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vw mass flux velocity

V velocity field

W initial guess

x,y Cartesian coordinates

ya boundary conditions at y = 0

yb boundary conditions at y→ ∞

Y approximate solution

Greek Letters

α thermal diffusivity

α1,α2 variables

α f thermal diffusivity of the fluid

αn f thermal diffusivity of the nanofluid

β thermal expansion coefficient

γ first-order surface velocity slip (forced convection)

Γ independent variable
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δ boundary layer thickness

δ ∗ dimensionless boundary layer thickness

δV velocity boundary layer thickness

δT thermal boundary layer thickness

δ ∗T dimensionless thermal boundary layer thickness

ζ eigenvalue parameter

η independent similarity variable

θ ∗ dimensionless temperature

θ(η) dimensionless temperature function

ϑ molecular mean free path

ι slip parameter (forced convection)

λ moving parameter

λc critical point of moving parameter

Λ momentum accommodation coefficient

µ dynamic viscosity

µ f dynamic viscosity of the fluid

µs dynamic viscosity of the solid

µn f dynamic viscosity of the nanofluid

ν kinematic viscosity

ν f kinematic viscosity of the fluid

νn f kinematic viscosity of the nanofluid
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ξ independent variable

π angle

ρ density

ρ f density of the fluid

ρs density of the solid

ρn f density of the nanofluid

(ρCp) f heat capacity of the fluid

(ρCp)s heat capacity of the solid

(ρCp)n f heat capacity of the nanofluid

ρ∞ density of the ambient fluid

σ electrical conductivity

σ∗ Stefan-Boltzmann constant

τ dimensionless time variable

τw skin friction along the plate

ϒ second-order surface velocity slip (mixed convection)

φ given function

Φ basic function

ϕ volume fraction of solid particle

χ second-order surface velocity slip (forced convection)

ψ stream function

ω mixed convection parameter
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ωmin lower bound of mixed convection flow regime

ωmax upper bound of mixed convection flow regime

Ω first-order surface velocity slip (mixed convection)

Subscripts

c critical value

f fluid fraction

min lower bound

max upper bound

n f nanofluid fraction

s solid fraction

si singularity point

w condition at the surface

∞ ambient/free stream condition

Superscripts

′ differentiation with respect to η

∗ dimensionless variables
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ANALISIS KESTABILAN BAGI ALIRAN DAN PEMINDAHAN HABA

MAGNETOHIDRODINAMIK PADA PLAT RATA BERGERAK DI DALAM

FERROBENDALIR DENGAN KESAN GELINCIR

ABSTRAK

Satu kajian mengenai analisis kestabilan pada aliran lapisan sempadan telah men-

jadi tumpuan dalam bidang dinamik bendalir. Analisis ini adalah penting kerana ia

membantu untuk mengenal pasti penyelesaian mana yang stabil jika terdapat penyele-

saian yang tidak unik di dalam pengiraan. Dalam tesis ini, analisis kestabilan digunak-

an pada masalah aliran mantap dua dimensi berlamina magnetohidrodinamik (MHD)

dan pemindahan haba pada plat rata bergerak di dalam ferrobendalir dengan syarat

sempadan sedutan dan kesan gelincir. Perhatian tertumpu pada masalah olakan paksa

dan campuran di dalam bendalir tak termampat. Tiga masalah yang dipertimbangk-

an ialah; (1) aliran olakan paksa MHD pada plat rata bergerak di dalam ferrobendalir

dengan kesan sedutan dan gelincir peringkat kedua; (2) aliran olakan campuran MHD

pada plat rata bergerak di dalam ferrobendalir dengan kesan sedutan dan gelincir; dan

(3) aliran olakan campuran MHD pada plat rata bergerak di dalam ferrobendalir de-

ngan kesan sinaran terma, sedutan dan gelincir peringkat kedua. Untuk menyelesaikan

masalah ini, mulanya persamaan pembezaan separa berdimensi yang mengawal aliran

lapisan sempadan dijelmakan menjadi persamaan tak berdimensi dengan menggunak-

an pemboleh ubah tak berdimensi yang sesuai. Persamaan ini kemudiannya dibentuk

semula menghasilkan persamaan pembezaan biasa tak linear dengan menggunakan

transformasi keserupaan. Sistem yang dihasilkan diselesaikan secara berangka meng-

gunakan kaedah tembakan yang dilakukan dengan bantuan fungsi shootlib dalam per-

isian Maple. Kaedah ini dikaitkan dengan kaedah peringkat keempat Runge-Kutta
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bersama dengan Newton-Raphson sebagai skim pembetulan. Seterusnya, jika terda-

pat penyelesaian yang tidak unik, analisis kestabilan dilakukan untuk mengenal pasti

penyelesaian yang stabil, dengan melaksanakan penyelesai bvp4c di Matlab. Kesan

parameter olakan campuran, parameter magnet, parameter sinaran, parameter berge-

rak, parameter pemindahan jisim, parameter permukaan gelincir peringkat pertama,

parameter permukaan gelincir peringkat kedua dan pecahan isipadu ferrozarah pepejal

ke atas halaju dan suhu tak berdimensi, serta pekali geseran kulit dan nombor Nusselt

setempat dibincangkan dalam bentuk jadual dan grafik. Untuk kajian ini, keputusan-

nya dipertimbangkan berdasarkan tiga ferrozarah utama, iaitu magnetit, kobalt ferit

dan mangan-zink ferit di dalam cecair berasaskan air dan kerosin. Didapati baha-

wa parameter olakan campuran, parameter magnet, parameter bergerak, serta pecahan

isipadu ferrozarah pepejal membantu meningkatkan pekali geseran kulit dan kadar pe-

mindahan haba. Di samping itu, kehadiran sedutan dan sinaran meningkatkan kadar

pemindahan haba, manakala faktor gelincir menyebabkan pengurangan besar kepada

nilai pekali geseran kulit. Keputusan menunjukkan wujudnya penyelesaian dual dan

ketiga untuk sesetengah julat bagi pelbagai parameter olakan campuran, bergerak (plat

bergerak ke arah asal) dan pemindahan jisim (sedutan). Seterusnya, analisis kestabilan

menunjukkan terdapat gangguan pereputan awal bagi penyelesaian pertama, semen-

tara penyelesaian kedua dan ketiga menunjukkan gangguan pertumbuhan awal, yang

mana menunjukkan bahawa penyelesaian pertama stabil dan secara fizikal dapat dire-

alisasikan, sementara penyelesaian kedua dan ketiga tidak.
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STABILITY ANALYSIS OF MAGNETOHYDRODYNAMIC FLOW AND

HEAT TRANSFER OVER A MOVING FLAT PLATE IN FERROFLUIDS

WITH SLIP EFFECTS

ABSTRACT

A study of the stability analysis on the boundary layer flow has become a great

interest in the field of fluid dynamics. This analysis is essential because it helps to

identify which solution is stable if there exists non-unique solutions in the compu-

tation. In this thesis, the stability analysis is applied on the problems of the steady,

two-dimensional, laminar, magnetohydrodynamic (MHD) flow and heat transfer over

a moving flat plate in ferrofluids with suction and slip boundary conditions. It aims at-

tention on the problem of forced and mixed convection immersed in an incompressible

fluid. The three problems considered are; (1) MHD forced convection flow over a mov-

ing flat plate in ferrofluids with suction and second-order slip effects; (2) MHD mixed

convection flow over a moving flat plate in ferrofluids with suction and slip effects; and

(3) MHD mixed convection flow over a moving flat plate in ferrofluids with thermal

radiation, suction and second-order slip effects. In order to solve these problems, the

dimensional partial differential equations that governed the boundary layer flows are

first transformed into non-dimensional equations by using appropriate dimensionless

variables. These equations are then reconstructed into the form of nonlinear ordinary

differential equations by applying the similarity transformation. The resulting system

is solved numerically using the shooting method which is done with the aid of shootlib

function in Maple software. This method is associated with the Runge-Kutta fourth

order method together with Newton-Raphson as a correction scheme. Further, if there

are non-unique solutions, the stability analysis is performed to identify which solution
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is stable, by implementing bvp4c solver in Matlab. The effects of the mixed convection

parameter, magnetic parameter, radiation parameter, moving parameter, mass transfer

parameter, first-order surface slip parameter, second-order surface slip parameter and

volume fraction of solid ferroparticles on the dimensionless velocity and temperature,

as well as the skin friction coefficient and local Nusselt number are discussed in the

form of tabular and graphical presentation. For this present study, the results are con-

sidered based on three preferred ferroparticles, namely magnetite, cobalt ferrite and

manganese-zinc ferrite in water- and kerosene-based fluids. It is found that the mixed

convection parameter, magnetic parameter, moving parameter, as well as the volume

fraction of solid ferroparticles help to enhance both skin friction coefficient and heat

transfer rate. In addition, the presence of suction and radiation parameter serves the

heat transfer rate to increase, while the slip factor provides an enormous reduction of

the skin friction coefficient. The results display the existence of dual and triple solu-

tions for certain range of the mixed convection, moving (a plate moving towards the

origin) dan mass transfer (suction) parameters. Further, the stability analysis showed

that there is an initial decay of disturbance for the first solution, while the second and

third solutions showed an initial growth of disturbance, indicated that the first solution

is stable and thus physically realizable, while the second and third solutions are not.
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CHAPTER 1

INTRODUCTION

1.1 Introductory Remarks

Heat transfer is a study of energy transfer processes between material bodies solely

as a result of temperature differences. These processes play a vital role and can be

discovered in a great variety of practical situations. The problems of heat transfer con-

front the engineers and researchers in nearly every branch of science and engineering.

The mechanism by which heat is transferred in a heat exchange or an energy conver-

sion system is quite complex. There appear to be three rather basic and distinct modes

of heat transfer namely, conduction, convection and radiation. The transfer of energy

from the more energetic particles of a substance to the adjacent less energetic ones

as a result of interactions between particles is called conduction. Further, convection

is the mode of energy transfer between a solid surface and the adjacent liquid or gas

that is in motion, and it involves the combined effects of conduction and fluid motion

(Çengel, 2007). Thermal radiation, or simply radiation, is heat transfer in the form of

electromagnetic waves as a result of the changes in the electronic configurations of the

atoms or molecules (Kakaç and Yener, 1994).

There exists two ways of motion of heat transfer from a surface, either it is moving

or stationary fluid. The boundary layer flow due to a moving flat plate is a relevant type

of flow appearing in many industrial processes, such as manufacture and extraction of

polymer and rubber sheets, paper production, wire drawing and glass-fiber production,

melt spinning, continuous casting, and many more (Tadmor and Klein, 1970). Then,
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the study of the flow and heat transfer over a moving flat plate in an electrically con-

ducting fluid permeated by a uniform transverse magnetic field is of special interest.

The subject of magnetohydrodynamic (MHD) has developed in many directions and

industry has exploited the use of magnetic fields in controlling a range of fluid and ther-

mal processes. Many studies of the influence of magnetism on electrically-conducting

flows has been reported very often especially in the relation of MHD generator, pumps,

meters, bearings and boundary layer control (Ishak et al., 2008). MHD appears that an

understanding of the effect of an applied magnetic field on the flow and heat transfer

is useful for the cooling process (Watanabe et al., 1995).

Recently, the magnetic convection of ferrofluids is of considerable interest in the

applications of science and engineering. Magnetic nanofluids (ferrofluids) are a mag-

netic colloidal suspension consisting of base fluid and magnetic nanoparticles with a

size range of 5 to 15 nm in diameter coated with a surfactant layer. The most often

used magnetic material is single domain particles of magnetite, iron, or cobalt; and

the base fluids such as water or kerosene. Ferrofluids are a unique material that has

both the liquid and magnetic properties. In the absence of magnetic field, these fluids

behave as normal nanofluids (Hayat et al., 2016). The advantage of the ferrofluids are

that the fluid flow and heat transfer may be controlled by an external magnetic field

which makes it applicable in various fields such as electronic packing, mechanical en-

gineering, thermal engineering, aerospace and bioengineering (Mohammadpourfard,

2012).

In this present study, we focus on the stability analysis of MHD flow and heat trans-

fer over a moving flat plate in ferrofluids with uniform heat flux, under the influence
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of suction, first-order velocity slip, second-order velocity slip and thermal radiation.

The flow is assumed to be laminar, steady, incompressible and two-dimensional. The

analysis include: (1) formulation of the mathematical models to obtain the govern-

ing boundary layer flow and heat transfer equations for the new models; (2) similarity

transformation; (3) numerical computation using shooting method in Maple software;

(4) analysis of stability using function of bvp4c in Matlab. Effects of various pertinent

parameters on the skin friction coefficient, local Nusselt number, velocity and temper-

ature profiles are thoroughly analysed and examined according to each problems that

are discussed.

1.2 Magnetohydrodynamic (MHD)

Magnetohydrodynamic (MHD) is a branch of study about fluid dynamics where

magnetic fields are important in the flow and the fluid must be electrically conducting.

The term of “magnetohydrodynamic” comes from the word magneto (magnetic field),

hydro (water) and dynamics (movement). It was initiated by the Swedish Physicist

named Hannes Alfven who received the Nobel Prize in Physics in 1970. The subject is

also sometimes called ‘hydromagnetic’ or ‘magneto-fluid dynamic’ (Roberts, 1987).

These fluids consist of liquid metals (such as gallium, mercury, molten iron), salt

water and ionized gases or plasmas (such as the solar atmosphere). MHD comprises

on the phenomena where the velocity field V and the magnetic field B become couples

in an electrically conducting fluid. The magnetic field induces an electric current of

density J in the moving conductive fluid (electromagnetism). The current that is in-

duced forms forces on the liquid and modifies the magnetic field. Each unit volume of
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the fluid gaining the magnetic field involves the force of MHD named J×B or known

as Lorentz force. Then, the set of equations describing MHD flows are a combination

between Navier-Stokes equation of fluid dynamics and Maxwell’s equation of electro-

magnetism.

1.3 Heat Transfer

Heat can be described as energy transferred due to a temperature difference be-

tween two systems. It always occur from the higher temperature region to the lower

temperature region. Heat transfer is usually encountered in many aspects of our daily

life besides in engineering systems such as human body, car radiators, air-conditioning

systems, power plants, refrigeration systems and many more. There are three basic

modes of heat transfer, namely, conduction, convection, and radiation. An extensive

study has been conducted in the convection mode in heat transfer since it takes place

with the motion of the fluid. Let’s consider each of these three modes individually.

1.3.1 Conduction

Conduction is the transfer of heat from one part of a body at a higher tempera-

ture to another part of the same body at a lower temperature, or from one body at a

higher temperature to another body in physical contact with it at a lower temperature

(Rohsenow et al., 1998). The process of conduction generally happened at the level

of molecular and engages the energy transfer from the more active molecules to the

one with a lower level of energy. Conduction can take place in solids, liquids and

gases. In gases, the average kinetic energy of molecules in the higher-temperature re-

gions is greater compared to those in the lower-temperature regions. The more active
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molecules, being in constant and random motion, periodically collide with molecules

of a lower energy level and exchange energy and momentum. Moreover, in liquids, the

molecules are more closely spaced than in gases, although the process of molecular

energy exchange is approximately identical to that in gases. In solids, the conduction

is due to the combination of vibrations of the molecules in a lattice and the energy

transport by free electron.

The heat flux q represents a current of heat which is also known as thermal energy

that flows in the direction of the steepest temperature gradient and is defined in more

general statement of Fourier’s Law as (Rohsenov et al., 1998)

q =−k∇T, (1.1)

where k denotes the thermal conductivity, ∇ is a Laplacian operator
(
∇ = i

∂

∂x
+ j

∂

∂y
,

for two-dimensional where x and y are the Cartesian coordinate measured along and

normal to the plate, respectively
)

and T is the scalar temperature field. The minus sign

represents the fact that heat is transferred in the direction of declining temperature.

The examples of conduction process in our daily life including a spoon in a cup

of hot soup becomes warmer because the heat from the soup is conducted along the

spoon, the earth warms from the light of the sun as the heat is conducted through the

atmosphere, an ice cube will melt if one holds in the hand since the heat is being

conducted from the hand into the ice cube. Metals become good conductors of heat

compared to the non-metals because they contain free electrons which help to transfer

the heat from the hot to the cold end faster. The metals that can be used including
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aluminum, bronze, copper, gold, iron, mercury and others.

1.3.2 Convection

Convection or sometimes identified as convective heat transfer is the mode of en-

ergy exchange that is customarily related with heat crossing a boundary or surface be-

tween a solid and a fluid due to the temperature difference. The fluid can be considered

as fluids and gases at a low or high temperature (Rolle, 2014). The fluids and gases

can transfer heat very quickly by convection even though they are not good conduc-

tors of heat. Convection appeared widely in our environment and in most engineering

services including cooking, the cooling of the electronic components in a computer,

the heating and cooling of buildings, the cooling of the cutting tool during a machining

operation and many more. Convective heat transfer is usually classified into three basic

processes namely, free convection, forced convection and mixed convection.

1.3.2(a) Free Convection

Free convection is also referred as natural convection which takes place if the fluid

motion is caused by buoyancy forces that are induced by density differences due to the

variation of temperature in the fluid. For example, heat transfer occurs when a cup of

hot water is exposed by the air surrounding without any external force.

1.3.2(b) Forced Convection

On the other hand, the forced convection is present whenever the fluid motion is

forced to flow over the surface by external means such as a pump, a blower, a fan or

some similar devices. The examples of forced convection are air conditioning, heat
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exchangers, central heating and others. The forced convection is more capable than

the natural convection because of the faster velocity of the currents and the buoyancy

has little impact on the direction of flow.

1.3.2(c) Mixed Convection

Mixed convection is a combination of free and forced convection due to the effect

of the buoyancy force in forced convection or the effect of forced flow in free convec-

tion becomes significant. Mathematically, the mixed convection flow is identified by

the buoyancy or mixed convection parameter, ω = Gr/Ren, where Gr is the Grashof

number, Re is the Reynolds number and n(> 0) is a constant subject to the conditions

of surface heating and fluid flow configuration. Meanwhile, the parameter ω presents

a measure of flow significance between free and forced convection. The system of

mixed convection is expressed as the range ωmin ≤ω ≤ωmax where ωmin and ωmax are

the lower and the upper bounds of mixed convection flow regime, respectively.

1.3.3 Radiation

Radiation or also known as thermal radiation is an electromagnetic radiation dif-

fused by a body by virtue of its temperature and at the expense of its internal energy

(Rohsenow et al., 1998). In other words, the thermal radiation emitted as a result

of energy transitions of molecules, electrons, and atoms of a substance. Radiation is

dissimilar from conduction and convection since it does not need the existence of a

material medium to take place. All substances from solids as well as fluids and gases

are capable of occurring in radiation transfer.
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Radiation provides extensively to energy transfer in combustion chambers, fur-

naces, fires and to the emission of energy from a nuclear explosion. In order to achieve

great thermal efficiency, some devices are created to perform at high-temperature lev-

els. Therefore, radiation must be considered in examining the effects of thermal in

engines, rocket nozzles, power plants and high-temperature heat exchangers (Siegel

and Howell, 2002).

1.4 Nanofluids

Nanofluids are a dilute liquid suspensions of nanoparticles with the size range un-

der 100 nm in heat transfer fluid (Minkowycz et al., 2013). Figure 1.1 illustrates a

schematic cross-section of the proposed nanofluids consisting of nanoparticles, base

fluid, and nanolayers at the interface of solid or fluid (Sridhara et al., 2009).

 

Nanoparticles 

Base fluid 

Nanolayers 

Figure 1.1: Schematic cross-section of nanofluids structure (Sridhara et al., 2009)
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Nanoparticles are created from various materials such as oxide ceramics (aluminium

oxide Al2O3, copper oxide CuO), nitride ceramics (aluminium nitride A1N, silicon ni-

tride SiN), carbide ceramics (silicon carbide SiC, titanium carbide TiC), metals (copper

Cu, silver Ag, gold Au), semiconductors, carbon nanotubes and composite materials

such as alloyed nanoparticles or nanoparticle core-polymer shell composites (Uddin et

al., 2012). The base fluids which mostly applied in the preparation of nanofluids are

the common heat transfer fluids such as water, oil and ethylene glycol (Chamkha et al.,

2013). In solid liquid mixture, the liquid molecules close to a solid surface are known

to form a layered structure and this layer acts as nanolayer. The solid-like nanolayer

acts as a thermal bridge between a solid nanoparticle and a bulk liquid and so is the

key of enhancing the thermal conductivity (Sridhara et al., 2009).

Based on the literature, nanofluids have been initiated to acquire enhanced ther-

mophysical properties such as thermal conductivity, thermal diffusivity, viscosity and

convective heat transfer coefficient compared to the base fluids (Kakaç and Pramuan-

jaroenkij, 2009; Wong and Leon, 2010). Choi (1995) was the first person who used

the term nanofluids. He studied the problem of nanofluids which help to exhibit the

thermal properties of fluids with nanoparticles. Nanofluids can be considered to be

the next generation heat transfer fluids because they offer exciting new possibilities

to enhance heat transfer performance compared to pure liquids (Wang and Mujumdar,

2008).

There are a few nanofluid models available in the literature. Among the well-

known models are the models which are proposed by Khanafer et al. (2003), Buon-

giorno (2006), Tiwari and Das (2007) and Nield and Kuznetsov (2009). In this study,
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the model of Tiwari and Das is employed in order to observe the behavior of nanoflu-

ids due to the presence of nanoparticle volume fraction. This model is developed by

using Brinkman (1952) model for viscosity and Maxwell-Garnetts model for thermal

conductivity. These models are limited to spherical nanoparticles and do not applica-

ble for other shapes of nanoparticles. Many researchers then implemented this model

in their studies such as Ahmad and Pop (2010), Ahmad et al. (2011), Sheremet et al.

(2014), Ul Haq et al. (2014), Sheikholeslami and Ganji (2014), Nadeem et al. (2014),

Sheremet et al. (2015), Ghalambaz et al. (2015), Sheremet et al. (2016), Dinarvand et

al. (2017), Mabood et al. (2017) and Aghamajidi et al. (2018).

1.5 Ferrofluids

The research about flow analysis of nanofluids with the interaction of magnetic

field has increased enormously. Magnetic nanofluids which are also known as fer-

rofluids are colloidal suspensions of magnetic nanoparticles with a size range of 5 - 15

nm in diameter scattered in non-conducting base fluid (Sheikholeslami and Rashidi,

2015). The magnetic nanoparticles which are commonly used include magnetite,

cobalt, and ferrite while the base fluids such as water, kerosene, heptane, and hydro-

carbons (Rashad, 2017a). Ferrofluids were originally invented by Papell (1965) at the

NASA (National Aeronautics and Space Administration) Research Center and his first

work about the synthesis of ferrofluids discovered the method for controlling fluids in

space. In addition, ferrofluids are important in order to absorb electromagnetic field to

enhance the heat transfer.
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Figure 1.2: Components of ferrofluids (Rene, 2014)

Figure 1.2 shows the composition of ferrofluids which have three basic compo-

nents including the magnetic nanoparticles, surfactants, and base fluid. The surfactants

can be illustrated as soap-like materials that work to coat the magnetic nanoparticles

and keep them from being engaged to each other. Moreover, the base fluid will en-

courage in determining the thickness and viscosity of the ferrofluids, subjected to the

point that the magnetic properties are solely due to the suspended particles (Kaiser and

Rosensweig, 1969). Ferrofluids are generally employed to deal with the fluid flow and

heat transfer rate. They find applications in the field of aerospace, aeronautical, indus-

trial engineering, medical, science and technology (Rosensweig, 1985; Hiegeister et

al., 1999).

1.6 Boundary Layer Theory

The concept of boundary layer was first postulated by a German physicist, Ludwig

Prandtl in 1904. His companion paper entitled "On the motion of fluids of very small

viscosity" had been presented at the Third International Congress of Mathematicians
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took place at Heidelberg. It was proved to be one of the most influential fluid-dynamics

papers ever written (Acheson, 1990; Anderson, 2005). Ludwig Prandtl demonstrated

that the field of flow past a body can be divided into two principal areas as follows

(Schlichting, 1968; Nag, 2011):

(a) A very thin layer in the neighborhood of the body which is called boundary layer

where friction plays an essential part and cannot be ignored.

(b) The remaining region outside this layer where the friction may be neglected and

the flow was essentially the inviscid flow. The fluid is considered to be ‘ideal’,

that is nonviscous and incompressible.

Figure 1.3: Regions of the fluid flow (Anderson, 2005)

This concept of the boundary layer is illustrated in Figure 1.3. The enlargement of

the boundary layer presents how the flow velocity v changes, as a function of normal

distance n, from zero at the surface to the full inviscid-flow value at the outer edge
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(Anderson, 2005). When a fluid flows over a body, the velocity and temperature distri-

bution at the instantaneous vicinity of the surface firmly gives the influence to the heat

transfer by convection. The boundary layer can be divided into two different kinds

concerning the velocity boundary layer and the thermal boundary layer, as displayed

in Figure 1.4. A brief description of each type is discussed as follows:

(a) Velocity boundary layer

The region in the fluid is developed due to an interaction between the fluid and

the surface, where the x-component velocity u grows up from zero at the surface

(no slip condition) to an asymptotic value U∞. This region of large velocity gra-

dient is known as the velocity boundary layer where δV is the velocity boundary

layer thickness. This layer is identified by the velocity gradient and the shear

stress.

(b) Thermal boundary layer

The region in the fluid is formed due to the presence of temperature difference

between the fluid and the surface where the temperature varies from the tem-

perature at wall Tw to the value of external flow T∞. This region with large

temperature gradient is known as the thermal boundary layer where δT denotes

the thermal boundary layer thickness. This layer is identified by the temperature

gradient and the heat transfer.

There are several excellent books which described briefly the theory of boundary layer

in the literature including Moore (1956), Schlichting (1968), Tritton (1988), Faber

(1995), Oleinik and Samokhin (1999), Sobey (2000), and others.
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Figure 1.4: Velocity and thermal boundary layers (Malvandi et al., 2013)

1.7 Suction

Suction has been well recognised as a common method of controlling the boundary

layer flow. Suction of fluid through the bounding surfaces, as, for example, in mass

transfer cooling, it can significantly change the flow field and, as a consequence, af-

fect the rate of heat transfer from the bounding surfaces. In general, suction tends to

increase the skin friction and heat transfer coefficient (Jha and Aina, 2016). Instead, it

plays an important role to enhance cooling of the system and can help to delay the tran-

sition from laminar flow. It is often necessary to postpone separation of the boundary

layer to reduce drag and attain high lift values (Pop and Watanabe, 1992).

Practically, the behavior of a laminar boundary layer can be influenced by suc-

tion of fluid at the solid surface. Suction removes decelerated fluid particles from the

boundary layer before they have a chance to cause flow separation (Burmeister, 1993).

In other words, suction contributes to the stability of the boundary layer by delaying

the transition so that the flow is laminar rather turbulent. A major benefit of suction

on airfoils is to reduce drag. Also, suction can be applied by using permeable surface,

porous surface and surfaces with multiple series of finite slots. The implementation
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of suction requires the surface to have holes which can be clarified to refer as perfora-

tions, slots and porous sections. In addition, the holes are essential to help sucking the

portion of the boundary layer that is closest to the wall.
 

Water Water 

High permeability Low permeability 

(a) (b) 

Figure 1.5: Permeability, (a) rock and (b) sand (Edwards, 2016)

Permeability is a measure of the ability of a substance to allow another substance

to pass through it, especially the ability of a porous rock, sediment, or soil to transmit

fluid through pore spaces and cracks. It is also known as the property or condition of

being permeable. From Figure 1.5, we can see that the rock has a high permeability

because of large pore size and this gives rock the ability to drain a lot of water. Hence,

the medium are permeable by the cause of the presence of interrelated gaps through

which water can move from high energy points to low energy points.
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1.8 Slip Condition

The study between the fluid and the solid boundary conditions in recent years has

seen a renewed interest. The slip length, which is a simple measurement of the slip,

is apparently the most commonly used parameter to characterize the slip. In 1823,

Navier proposed a more general boundary condition, which takes into account that the

fluid may slip on the surface of the solid. Navier’s proposed condition assumes that the

velocity, u(x,y), at a solid surface is proportional to the shear stress,
∂u
∂y

, at the surface

(Mehmood and Ali, 2007; Ananthaswamy et al., 2017) such that

u(x,y) = Ls
∂u
∂y

(1.2)

where Ls is the slip length or slip coefficient. If Ls = 0, then the general assumed

no-slip boundary condition is obtained. If Ls is finite, fluid slip occurs at the wall but

its effect depends upon the length scale of the flow. The above relation states that the

velocity of the fluid at the plates is linearly proportional to the shear stress at the plate.

Figure 1.6 illustrates the slip length, Ls, for simple shear flow along a flat plate. In

physical terms, the slip length can also be interpreted as the fictitious distance inside

the solid where fluid velocity extrapolates linearly to zero (Lauga, 2004).

The degree of slip at the boundary depends on a number of interfacial parame-

ters including the strength of the liquid-solid coupling, the thermal roughness of the

interface, and the commensurability of wall and liquid densities (Thompson and Rob-

bins, 1990). These findings have led to a new understanding of stick-slip phenomena

in boundary lubrication and have revealed the sensitivity of liquid spreading to mi-

crostructure at the liquid or solid interface (Thompson and Troian, 1997).
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Figure 1.6: Slip length, Ls, for simple shear flow along a flat plate (Thompson and
Troian, 1997; McCormack, 2012)

In 1879, Maxwell used the kinetic theory of gases to identify the slip condition.

The fluid velocity at the solid surface is assumed to be proportional to the shear rate

at the surface, and the proportionality constant has dimensions of length (McCormack,

2012). The Navier and Maxwell slip boundary conditions are then widely used in the

study of diverse engineering applications.

1.9 Dimensionless Parameters

Phenomena in the fluid mechanics depend on the dimensionless parameters, which

are a set of dimensionless quantities that have an important role in the behaviour of flu-

ids. There are many reasons for using the dimensionless parameters including they al-

low to solve the problem easily, tell how the system will behave and allow for compar-

isons between very different system. Among the parameters involved are the Prandtl

number Pr, Reynolds number Re, Grashof number Gr, Nusselt number Nu, Eckert

number Ec and Knudsen number Kn. The definitions and details of these dimension-

less parameters are discussed in Sections 1.9.1−1.9.6.
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1.9.1 Prandtl Number

Prandtl number is a dimensionless parameter which is named after the German

physicist, Ludwig Prandtl. It is defined as the ratio of molecular diffusivity of momen-

tum to the molecular diffusivity of heat as follows (Çengel, 2007):

Pr =
molecular diffusivity of momentum

molecular diffusivity of heat
=

ν

α
=

µ/ρ

k/ρCp
=

µCp

k

where ν is the kinematic viscosity, α is the thermal diffusivity, µ is the coefficient

of kinematic viscosity, ρ is the density of the fluid, Cp is the specific heat at constant

pressure and k is the thermal conductivity. Table 1.1 presents the values of Prandtl

number that is commonly used in heat transfer either in the calculation of free or forced

convection. The Prandtl numbers of fluids range from less than or equal to 0.03 for

Table 1.1: Prandtl number of various fluids

Fluid Pr
Liquid metals 0.004 - 0.030

Gases 0.7 - 1.0
Water 1.7 - 13.7

Light organic fluids 5 - 50
Oils 50 - 100000

Glycerine 2000 - 100000
Heavy oils > 100000

liquid metals to more than 100000 for heavy oils. Moreover, the Prandtl numbers of

gases are about 1, which indicates that both momentum and heat dissipate through the

fluid at about the same rate. Heat diffuses very quickly in liquid metals (Pr� 1) and

very slowly in oils (Pr� 1) relative to momentum.
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1.9.2 Reynolds Number

The transition from laminar to turbulent flow depends on the surface geometry,

surface roughness, flow velocity, surface temperature, and type of fluid, among other

things. After exhaustive experiments in the 1880s, Osborn Reynolds discovered that

the flow regime depends mainly on the ratio of the inertia forces to viscous forces in

the fluid. This ratio is called the Reynolds number and can be expressed as (Çengel

and Cimbala, 2006; Çengel, 2007)

Re =
inertia forces
viscous forces

=
ρUL

µ
=

UL
ν

where U is the velocity of the fluid with respect to the object, L is the characteristic

length of the geometry and ν =
µ

ρ
is the kinematic viscosity of the fluid. Laminar flow

generally occurs when dealing with small Reynolds number, where viscous forces are

dominant and is indicated by consistent and smooth motion with no distraction in the

layers. However, the turbulent flow occurs for large Reynolds number, where inertial

forces are dominant and is influenced by chaotic property changes.

1.9.3 Grashof Number

The Grashof number is the dimensionless parameter used in the correlation of heat

and mass transfer which demonstrates the ratio of the buoyancy forces to the viscous

forces. It frequently arises in the study of situations involving natural (free) or mixed

convections. It is named after a German engineer, Franz Grashof and is defined as
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(Bianco et al., 2015)

Gr =
bouyancy forces
viscous forces

=
gβ (Tw−T∞)L3

ν2

where g is the gravitational acceleration, β is the coefficient of volume expansion, Tw

is the temperature of the surface and T∞ is the temperature of the fluid sufficiently far

from the surface. Grashof number contributes a special principle in evaluating whether

the flow of fluid is laminar or turbulent in natural or mixed convections. Furthermore, it

indicates that the problem involved both free and forced convection when the surface is

subjected to the external flow. It may be useful to apply the ratio of the Grashof number

to the square of Reynolds number such that the effects of free convection are usually

insignificant when
Gr
Re2 � 1 and conversely the effects of forced convection may be

negligible for
Gr
Re2 � 1. Otherwise, when

Gr
Re2 ≈ 1, both effects that are combined free

and forced convection are important and have to be taken into account.

1.9.4 Nusselt Number

The Nusselt number is the dimensionless parameter which describes convective

heat transfer coefficient and it is named after a German engineer, Wilhelm Nusselt. It

is illustrated as (Çengel, 2007)

Nu =
convection heat transfer
conduction heat transfer

=
h4T

k4T/L
=

hL
k

where h is the heat transfer coefficient and4T is the driving force for the heat transfer.

The convection becomes more effective if the Nusselt number is large. Meanwhile, if

Nu = 1, it indicates that the heat transfer across the layer by pure conduction.
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1.9.5 Eckert Number

The Eckert number is named after a scientist, Ernst Rudolph Georg Eckert in the

early 1950’s. It is beneficial in determining the relative importance in the heat transfer

situation of the kinetic energy of a flow. The Eckert number is defined as the ratio

of the kinetic energy to the enthalpy (or the dynamic temperature to the temperature)

driving force for heat transfer (Çengel and Cimbala, 2006)

Ec =
kinetic energy

enthalpy
=

U2

Cp4T
=

U2

Cp (Tw−T∞)

where4T is the driving force for heat transfer or can be denoted as the wall tempera-

ture minus force stream temperature. The terms in the energy equation representing the

effects of viscous dissipation, pressure changes and body forces on the energy balance

are ignored when the Eckert number is small, i.e. Ec� 1. The energy equation then

reduces to a balance between conduction and convection. When the Eckert number is

large, i.e. Ec� 1, the heat transfer is zero which means that the wall is adiabatic. Fur-

ther, the Eckert number for zero heat transfer is independent of the pressure gradient

parameter (Rogers, 1992).

1.9.6 Knudsen Number

A dimensionless parameter known as Knudsen number is the ratio of the mean free

path length of the molecules of a fluid to a characteristic length (Çengel and Cimbala,

2006; Bianco et al., 2015)

Kn =
mean free path length
characteristic length

=
λm

L
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where λm is the mean free path and L is the characteristic length. It describes the degree

of departure from continuum. Usually when Kn> 0.01, the concept of continuum does

not hold good. Beyond this critical range of Knudsen number, the flows are known as

slip flow (0.01 < Kn < 0.1), transition flow (0.1 < Kn < 10) and free-molecule flow

(Kn > 10).

The Knudsen number helps determine whether statistical mechanics or the contin-

uum mechanics formulation of fluid dynamics should be used to model a situation. If

the Knudsen number is near or greater than one, the mean free path of a molecule is

comparable to a length scale of the problem, and the continuum assumption of fluid

dynamics is no longer a good approximation. In such cases, statistical methods should

be used.

1.10 Motivations of Study

This section discusses the three papers that motivate the research undertaken in this

study. First, the work by Khan et al. (2015) who studied the problem of flow and heat

transfer of ferrofluids along a plate subjected to uniform heat flux and slip velocity in

which a magnetic field was applied in the transverse direction to the plate. This work

considered three different kinds of magnetic nanoparticles (magnetite Fe3O4, cobalt

ferrite CoFe2O4, Mn-Zn ferrite Mn-ZnFe2O4) within two base fluids (kerosene and

water). They concluded that the magnetic field tends to increase both skin friction and

heat transfer rate, while the effect of the slip parameter is to reduce friction and increase

the heat transfer. Furthermore, kerosene-based Fe3O4 provides the higher heat transfer

rate at the wall as compared to the kerosene-based CoFe2O4 and Mn-ZnFe2O4. The
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second paper that contributes to the research on this thesis is the stability analysis for

the problem of mixed convection stagnation point flow past a vertical flat plate with a

second order slip, when the plate is maintained at a variable heat flux. This work has

been revealed by Roşca and Pop (2013a) and the solutions predicts that dual solutions

exist for the opposing flow case with curves which bifurcate at the critical point. The

second-order slip affects considerably the flow and heat transfer characteristics and

the stability analysis showed that the upper branch solution is stable and physically

realizable while the lower branch solution is unstable.

The last one is the work by Ishak (2009) who developed the effects of thermal

radiation on the steady laminar boundary layer flow over a moving plate in a moving

fluid. It should be remarked that the dual solutions exist when the plate and the fluid

move in the opposite direction. Meanwhile, the existence of thermal radiation will

help to reduce the heat transfer at the surface. Therefore, motivated by these works,

we would like to extend the work in finding the stability analysis of MHD flow and

heat transfer over a moving flat plate in ferrofluids with thermal radiation, suction and

slip effects, by using three selected ferroparticles (Fe3O4, CoFe2O4, Mn-ZnFe2O4) in

water- and kerosene-based ferrofluids.

1.11 Problem Statement

A stability analysis is motivated by interest in numerical procedures for determin-

ing which solution is linearly stable and physically realizable if the system of equa-

tions possesses non-unique (dual or triple) solutions. Many publications have shown

that dual and triple solutions are associated by the buoyancy forces in the free or mixed
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convection, and moving surfaces. It is worth mentioning that Ridha (1996) has shown

for a number of two-dimensional mixed convection examples that dual solutions are

associated not only with opposing flow situations, but they exist also for assisting flow

regime (Pop and Ingham, 2001). With regards to the moving surfaces, Bachok et al.

(2010) found dual solutions of the boundary layer equations for the flow of nanofluids

over a moving surface in a flowing fluid.

Some previous studies including Turkyilmazoglu (2012), Rohni et al. (2013), Ba-

chok et al. (2013) and Singh and Chamkha (2013) have mentioned the existence of

dual (first and second) and triple (first, second and third) solutions. These studies con-

clude that the first solution is physically stable and occur in practice, whilst the second

and third solutions are physically unstable. Although the second and third solutions

are unstable and deprive of physical significant, it is still of mathematical interest since

the solutions are also the solutions to the system of differential equations. The second

and third solutions may have more realistic meaning in other situations (Ishak, 2014a).

In order to verify this postulate, the stability analysis has to be performed to identify

which solution is stable and physically realizable if there are dual or triple solutions.

This analysis showed that there is an initial decay for the first solution, while there

is an initial growth of disturbances for the second and third solutions. According to

the literature, such kind of dual solutions have been first studied by Merkin (1985) for

the mixed convection flow past a vertical plate embedded in a porous medium. Then,

this analysis has been applied by Weidman et al. (2006), Merrill et al. (2006), Harris

et al. (2009), Postelnicu and Pop (2011), Nazar et al. (2014), Roşca et al. (2014a),

Ismail et al. (2016), as well as Yasin et al. (2017). These studies were reported for

24


	Front Matter
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols
	Abstrak
	Abstract

	Main Chapters
	1 Introduction
	1.1 Introductory Remarks
	1.2 Magnetohydrodynamic (MHD)
	1.3 Heat Transfer
	1.4 Nanofluids
	1.5 Ferrofluids
	1.6 Boundary Layer Theory
	1.7 Suction
	1.8 Slip Condition
	1.9 Dimensionless Parameters
	1.10 Motivations of Study
	1.11 Problem Statement
	1.12 Objectives and Scope
	1.13 Research Methodology
	1.14 Thesis Outline

	2 Literature Review
	2.1 Introduction
	2.2 MHD Flow and Heat Transfer in Ferrofluids
	2.3 Moving Flat Plate
	2.4 Second-order Slip Boundary Condition
	2.5 Effect of Thermal Radiation
	2.6 Stability Analysis

	3 Governing Equations, Numerical Methods and Stability Analysis
	3.1 Introduction
	3.2 The Governing Equations of Ferrofluids in the Forced Convection
	3.3 Similarity Transformation
	3.4 Numerical Methods
	3.5 Stability Analysis

	4 MHD forced convection flow over a moving flat plate in ferrofluids with suction and second-order slip effects
	4.1 Introduction
	4.2 Basic Equations
	4.3 Stability Analysis
	4.4 Results and Discussion
	4.5 Conclusions

	5 MHD mixed convection flow over a moving flat plate in ferrofluids with suction and slip effects
	5.1 Introduction
	5.2 The Governing Equations of Ferrofluids in the Mixed Convection
	5.3 Basic Equations
	5.4 Stability Analysis
	5.5 Results and Discussion
	5.6 Conclusions

	6 MHD mixed convection flow over a moving flat plate in ferrofluids with thermal radiation, suction and second-order slip effects
	6.1 Introduction
	6.2 The Governing Equations of Ferrofluids in the Mixed Convection with Thermal Radiation
	6.3 Basic Equations
	6.4 Stability Analysis
	6.5 Results and Discussion
	6.6 Conclusions

	7 Conclusion
	7.1 Summary of Research
	7.2 Suggestions for Future Research

	REFERENCES

	APPENDICES
	A Similarity Transformation : MHD forced convection flow over a moving flat plate in ferrofluids with suction and second-order slip effects
	A.1 Governing equations
	A.2 Boundary conditions
	A.3 Quantities of physical interest

	B Maple Program
	C Matlab bvp4c Solver : Dual solutions for MHD forced convection flow over a moving flat plate in ferrofluids with suction and second-order slip effects
	D Matlab bvp4c Solver : Continuation technique for MHD forced convection flow over a moving flat plate in ferrofluids with suction and second-order slip effects
	E Stability Analysis : MHD forced convection flow over a moving flat plate in ferrofluids with suction and second-order slip effects
	F Algorithm for Matlab bvp4c Solver : Solving a stability analysis of MHD forced convection flow over a moving flat plate in ferrofluids with suction and second-order slip effects


