakteria lekatan berbanding Ti02 tulen. Dalam kajian vitro menunjukkan bahawa perak 

yang telah dimuatkan ke dalc.m tiub nano Ti02 tidak toksik untuk sel hFOB 1.19. 
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ANTIBACTERIAL AND CELL INTERACTION OF Ti02 BASED 

NANOPARTICLES AND NANOTUBES 

ABSTRACT 

Currently, some of the major problems affecting the world are air pollution as 

well as microbial contamim·tion. Every time we breathe, we are risking our lives by 

inhaling dangerous chemicals and biological contaminants that have found their way 

into the air. In this work, the use of Ti02 photocatalyst materials to overcome indoor air 

pollutants is investigated. The Ti02 nanosolution was prepared by using sol-gel method 

followed by the peptization process at 85 °C for 8 hours. Ti02 nanosolution with a 

particle size of 3-6 nm with an anatase structure was produced. Ti02 alone was found to 

be not very effective in demonstrating the antimicrobial property. Therefore, the effect 

of silver (Ag), zirconium (Zr) and silver-zirconium (Ag-Zr) on antibacterial properties 

of TiOz under fluorescent light was studied. The colony count of the agar with 0.1 Ag­

TiOz has indicated the capability of this material to kill bacteria by more than 99.99%. 

The killing power deteriorated in the following order: Ag-Ti02 > Ag-Zr-Ti02 > Zr­

TiOz > Ti02• TEM and SEM observations showed that the Gram-positive bacteria were 

easily decomposed compared to the Gram-negative bacteria. Ag-Ti02 nanoparticles 

showed a non-toxic effect towards CCD-18Co fibroblast cell lines. Apart from Ti02 in 

nanoparticle form, the work was extended to the nanotubular structure. Ti02 nanotube 

arrays were formed by the anodization method with a voltage which varied from 20, 40 

and 60 V. Larger diameters and longer nanotubes were then impregnated in the silver 

solution to form Ag-Ti02 nanotubes. An antimicrobial activity test against E. coli 

demonstrated that the Ag-Ti02 nanotube surface significantly reduced 95.7 % of 

bacteria adhesion as compared to pure Ti02• The in vitro study showed that the silver 

loaded Ti02 nanotubes were not cytotoxic for hFOB 1.19 cells. 
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CHAPTER! 

INTRODUCTION 

1.1 Introduction 

This research was conducted to evaluate the antibacterial property and the 

toxicity of Ti02 nanoparticles and nanotubes. Ti02 nanoparticles were synthesized 

using the sol gel process and Ti02 nanotubes were produced using the anodization 

method. The synthesis of Ti.J2, Zr incorporated Ti02 (Zr-Ti02), Ag incorporated Ti02 

(Ag-Ti02) and silver-zirconium (Ag-Zr) incorporated Ti02 (Ag-Zr-Ti02) nanoparticles 

were produced using the sol gel method. This process was performed to produce a 

milky white colloid Ti02 followed by peptization to disperse the white colloid into nano 

sized particles (3-6 nm). The optimization process was carried out by studying the 

performance efficiency of the antibacterial activity. From these synthesized 

nanoparticles, Ag-Ti02 with an optimum formulation was selected to be loaded in 

nanotubular form using the wet impregnation process. The antimicrobial activity and the 

toxicity of Ti02 nanoparticles and nanotubes were investigated. The presence of cation 

loading (Ag or Zr) in Ti02 is believed to induce a photocatalytic property that can yield 

high reactivity under fluorescent light that leads to pathogenic bacteria deactivation. 

1.2 Biological contaminants 

Microorganisms are believed to have existed billions of years ago and they give 

a large contribution to the world ecosystem. Microorganisms such as photosynthetic 

bacteria consume carbon dioxide and produce oxygen, sustaining the oxygen 

composition in the atmosphere. However, there are some groups of microorganisms 

such as E. coli, S. aureus, B. cereus, A. niger and other pathogenic bacteria that are 

1 



infectious and can cause diseases. According to the fact sheet updated by the World 

Health Organization (WHO) in 2011, 2 million out of 59 million premature deaths each 

year are attributed to polluted indoor air. In tropical countries like Singapore and 

Malaysia, warm and humid climate aggravates the growth of indoor biological 

contaminants. The use of air conditioners, humidifiers and unvented heaters increases 

moisture over interior surfaces (EPA, 1995). Hence, this encourages the growth of 

biological pollutions such as allergens and may cause asthma, cough, mumps, rubella, 

pneumonia and influenza (Jacoby et a/., 1998). Moreover, more than 60 bacteria, 

viruses and fungi are documented as infectious airborne pathogens (Jacoby et al., 1998). 

Hence, the control of indoor air quality through economical and effective inactivation of 

microorganisms is required. 

In addition, bacterial infection is also known as a common problem after 

orthopedic implant surgery. In USA, 1%-1.5% of all total hip and knee arthroplasties 

(THAs and TK.As, respectively) implantations suffer from the risk of infection 

(Stanton, 201 0). Although the chance of infection is rare in these procedures, the 

problem is significant as periprosthetic implant infections cost about US$70,000 per 

episode and is the most common cause of revision surgery in all TK.As (25%), the third 

commonest cause in all THAs (15%), and the commonest reason for the removal of all 

TK.As (79%) and THAs (74%) (Stanton, 2010, Bozic eta/., 2010, Bozic eta/., 2009). If 

not prevented, bacterial infection can result in serious and life threatening conditions 

such as osteomyelitis and ir.1plant loosening (Popat eta/., 2007a). Acute infection or 

chronic osteomyelitis develops in as many as 5%-33% of implant surgeries despite the 

use of strict antiseptic operative procedures (Hendriks eta/., 2004). 

2 



1.3 Problem statement 

Several methods have been used to kill bacteria. Many control methods are used 

to reduce indoor bio-pollutants through purging (using outside air), filtering and 

isolating microbiological species using pressurization control and ultraviolet germicidal 

irradiation (UVGI). The recommendation of introducing outside air to purge the 

contaminant indoors only dilute the concentration of microorganisms without 

destroying the biological species (Ashrae, 1997). Pressurization control is commonly 

used in biohazard facilities and isolation rooms to prevent the migration of microbes 

from one area to another but inherent costs and operational instability at normal air flow 

rates limit its applications for common indoor environments (e.g., residential buildings) 

(Kowalski and Bahnfleth, 1998). 

Controlled antibiotics released from biomaterials can prevent microbial infection 

but there is concern about microbial resistance to antibiotics including S. aureus and S. 

epidermis (Puckett et al., 2010). The prevention of bacteria adhesion without antibiotics 

is one of the best ways to reduce orthopedic implant application. Ultraviolet (UV) 

radiation has received great attention to reduce indoor bio-pollutants and prevent 

biomaterial-related infections. UV disinfection can inactivate protozoa, bacteria and 

viruses (Hijnen et al., 2006). UV may impair bacterial adhesion in implant application 

but will not compromise the good response of human bone-forming cells to implant 

(Gallardo-Moreno et al., 2009). Although UV radiation shows the highest efficiency in 

killing microorganisms, its adverse effects to the human body is critical and inevitable 

(Zhang and Sun, 2004). The short-term over exposure of human skin and eyes to 254 

nm UV -C can lead to erythema or reddening of the skin, photokeratitis/inflammation of 

3 



the cornea and conjunctivitis/inflammation of the conjunctiva (Green and Scarpino, 

2002). 

Ti02 photocatalysis is capable of inactivating microbial toxins (e.g. 

lipopolysaccharide endotoxin, brevetoxins, microcystins) but only under UV irradiation 

(Foster et a/., 2011) as shown in Table 1.1. The bactericidal efficiency of photocatalysis 

using UV and Ti02 has also been tested in the treatment of pathogenic microbes 

including bacteria, fungi, viruses and cancer cells (Sunada et a/., 2003, Rincon and 

Pulgarin, 2003, Foster et al., 2011, Rahim et a/., 2012) but the use of ultraviolet for 

effective photocatalysis gives adverse effects to the human body (Prasad eta/., 2009, 

Wu eta/., 2010). Using fluorescent light can be an attractive and alternative light source 

since indoor environments, especially hospitals and office premises, are commonly 

illuminated using fluorescent light. Ti02 coupled with fluorescent light has a vast 

potential for indoor air disinfection due to low power consumption, less frequent 

maintenance requirement and compatibility with the heating ventilation system (Yang 

and Wang, 2008). 

Ti02 is incorporated with other metals so that it can detoxify microorganisms 

under fluorescent light effectively. Ag is selected because silver in ionic or nanoparticle 

form has a high antimicrobial activity thus, it can enhance the charge separation 

efficiently. Its Fermi level is lower than Ti02 which results in imposing empty states in 

between the bandgap. More importantly, Ag is an antibacterial agent by nature (Baker et 

a/., 2005). Most studies reported on the toxicity of Ti02 nanoparticles but not many 

study focussed on the toxicity of Ag-Ti02• 
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Zr has the potential to deactivate bacteria because many reports have shown that 

Zr-doped titanium solid solutions can enhance photocatalytic activity in visible light. Zr 

is selected because it has a slightly greater ionic size than Ti4
+. Zr will substitute Ti4

+ 

inducing lattice strain which later forces the oxygen to escape from its lattice giving an 

empty state to prolong the recombination lifetime. Zr-Ti02 has the potential to kill 

bacteria but only under sunlight (Green and Scarpino, 2002). The antibacterial strength 

of Zr incorporated Ti02 nanoparticles under fluorescent light has not been widely 

studied. Therefore, the effect of increasing the amount of Zr on antibacterial strength 

will be studied. For Ag-Zr-Ti02 composition, only one work has been reported (Moafi 

eta/., 2011). However, it only focused on the performance of photocatalytic activity, 

not the antibacterial properties. Interestingly, there no work on the toxicity of Ag-Zr­

Ti02 has been reported. Table 1.1 shows the reports on the photocatalytic, antibacterial 

and toxicity studies of each modified Ti02• 

Ti02 nanoparticles are still far from becoming a potential candidate for 

bactericidal application due to the effects of toxicity problems. Some reports have found 

that Ti02 nanoparticles are toxic to human health (Oberd<:>rster eta/., 1994, Oberd<:>rster, 

2000, Zhao et a/., 2009, Zhao and Castranova, 2011). However, there are claim that 

Ti02 is not toxic (Karlsson et al., 2008, Ramires et al., 2001 ). Dechsakulthom et a/. 

(2007) have shown the toxic effects of Ti02 NP to human skin fibroblasts during 24 

hours exposure to NPs of less than 150 nm diameter. Similarly Peter eta/. (2004), Kang 

eta/. (2011) and Yin et al. (::012) have shown the toxic effects for nanoparticles that are 

less than 100 nm in size. Gurr et al. (2005) reported that TiOz nanoparticles that are less 

than 200 nm were not claimed as toxic compared to nanoparticles which had diameters 
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of 10-20 nm. Research has shown that smaller nanoparticles may exert a higher degree 

of toxicity (Hund-Rink and Simon 2006; Franklin et al., 2007). 

Table 1.1 Summary on the properties of each modified Ti02. 

Studies TiOz Ag-TiOz Zr-TiOz Ag-Zr-TiOz 
Good under UV Improve Good Very good 
light photocatalytic photocatalyst photocatalyst 
(Prasad et a/., activity under under visible under visible 
2009, Kim et al., visible light. light light 

Photocatalyst 2008b, (Hou et al., 2009, (Stengl et al., (Moafi et a/., 
Markowska- Grandcolas et al., 2008, Ragai and 2011) 
Szczupak et al., 2011, Ashkarran Yacoub, 2013, 
2011) et al., 2011) Moafi et al., 

2011) 
Good under UV Excellent Good bacterial Not reported 
light antibacterial strength under 
(Amin et al., strength under sunlight 
2009, Swetha et visible light (Green and 

Antibacterial al., 2010b, (Grandcolas et Scarpino, 2002) 
Foster eta/., a/., 2011, 
2011) Ashkarran et al., No reported 

2011, Gupta et under visible 
al., 2013) light. 

Toxic if size less Can kill HeLa Not reported Not reported 
lOOnm cells (cancer cell) 
(DechsakuW:10m by 100% 

Toxicity et al., 2007, 
Kang et al., (Jacoby et al., 
2011, Yin et al., 1998) 
2012) 

The objective of this research is to improve the antibacterial properties of Ti02 

nanoparticles and nanotubes that can kill bacteria at a faster killing rate than what has 

been reported in previous works. In addition, the utilization of Ti02 nanoparticles with 

the size of less than 6 nm must be proven to be harmless to human bodies. Therefore, 

this study is also coupled with a toxicity test to investigate Ti02 nanoparticles and 

nanotubes that do not have undesirable side effects to human health. 
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1.4 Objectives 

i. To synthesize Ti02, Zr-Ti02, Ag-Ti02, and Ag-Zr-Ti02 nanoparticles using the 

sol gel method. 

ii. To study the formation of Ti02 nanotubes via anodization followed by the wet 

impregnation method to form doped-nanotubes from the optimized formulation 

in objective (i). 

m. To investigate the antibacterial activity and toxicity of cation-Ti02 nanoparticles 

and nanotubes under fluorescent light. 

1.5 Scope ofwork 

This project is divided into two categories in order to achieve the objectives. The 

first is the Ti02 nanoparticles and the second part is the Ti02 nanotubes. Ti02 

nanoparticles were synthesized using the sol gel approach based on a preliminary study 

(Ibrahim and Sreekantan, 201 0). Zr-Ti02, Ag-Ti02, and Ag-Zr-Ti02 were also 

synthesized. The optimization process was carried out by studying the performance 

efficiency of the antibacterial activity of Ag and Zr that were incorporated into Ti02 

under fluorescent light. The structural and optical properties of the best optimized 

samples were characterized using PL, RAMAN, XPS, XRD, TEM and SEM. The 

sample was then selected to the study of the toxicity test. Ti02 nanotubes were 

synthesized using the anodization method to obtain get highly ordered Ti02 

nanostructures. A set of experiments was conducted by adapting the optimum condition 

and controlled dimensional features for Ti02 nanotubes formation based on preliminary 

studies (Lai et a/., 2012). From these synthesized nanoparticles, Ag-Ti02 with the 

optimum formulation was selected to be loaded in nanotubular form. Antimicrobial 

activity test against E. coli was conducted. The structural properties were characterized 
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using XRD, EDX, and SEM analysis. The toxicity study of the silver loaded nanotubes 

was also investigated; it was found that they are safe to be used on human beings. The 

project overview is summarized in Figure 1.1. 

Synthesis ofTi02 nanoparticles 

nanoparticles 
obtained? 

~ t Yes 

Antibacterial study under 
fluorescent light 

Synthesis ofTi02 nanotubes 

Antibacterial study under 
fluorescent light 

+ • r--------'--------,optimizedr---------<--------, 
Synthesis of Ag-Ti02, Zr-Ti02, 

Ag-Zr-Ti02 

PL, RAMAN, XPS, XRD, TEM, 
SEM 

Cytotoxicity test 

Synthesis of Ag-Ti02 

XRD, EDX, SEM 

Cytotoxicity test 

Figure 1.1 : Flow chart of the project. 
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2.1 Introduction 

CHAPTER2 

LITERATURE REVIEW 

This chapter covers two main topics; the first is on Ti02 nanoparticles and the 

second is on Ti02 nanotubes. Ti02 nanoparticles are used for indoor air quality 

problems and Ti02 nanotubes are used for implant applications. The properties of TiOz 

nanoparticles and nanotubes that are related to photocatalytic activity and bacterial 

effects are discussed in this chapter. The toxicity effects are also evaluated. 

2.2 Indoor air pollution 

Indoor air pollution is recognized as a public health problem as most people 

spend 80%-90% of their time indoors and in enclosed work areas (Society, 1990). 

According to research, each individual inhales about 20,000 liters of air every day. 

Every time we breathe, we are risking our lives by inhaling dangerous chemicals and 

biological contaminants that have found their way into the air. Microorganisms are 

responsible for irritant responses, infectious diseases, respiratory problems and 

hypersensitive reactions (Green and Scarpino, 2002). Furthermore, the contamination of 

indoor air by microbial pollutants may be responsible for the sick-building syndrome 

(SBS) and the building-related syndrome (BRI) (Bholah and Subratty, 2002). For 

example, airborne transmission of Mycobacterium tuberculosis and other infectious 

agents in the indoor environments are hazardous (Xu et a/., 2003). As the world 

becomes industrialized and its population grows rapidly, the aforementioned problems 

have intensified. Since indo,x air pollution is one of the top five environmental risks 
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(USEP A, 1995), the economical and effective prevention of disease spreading 

microorganisms indoors are needed. 

2.3 Implant-related infections 

According to the Canadian Joint Replacement Registry (CJRR) 2008-2009 

annual report, the number of hospitalizations for hip and knee replacement has been 

increasing steadily in the past 10 years (CJRR, 2009). In USA, it was estimated that the 

number of annual primary total knee replacements would increase from 450,400 in 2005 

to 3.48 million by 2030, compared with the growth of the annual primary total hip 

replacements from 208,600 in 2005 to 572,100 by 2030 (American Academy of 

Orthopaedic Surgeons). After surgery, various complications occur such as dislocation, 

loosening and prosthetic-related infections. Despite considerable progress in the 

prevention and the treatment of implant-associated infections, the number of patients 

with such infections is rising due to the lifelong risk of bacterial seeding on the implant 

(Trampuz and Widmer, 2006). Widmer et al. (2001) has reported that the infection rates 

after revision surgery are usually higher (5%-40%) than after primary replacement. Due 

to the rise of the percentage of patients aged over 65 years in industrialized countries, 

the number of patients requiring implants will continue to grow, as well as the risk for 

orthopedic device-related infections (ODRis) (Widmer, 2001). Considering the huge 

population of patients with orthopedic implants and the serious consequences, this 

problem should not be underestimated. 

2.4 Photocatalyst 

In 1995, the photocatalyst was discovered in Japan. When a photocatalyst 

material is exposed to light, it absorbs photon energy and causes various chemical 
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reactions. In recent years, semiconductor photocatalysis has emerged as one of the most 

promising technologies because it represents an easy way to utilize the energy of either 

natural sunlight or artificial indoor illumination and is abundantly available everywhere 

in the world (Jiang et al., 2012). The potential applications of photocatalysis are found 

mainly in the following fields: (i) photolysis of water to yield hydrogen fuel; (ii) 

photodecomposition or photooxidization of hazardous substances; (iii) artificial 

photosynthesis; (iv) photoinduced superhydrophilicity; and (v) photoelectrochemical 

conversion (Tong et al., 2012). Various n-type semiconductor metal oxides such as 

Ti02, ZnO, CdS and Sn02 have been tested for the photocatalytic oxidation of organic 

pollutants in water and air. Zinc oxide self-deactivates by forming Zn2
+ ions when it 

reacts with photogenerated holes in the water which can dissolve into the solution (Kuo 

and Shueh, 2003, Jung et al., 2005). CdS also showed the same photocorrosion effect in 

solution by releasing toxic Cd2
+ ions in an aqueous media (Kuo and Shueh, 2003, Zhang 

et al., 2006). Tin oxide has a wider band gap of 3.5-4.2 eV (350-300 nm), which utilizes 

a lesser fraction of UV light and thus, has a lower relative photoactivity (Koumoto et 

al., 1999). Among the semiconductors reported, Ti02 has generally exhibited the 

highest photocatalytic activity in a wider range of environmental applications. Ti02 

offers great promise for indoor air purification and has a positive impact on biomedical 

applications (Hyun Kim et al., 2006, Popat et al., 2007b). Therefore, Ti02 was chosen 

to be used in this research. 

2.4.1 Properties of Ti02 

Ti02 is a semiconductor with high photochemical stability, low cost, good 

photoactivity, and nontoxicity (Kment et al., 2010, Markowska-Szczupak et al., 2011). 

It is chemically inert and thermally stable, non-flammable and non-toxic. Bioactivity 
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has become a desired property of Ti02 in the development of biomaterials (Brohede et 

a/., 2009, Piskounova eta/., 2009, Forsgren eta/., 2011). Titanium metals and alloys, 

with the anatase phase, have good bioactive properties (Kokubo, 1996, Forsgren eta/., 

2007, Brohede et a/., 2009, Grigal et a/., 2012). Titanium is one of the few 

biocompatible metals which can osseointegrate. Moreover, Ti02 is reputed to be toxic to 

both Gram-negative and Gram-positive bacteria (Adams eta/., 2006). Table 2.1 shows 

some of the physical and structural properties of Ti02• Ti02 exists in three different 

phases: anatase, rutile and brookite. 

Table 2.1: Physical and structural properties of anatase and rutile structure of 
Ti02 (Sherub eta/., 2008). 

Property Anatase Rutle 

Molecular weight (glmol) 79.88 79.88 

Melting point eq 1825 1825 

Boiling point ec) 2500-3000 2500-3000 

Specific gravity 3.9 4.0 

Light absorption (nm) A.:::; 385 nm A.:s;415mn 

Mohr's Hardness 5.5 6.5 to 7 

Refractive index 2.55 2.75 

Dielectric constant 31 114 

Crystal structure Tetragonal Tetragonal 

Lattice Constants(N) 
a= 3.784 a= 4.5936 
c= 9.515 c= 2.9587 

Density (g/cm3
) 3.79 4.13 

Ti-0 bond length (N) 
1.937 (4) 1.949 (4) 
1.965 (2) 1.980 (2) 

Electronic properties such as band gap play an important role in the 

photocatalyst performance. The anatase phase of Ti02 has a higher band gap (3.2 eV) 

compared to rutile (3.0 eV) and brookite. Anatase Ti02 is more popular as a 
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photocatalyst although rutile has been found to be effective under certain specific 

circumstances (Sherub et a/., 2008). In this work, Ti02 is synthesized into Ti02 

nanoparticles and nanotubes for two different applications. In the following section, the 

reasons for choosing Ti02 nanoparticles and nanotubes are discussed. 

2.4.2 Ti02 nanoparticles 

Kato et al. ( 1964) studied the potocatalytic oxidation of tetralin using Ti02 

suspension, and this was followed by McLintock (1965). Since then, the photocatalytic 

properties of Ti02 have been investigated extensively and have been developed for 

many successful applications such as the decontamination and the disinfection of water 

and air (Peral et al., 1997, Crittenden et al., 1997, Gaya and Abdullah, 2008, Swetha et 

al., 2010b), conversion of water to hydrogen and oxygen (Akira and Kenichi, 1972, 

Maeda, 2011), and antimicrobial biomedical materials (Monteiro et al., 2009, Rupp et 

al., 2010, Markowska-Szczupak et al., 2011). The nanoparticles have good electrical, 

optical and magnetic properties that are different from their bulk counterparts. Various 

investigations have established that Ti02 in the form of nanoparticles is more effective 

as a photocatalyst. The control ofthe size, shape, and structure of the colloidal precursor 

is an important factor in determining the properties of the final material. Recently, 

several techniques have been reported for synthesizing Ti02 nanoparticles through 

controlled nucleation and growth processes in dilute Ti (IV) solutions. Among these 

techniques are the sol-gel, hydrothermal and peptization methods with the advantage of 

low reaction temperature. 

Ti02 photocatalysts have been investigated extensively for killing or the growth 

inhibition of bacteria (Fu et al., 2005). Reactive oxygen species (ROS) generated can 

13 



oxidize organic compounds on the Ti02 surface, resulting in the death of 

microorganisms in the presence of UV light or loading with other metals. Many 

investigations have reported that the addition of noble metals such as gold and silver 

may enhance the overall photoefficiency of Ti02• However, the selection of the best 

noble metal and optimizing the content of dopants incorporated into Ti02 is very 

important for practical applications. It is believed that loading the optimum amount of 

cationic dopants could extend the lifetimes of charge carriers and suppress the 

recombination losses effectively. A variety of noble metal doped Ti02 have been 

synthesized to improve the efficiency of the photocatalytic activity of Ti02 in killing 

bacteria and this will be discussed in section 2.4.4. 

In order to improve the immigration of photo-induced charge carriers, 

considerable effort has been exerted to improve the antibacterial and cell viability 

performance under fluorescent light. Ag-Ti02 nanoparticles have gained much attention 

and have become a favourite study among researchers. The best properties of Ag-Ti02 

nanoparticles gained from this research primarily depend on the nature of the 

preparation method and the role optimum Ag content incorporated into TiOz. Therefore, 

in subsequent sections, the basic principle, material selection and the work done by 

various researchers with regards to Ti02, Ag-Ti02 and other dopants applied in air 

purification applications will be reviewed. The relationship between Ag on TiOz 

photocatalysis in deactivating bacteria remains unclear, hence the mechanism of the 

reactions will also be discussed. The toxicity studies of Ti02 nanoparticles are still a 

matter of debate especially when the size of the nanoparticles is below 50 nm. 

Concerning the toxic effects of Ti02 nanoparticles to human beings, the size of the 

nanoparticles synthesized by other researchers will also be reviewed. 
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2.4.3 Ti02 nanotubes 

Particulate Ti02 film has been used since the discovery of PEC (photo 

electrochemical water splitting) (Fujishima and Honda, 1972). Ti02 has been widely 

used in medical applications (Popat eta/., 2007a, Aninwene et al., 2008, Vasilev et al., 

2010). Ti02 with a well-aligned nanotubular structure provides unique electronic 

properties such as high e- mobility, high specific area, excellent ability to absorb hv 

(photon energy) and high mechanical strength (Roy et a/., 2011). It is also light, 

corrosion resistant, strong and suitable for medical implant applications (Oh and Jin, 

2006). 

The , fluoride-based electrolyte has received great interest because of its 

controllable, reproducible results as well as the simple process (Kim et al., 2008a). 

Zwilling eta/. ( 1999) first reported on the fabrication of a self-ordered Ti02 nanotubular 

structure by anodizing Ti in electrolytes containing fluoride ions. By using nonaqueous 

electrolytes (ethylene glycol), ultrahigh aspect ratio (length/diameter) nanotubes were 

achieved. It is well known that the cellular response is strongly affected by the surface 

morphology. It has also been reported that the natural oxide layer formed on the surface 

plays a critical role in biocompatibility (Tsuchiya et a/., 2006). Studies by Oh et al. 

(2006) have showed that the presence of the Ti02 nanotube layer significantly 

accelerates osteoblasts growth and adhesion. Ti02 also has the capability to inactivate 

microbial toxins (e.g. lipopolysaccharide endotoxin, brevetoxins, microcystins) and kill 

a wide range of organisms including bacteria, fungi, algae, viruses and cancer cells in 

the presence ofUV light (Foster et al., 2011). 
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It is believed that the antimicrobial activities of the Ti02 nanotubes are highly 

dependent on the dopant's type. Ag was incorporated into Ti02 nanotubes and the 

antimicrobial activities sur~aces were investigated. The optimum amount of Ag 

incorporated into Ti02 nanotubes is believed to have abundant electron traps so as to be 

favorable for the separation of the photoinduced electron-hole pairs, which could greatly 

enhance the activity of the photocatalysts and subsequently kill the microorganisms. 

The greatest concerning Ag-Ti02 as an implant is the toxic effects in medical 

applications. Some studies have shown that the Ti02 nanotubes are not toxic both in 

vitro (Feschet-Chassot et al., 2011, Wadhwa eta!., 2011) and in vivo studies (Popat et 

a!., 2007b). However, some reports showed contradicting results where Ti02 nanotubes 

have toxic effects (Peters et a!., 2004, Zhang and Sun, 2004 ). Many physical and 

chemical factors influence the antibacterial and toxicity effects ofTi02 nanotubes and it 

will be discussed in detail. In order to improve the properties of Ti as an implant, the 

surface modification ofTi will be reviewed. 

2.4.4 Modification of Ti02 to harvest visible light 

The photocatalytic capability of Ti02 is limited to ultraviolet (UV) light 

(wavelength <400 nm) illumination. The application of Ti02 is restricted to UV light 

photoactivation for the generation of highly reactive oxygen species (i.e., hydroxyl 

radicals). This is an economical and technological limitation for the use of renewable 

energy sources such as solar light since UV light only accounts for a small portion (3% 

to 4%) of the whole solar spectrum while visible light accounts for 45% of the solar 

spectrum (Pelaez eta/., 2012a, Khan eta/., 2008). This means that only about 3% to 4% 

of the solar spectrum can be utilized by pure Ti02• If UV light is the source of radiation, 
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the photocatalyic process must be conducted in a closed and protected space, which 

makes it impossible to be processed in open spaces. In response to these deficiencies, 

many researchers have proposed several attempts to develop and enhance its activity in 

the visible light region. The effects of the addition of noble metals and ion doping can 

be beneficial in decreasing thee- and h+ pair recombination rate thereby increasing the 

quantum yield of the photo•:atalytic process. Doping the semiconductor with a metal 

and metal ion also enables visible light absorption by providing defect states in the band 

gap (Subramanian eta/., 2003). The mechanism of heterogeneous photocatalysis in the 

presence ofTi02 will also be discussed. 

2.4.4.1 Noble metal loading 

The photocatalytic mechanism is initiated by the absorption of the photon hv 1 

with energy equal to or greater than the band gap of Ti02 (~3.2 eV), producing an 

electron-hole pair on the surface of Ti02 nanoparticles as schematized in Figure 2.1. 

The visible light photoactivity of metal-doped Ti02 can be explained by a new energy 

level produced in the band gap of Ti02 by the dispersion of metal nanoparticles in the 

Ti02 matrix. As shown in Figure 2.1, the electron can be excited from the defect state to 

the conduction band by photons with energy equals to hv2. These noble metals act 

separately or simultaneously depending on the photoreaction conditions and they may: 

(i) enhance the electron-hole separation by acting as electron traps, (ii) extend the light 

absorption into the visible range and enhance surface electron excitation by plasmon 

resonances excited by visible light, and (iii) modify the surface properties of 

photocatalyst (Sherub eta/., 2008). Noble metals that are widely used are Ag, Pt, Au, 

Pd and Cu. These noble metals have a lower Fermi level than Ti02 (Sherub et a/., 

2008). 
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Figure 2.1: Mechanism ofTi02 photocatalysis: hv1: pure Ti02; hv2 : metal-doped Ti02 
and hv3: nonmetal-doped TiOz. 

The effect of platinum (Pt) doping on Ti02 is mainly studied for hydrogen 

generation from water and the degradation of organic pollutants (Kim eta/., 2005). Kim 

et a/. (2005) successfully demonstrated that the band gap of Pt-Ti02 is lower than that 

of undoped Ti02 by about 0.2 eV. The visible light activity of Pt ion-Ti02 is strongly 

affected by the calcination temperature and the concentration of Pt ion dopant which are 

optimal at 673 K and 0.5 atom%, respectively. Anpo et al. (2003) found that Pt loading 

reduced the amount of Ti3
+ (evidence of the occurrence of electron transfer from Ti02 to 

Pt). Pt traps photogenerated electrons and subsequently increases the photo-induced 

electron transfer rate at the interface (Anpo and Takeuchi, 2003). 

The photocatalytic antimicrobial activity over Cu doped under visible light was 

reported by Karunakaran et a/. (2010). 2 % of Cu-doped Ti02 shifted the optical 

absorption edge to the visible region but increased the charge-transfer resistance and 

decreased the capacitance. It was very efficient to disinfect the E. coli (Karunakaran et 

a/., 2010). The optimum metal loading was found for 0.5 M% of copper ion to enhance 

18 



photoactivity (Col6n eta/., 2006). The stabilization of the Cu20 species in doped TiOz 

was due to the preparation of Cu-Ti02 in the presence of sulphuric acid. 

Among the noble metals, Ag is the most preferable noble metal to be loaded into 

Ti02 compared to other noble metals because Ag has unique properties as an 

antimicrobial agent and is applied in a wide range of applications especially in 

disinfecting medical devices. Ag is well known as non-toxic in spite of claims of killing 

many different disease organisms. Hence, it is very suitable for indoor air quality 

applications due to its non-toxic properties. According to the literature, silver is skin 

friendly and does not cause skin irritations (Klaus-Joerger eta/., 2001 ). Moreover, Ag is 

more economical than Au and Pt. 

Ashkarran et a/. (20 11) carried out synthesis using the sol gel method. It was 

found that by increasing the silver concentration in the Ti02 matrix, the antibacterial 

activity was enhanced remarkably. 0.15 g Ag/Ti02 nanoparticles exhibit the highest 

antibacterial activity. The significant enhancement in the antibacterial properties of 

Ag/Ti02 nanoparticles under visible light irradiation can be ascribed to the effect of 

doped noble metal Ag by acting as electron traps in the Ti02 band gap (Ashkarran eta/., 

2011). Gunawan et a/. (2009) reported that the antimicrobial activity increased with 

higher Ag-Ti02 loadings from 1 to 500 mg L-1
• The reversible photoswitching of nano 

silver on TiOz resulted in excitation and a reverse electron flow from silver to the Ti02 

support, oxidising silver (Ago- Ag+) in the process (Gunawan eta/., 2009). However, 

the toxicity study was not done in this work. 
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The deactivation of both Gram-positive (S. aureus) and Gram-negative (P. 

aeruginosa, E. coli) bacteria with Ag-doped Ti02 nanoparticles (3% and 7%) was 

reported by Gupta eta!. (2013). The viability of all three microorganisms was reduced 

to zero at 60 mg/30 mL culture in the case of both (3% and 7% doping) concentrations 

of Ag-doped Ti02 nanoparticles. Annealed Ti02 showed zero viability at 80 mg/30 mL 

whereas doped Ag-Ti02 7% showed zero viability at 40 mg/30 mL culture in the case of 

P. aeruginosa only (Gupta eta/., 2013). In this work, antibacterial activity was focused 

but the toxicity study was not reported. 

Ag-Ti02 nonoparticles are prepared with the sol-gel method using a reduction 

agent as reported by Lee eta/. (2005). When the AgN03 content is 2 mmol/mol ofTi02, 

the major phase ( 111) of silver could be clearly seen. 70% of p-nitrophenol is degraded 

after 60 minutes of UV irradiation . for Ti02• In the case of Ag-Ti02, 90% of p­

nitrophenol is degraded. The improvement in the photocatalytic activity is related to the 

transportation of electrons from the Ti02 conduction band to the Ag particles (Lee eta/., 

2005). In this work, antimicrobial activity is not reported. 

Almost all studies only reported on the antimicrobial study of Ag-Ti02, but very 

few on the toxicity effects. In completing this work, the detailed work of Ag-Ti02 

nanoparticles and nanotubes were studied in turning the photocatalytic of Ti02 into the 

visible light region. Physical properties, antibacterial study, the mechanism of cell wall 

decomposition and toxicity effects were studied for Ti02 nanoparticles and nanotubes. 
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2.4.4.2 Metal ion loading 

Transitional metals are either deposited or doped on the Ti02 surfaces as 

metallic nanoparticles are doped as ionic dopants. The doping elements are usually Cr, 

Fe, V, Nb, Sb, Sn, P, Si, AI and Zr. Figure 2.2 shows the effect of different metals in 

TiOz to absorb visible light and to enhance photocatalytic activity. Some doping has the 

possibility to inactivate microorganisms under visible light irradiation. More details of 

the cation doping Ti02 are shown in Table 2.2. The replacement of cationic ions within 

the crystal lattice may create impurity energy levels that facilitate better absorption in 

the visible light region as depicted in Figure 2.2. 

mgh 

Photocatalytic activity 

Figure 2.2: Effect of cationic doping compounds in terms of visible light absorbance 
and photocatalytic activity (Hwang eta/., 2006, Yanjun et al., 2006). 

Luu et a!. (2010) synthesized Fe-doped into Ti02 by the sol gel method. Fe-

doped Ti02 enabled the photon absorbing zone of Ti02 to extend from UV towards the 

visible waves as well as to reduce its band gap energy from 3.2 to 2.67 eV. The 

photocatalytic activities of the Ti02 samples modified by Fe3
+ have been found to be 

higher than those of pure Ti02 by about 2.5 times (Luu et al., 2010). Fe ions trap not 

only electrons but also holes which lead to the increase of photoactivity (Litter, 1999, 
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Jiefang et al., 2003). The maximum photoactivity apprears with 0.5 wt% of Fe3
+ due to 

the decrease in the density of the surface active centers (Chatterjee and Dasgupta, 2005). 

According to George et al. (20 11 ), the photo-oxidation capability of Fe-doped Ti02 is 

found to increase during near-visible light exposure. The cytotoxic and ROS production 

shows the increasing of oxidant injury and the cell death of a macrophage cell line with 

a decrease in the band gap energy (George eta/., 2011). 

Tsai eta/. (2012) reported that the absorption spectra of the nanoparticles shift 

towards the visible light regions depending on the Ah03 addition. Ti4
+ and Ti3

+ coexist 

in the synthesized Al-doped Ti02. The Ti3
+ concentration however increases with the 

increasing of Ah03 addition due to Al/Ti substitution that causes the occurrence of 

oxygen vacancy (Tsai et al., 2012). Aluminium doping is used on Ti02 for a potential 

application in thermal shock due to its stable thermal expansion coefficient and physical 

property (Li et a/., 2006). The presence of metal dopants effectively increases the 

photocatalytic activity of Ti02 thin films in the following order: Ag/Ti02 > Zrffi02 > 

Fe!fi02 > Ti02 (Kment eta/., 2010). 

Another alternative to metal ions is Zr ions, which is rarely reviewed. Liu et a/. 

(2009) synthesized Zr-doped Ti02 nanotube arrays by the electrochemical method. 

Zrffi02 nanotube arrays doped at 7 V and calcined at 600 oc achieved the best 

photocatalytic efficiency and the most optimal doping ratio was 0.047 (Zrffi). The 

increase in photocatalytic activity was due to the increased number of oxygen 

vacancies. Zr incorporated into the Ti02 lattice and induced a relatively larger lattice 

strain. (Liu et al., 2009). However, the photocatalytic test was only performed under UV 

light and no antimicrobial acrivity was done in this work. 
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According to Swetha et a/. (20 1 0), Zr-doped Ti02 at the molecular scale 

exhibited better photocatalytic activity with a lower bandgap energy. The work reported 

that the optical absorption edge shifted slightly from 400 nm to about 450 nm. Zr-doped 

Ti02 can inactivate P. aeruginosa by 100% within 150 minutes of exposure. (Swetha et 

a/., 2010a). However, the photocatalytic and antibacterial activity were done only under 

sunlight. The toxicity study was also not reported. 

Stengl et a/. (2008) found that doping Zr-Ti02 prepared by the homogeneous 

hydrolysis of titanium and zirconium oxo-sulphates mixture in aqueous solutions have a 

positive influence on the degradation activity of warfare agents and decreases the 

photocatalytic degradation of Orange 2 dye. The presence of Zr4
+ dopant increases the 

surface area, crystallites size and accelerates the surface hydroxylation. Total 

degradation soman (3,3-dimethyl-2-butyl methylphosphonofluoridate or GD) and matter 

VX (0-ethyl S-2-( diisopropylamino )ethyl methylphosphonothionate) on Zr-doped 

titania run up through 1 minute is for a sample with -13.2 weight% Zr (Stengl eta/., 

2008). In this work, antibacterial and toxicity activities were not done. 

Moafi eta/. (2011) found that Ag-Zr co-doped Ti02 nanoparticles has a more 

significant efficiency in photocatalytic activity compared to Ag-Ti02 and Zr-Ti02. 

However, this paper only reported on the photocatalytic test but did not test on the 

antibacterial and toxicity studies. Moreover, the research did not study the different 

compositions of Zr. In this study, different compositions of Ag-Zr were studied and the 

results were compared with Ti02, Ag-Ti02 and Zr-Ti02 in terms of physical properties, 

antibacterial and toxicity study to complete the set. 
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2.5 Photocatalytic inactivation of microorganism 

Photocatalysis is the acceleration of a photoreaction in the presence of a catalyst. 

In 1972, Fujishima and Honda discovered that water molecules were splitted using Ti02 

electrodes under ultraviolet (UV) irradiation (Fujishima and Honda, 1972). The 

underlying mechanism of Ti02 photocatalysis is the light-induced generation of 

electron-hole pairs in a crystalline form of Ti02• The principles of semiconductor-based 

photocatalysis can be schematically demonstrated in Figure 2.3 (Linsebigler et a/., 

1995, Haghighi eta/., 2011, Cho eta/., 2004). Upon irradiation with photons less than 

380 nm, electrons in the valence band were excited to the conduction band and formed 

electrons (e~b) and holes (~b) on the surface of nanoparticles as shown in equation 

(2.1 ), and electron-hole pairs were created on the surface of the photocatalyst 

(Kartsonakis et a/., 2008). This stage is referred as the semiconductor's 'photo­

excitation' state (Maness eta/., 1999). Oxygen acted as an electron acceptor by forming 

a superoxide radical anion(02-), strong oxidative radicals that can decompose organic 

compounds (Miao eta/., 2004, Kangwansupamonkon eta/., 2009) as shown in equation 

(2.2). Holes could react with water adhering to the surfaces of semiconductor particles 

to form hydroxyl radical (OH") as shown in equation (2.3) (Maness eta/., 1999). In the 

literature, OH", H02, H2 0 2 are considered to be the key reactive oxygen species (ROS) 

generated in the photocatalytic reaction (Liou and Chang, 2012). These electrons and 

holes attacked the organic compounds producing less harmful and nontoxic products as 

shown in equation (2.4). In this work, the mechanisms of Ag-TiOz will be discussed in 

detail in Chapter 4 based on the SEM and TEM observations. 

Ti02 + hv -+ htb + e~b 

e~b + 0 2 -+ 02-
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