INVESTIGATION OF ADHESION BETWEEN MICROWAVE PLASMA TREATED EPOXY AND SILICONE

CHOONG LAI FAN

UNIVERSITI SAINS MALAYSIA
2020
INVESTIGATION OF ADHESION BETWEEN MICROWAVE PLASMA TREATED EPOXY AND SILICONE

by

CHOONG LAI FAN

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

May 2020
ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisor Professor Ir. Dr. Cheong Kuan Yew for his constant guidance, help and support for the project. His dedication and enthusiasm in research have greatly inspired his students.

I am very grateful to Collaborative Research in Engineering, Science & Technology (CREST) for providing the funding of this research. My deep appreciation goes to Dr. NorAzmi Bin Alias, Puan Tazura Binti Hazilla and Ms. Lim Poi Hong for providing insight and expertise that greatly assisted the project.

My sincere thank goes to my industrial leader Encik Ahmad Faiz Roslan, Dr. David Lacey and Mr. Lim Choon Kim from Osram Opto Semiconductors (Malaysia) for their guidance and advice. I would like to express my appreciation to the Osram Design Team and Reliability Team for their great support and help.

A special thank goes to Professor Dr. Khairulnisak Binti Abdul Razak for giving me guidance and help. I am grateful to Dr. Sivakumar A/L Ramakrishnan for providing me the statistical knowledge and skills. A special thank goes to Encik Mohd. Azam Bin Rejab and Encik Mohammad Azrul Bin Zainol Abidin for their continuous support and assistance. My special appreciation goes to my colleagues and friends Dr. Banu Poobalan, Dr. Lim Zhe Xi, Ms. Myo Myo Thu, Puan Norasiah Binti Mohammad Noordin, Mr. Tran Thanh Tam, Dr. Teo Pao Ter, Dr. Kho Chun Min, Dr. Nyein Nyein, Dr. Mustaffa Ali Azhar Taib, Cik Nurain Najihah Alias and Puan Ervina Junaidi for their advice and support.

Last but not least, I would like to acknowledge with heartfelt gratitude, the encouragement, love and moral support from my mother, siblings and friends, throughout this challenging experience.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xl</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xliii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xlv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xlvi</td>
</tr>
<tr>
<td>CHAPTER ONE: INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem statements</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Research objectives</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Thesis outlines</td>
<td>8</td>
</tr>
<tr>
<td>CHAPTER TWO: LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Plasma fundamentals</td>
<td>9</td>
</tr>
<tr>
<td>2.1.1 Plasma classification</td>
<td>9</td>
</tr>
<tr>
<td>2.1.2 Thermal and non-thermal plasmas</td>
<td>10</td>
</tr>
<tr>
<td>2.1.3 Plasma treatment on polymers</td>
<td>11</td>
</tr>
<tr>
<td>2.1.4 Non-thermal plasma application in surface modification</td>
<td>13</td>
</tr>
<tr>
<td>2.2 Microwave plasma</td>
<td>15</td>
</tr>
<tr>
<td>2.2.1 Microwave plasma applications</td>
<td>17</td>
</tr>
</tbody>
</table>
2.2.2 Components in microwave chamber

2.3 Plasma treatment in oxygen

2.4 Plasma and materials interaction
 2.4.1 Plasma functionalization
 2.4.2 Plasma etching

2.5 Plasma parameters
 2.5.1 Plasma power
 2.5.2 Oxygen flow rate
 2.5.3 Plasma treatment time

2.6 Materials
 2.6.1 Epoxy for microwave plasma activation
 2.6.2 Silicone used as adherate

2.7 Adhesion mechanisms
 2.7.1 Adsorption adhesion
 2.7.2 Chemical bonds
 2.7.3 Mechanical interlocking
 2.7.4 Weak boundary layer

2.8 Hydrophobic recovery phenomenon

2.9 Materials characterization
 2.9.1 X-Ray Photoelectron Spectroscopy (XPS)
 2.9.2 Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS)
 2.9.3 Surface free energy
 2.9.3(a) Young’s equation
 2.9.3(b) Approach to surface energy calculation
 2.9.3(c) Equation of state
2.9.3(d) Acid-base approach 48
2.9.4 Contact angle hysteresis (CAH) 52
2.9.5 Atomic Force Microscopy (AFM) analysis 53
2.9.6 Phase imaging using AFM 54
2.9.7 Fourier Transform Infrared-Attenuation Total Reflectance (FTIR-ATR) 54
2.9.8 Shear testing 56
2.9.9 Transmission Electron Microscopy (TEM) 56
2.10 Reliability stress testing 57
 2.10.1 Thermal Cycling (TC) 58
 2.10.2 Temperature and Humidity Storage (THS) 58
2.11 Statistical analysis 58

CHAPTER THREE: MATERIALS AND METHODS

3.1 Introduction 60
3.2 Raw materials 61
 3.2.1 Epoxy 61
 3.2.2 Sample cleaning 63
 3.2.3 Sample storage for aged epoxy 63
 3.2.4 Silicone used as adherate 64
 3.2.5 Glass dies 64
 3.2.6 Assemblies of epoxy and silicone 65
3.3 Plasma Treatment 66
3.4 Hydrophobic recovery studies of plasma treated epoxy 69
3.5 Materials characterization 69
 3.5.1 Surface chemical analysis by XPS 70
3.5.2 ToF-SIMS 70
3.5.3 Static contact angle measurements 71
3.5.4 Contact angle hysteresis measurements using tilting base 71
3.5.5 Selection of probe liquids for contact angle measurements 72
3.5.6 FTIR-ATR analysis 73
3.5.7 AFM imaging 73
3.5.8 Phase imaging using AFM 74
3.5.9 Surface topography for hydrophobic recovery studies 74
3.5.10 TEM imaging 75
3.5.11 Shear test on epoxy and silicone assemblies 75

3.6 Reliability stress testing 76
3.6.1 Thermal Cycling (TC) 76
3.6.2 Temperature and humidity storage (THS) 77

3.7 Statistical analysis 78

CHAPTER FOUR: RESULTS AND DISCUSSIONS

4.1 Introduction 80
4.2 Determination of surface chemical structures by XPS 80
4.2.1 Comparison of XPS core-level spectra 81
4.2.2 Peak deconvolution of XPS carbon (C 1s) spectra 81
4.2.3 Peak deconvolution of XPS oxygen (O 1s) spectra 84
4.2.4 Peak deconvolution of XPS silicon (Si 2p) spectra 86
4.2.5 Peak deconvolution of spectra of low intensity components 88
4.2.6 Change in surface chemical components by plasma power 90
4.2.7 Change in chemical components by oxygen flow rate 95
4.2.8 Change in chemical components by plasma treatment time 99
4.2.9 Comparison of plasma parameters on surface oxidation 103

4.3 Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) 105

4.3.1 ToF-SIMS analysis on epoxy 105
4.3.2 ToF-SIMS analysis on curing agent 107
4.3.3 ToF-SIMS analysis on carbon black 109
4.3.4 ToF-SIMS analysis on silicon dioxide fillers 111
4.3.5 ToF-SIMS analysis on silicone release agent 112
4.3.6 Low molecular weight oxidized materials (LMWOM) 114
4.3.7 Variations in LMWOM intensity caused by plasma power 115
4.3.8 Influence of oxygen flow rate on LMWOM intensity 116
4.3.9 LMWOM intensity versus treatment time 118
4.3.10 Correlation of LMWOM with surface properties 119
4.3.11 Intact polymer chains varied by plasma treatment 122
4.3.12 Plasma power effects on intact polymer chains 123
4.3.13 Effects of oxygen flow rate on intact polymer chains 127
4.3.14 Influence of treatment time on intact polymer chains 131
4.3.15 Correlation of intact polymer chains with surface properties 132

4.4 Contact angle measurements and surface energy calculation 135

4.4.1 Surface energy of untreated epoxy resins 135
4.4.2 Plasma effects on surface energy of epoxy 136

4.5 Effect of microwave plasma on surface energy 139

4.5.1 Change in surface energy as a function of plasma power 140
4.5.2 Influence of oxygen flow rate on surface energy 141
4.5.3 Modification of surface energy by treatment time 142
4.5.4 Effects of plasma parameters on surface energy 143
4.6 Contact angle hysteresis

4.6.1 Plasma power effect on contact angle hysteresis

4.6.2 Effect of oxygen flow rate on contact angle hysteresis

4.6.3 Contact angle hysteresis versus treatment time

4.6.4 Effects of plasma parameters on CAH

4.6.5 Correlation of surface energy and CAH with XPS results

4.7 Surface topography studies of epoxy using AFM

4.7.1 Plasma power effect on surface roughness

4.7.2 Effects of oxygen flow rate on surface roughness

4.7.3 Treatment time effect on surface roughness

4.7.4 Linear regression analysis on ∆Rrms

4.8 AFM phase imaging of epoxy

4.8.1 Effects of plasma power on phase imaging

4.8.2 Phase imaging versus oxygen flow rate

4.8.3 Effects of treatment time on phase imaging

4.9 Surface analysis using FTIR-ATR

4.10 Comparison of effect of plasma parameters on surface properties

4.11 Hydrophobic recovery of plasma treated epoxy

4.11.1 XPS core-level spectra of epoxy

4.11.1(a) Monitoring of C 1s components

4.11.1(b) Monitoring of O/C ratio

4.11.1(c) Ageing effect on O 1s components

4.11.1(d) Change in Si 2p components during ageing

4.11.1(e) Ageing effect on XPS depth profiling

4.11.2 XPS depth profiling of epoxy
4.11.2(a) XPS depth profiling in weak plasma condition 185
4.11.2(b) XPS depth profiling in moderate plasma condition 187
4.11.2(c) XPS depth profiling in strong plasma condition 189
4.11.3 ToF-SIMS monitoring during hydrophobic recovery 191
 4.11.3(a) Intensity of LMWOM 191
 4.11.3(b) ToF-SIMS analysis of intact polymer chains 196
4.11.4 Ageing effect on surface energy 198
 4.11.4(a) Ageing effect and plasma powers 200
 4.11.4(b) Ageing effect and oxygen flow rates 202
 4.11.4(c) Ageing effect and treatment time 204
4.11.5 Ageing effect on CAH of plasma treated epoxy 206
4.11.6 Ageing effects on surface roughness 209
 4.11.6(a) Ageing and plasma power effects on Rrms 210
 4.11.6(b) Ageing and oxygen flow rate effects on Rrms 214
 4.11.6(c) Ageing and treatment time effects on Rrms 218
 4.11.6(d) Ageing effects on Rrms of epoxy 222
4.11.7 Correlation of ageing effects and surface properties of epoxy 223
4.12 Surface adhesion of epoxy 224
 4.12.1 Adhesion of plasma treated epoxy without ageing 224
 4.12.2 Effects of plasma parameters on shear strength without ageing 225
 4.12.3 Surface properties versus shear strength of epoxy without ageing 227
 4.12.4 Cross-linking of epoxy without ageing 230
4.13 Cohesive or adhesive failures in shear testing 236
 4.13.1 Shear strength of epoxy without ageing 237
CHAPTER FIVE: CONCLUSIONS / RECOMMENDATIONS

5.1 Conclusions 269

5.2 Recommendations for future work 272

References 273

APPENDICES

LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Dissociation energies of various hydrocarbon bonds</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>(Friedrich, 2012; Holländer and Thome, 2011; Ouellette and Rawn, 2018a)</td>
<td></td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Descriptions of functions of major components in microwave chamber</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>(Bogdal et al., 2003; Egitto et al., 1994; Horikoshi et al., 2018; Kappe et al., 2012; Loupy, 2002; Mehdizadeh, 2015)</td>
<td></td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Generation of reactive oxygen radicals in plasma ionization</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>(Ionin et al., 2007; Lee and Lieberman, 1995)</td>
<td></td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Calculation methods of surface free energy of solids by means of</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>contact angle measurements (Yuan and Lee, 2013)</td>
<td></td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Acid and basic components of dimethyl sulfoxide and ethylene glycol</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>(Schuster et al., 2015)</td>
<td></td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Chemical compositions of epoxy</td>
<td>62</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Experiments of plasma treatment applying various plasma parameters</td>
<td>68</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Surface energy components of probe liquids used in contact angle</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>measurements (Schuster et al., 2015; van Oss, 2006b)</td>
<td></td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Peak deconvolution of C 1s components</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>(Briggs, 1998; Myers and Chen, 2016; Tompkins et al., 2013)</td>
<td></td>
</tr>
<tr>
<td>Table 4.2</td>
<td>A comparison of O/C ratio deduced from C 1s spectrum between</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>untreated epoxy and epoxy treated at plasma power of 300 W in oxygen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>flow rate of 20 sccm for 1 min.</td>
<td></td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Peak deconvolution for O 1s spectra</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>(Mähl et al., 1998)</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.4 Atomic concentration of various components in O 1s spectra of untreated epoxy and epoxy treated at plasma power of 500 W in oxygen flow rate of 20 sccm for 1 min.

Table 4.5 List of assignment of Si 2p binding energies (Thøgersen et al., 2008; Thøgersen et al., 2010).

Table 4.6 Atomic concentration of Si 2p of untreated epoxy and epoxy treated at plasma power of 300 W in oxygen flow rate of 20 sccm for 1 min.

Table 4.7 Linear regression with plasma power as predictor for evaluation of XPS narrow scan spectra on the epoxy treated at plasma power of 200-600 W in oxygen flow rate of 20 sccm for 1 min.

Table 4.8 Results of linear regression analysis of XPS narrow scan components applying plasma power as predictor.

Table 4.9 Linear regression results of components of XPS narrow scans of epoxy treated in various oxygen flow rates at plasma power of 300 W for 1 min.

Table 4.10 Linear regression using oxygen flow rate as predictor on the C 1s, O 1s and Si 2p components on the epoxy treated in oxygen flow rate of 20-60 sccm at plasma power of 300 W for 1 min.

Table 4.11 Linear regression results on the narrow scans core-level spectra as a function of plasma treatment time for 1-5 min at plasma power of 300 W in oxygen flow rate of 20 sccm.

Table 4.12 Linear regression on the oxidized components versus plasma treatment time for 1-5 min at plasma power of 300 W in oxygen flow rate of 20 sccm.

Table 4.13 Linear regression of C 1s versus C–O–C of epoxy treated in various plasma powers, oxygen flow rates and treatment times.
Table 4.14 Linear regression results of O 1s as a function of Si$^{4+}$ (SiO$_2$) of epoxy treated in various plasma powers, oxygen flow rates and treatment times.

Table 4.15 Comparison of the intensity of the positive ions derived from DGEBA and o-cresol novolac on untreated and plasma treated epoxy.

Table 4.16 Comparison of the intensity of TDI positive ions on untreated and plasma treated epoxy.

Table 4.17 Intensity of carbon black positive ions on epoxy.

Table 4.18 Intensity of the positive ions originated from silicon dioxide fillers.

Table 4.19 Intensity of silicone positive ions detected on untreated and plasma treated epoxy.

Table 4.20 List of LMWOM with m/z below 100 detected as positive ions in ToF-SIMS.

Table 4.21 Linear regression analysis on LMWOM as a function of plasma power, oxygen flow rate and treatment time.

Table 4.22 Linear regression analysis on LMWOM versus ARrms on epoxy treated by varying plasma power, oxygen flow rate and treatment time.

Table 4.23 Linear regression analysis of LMWOM versus C–O–C of epoxy treated by varying plasma power, oxygen flow rate and treatment time.

Table 4.24 Linear regression of effects of LMWOM intensity on surface energy and CAH of epoxy treated by varying plasma power, oxygen flow rate and treatment time.

Table 4.25 Linear regression results on intact polymer chain versus plasma power, oxygen flow rate and plasma treatment time.
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.26</td>
<td>Linear regression analysis on surface energy and CAH versus intact polymer chains of epoxy treated by various plasma powers, oxygen flow rates and treatment time.</td>
</tr>
<tr>
<td>4.27</td>
<td>Linear regression results on total intensity of intact polymer chains versus ∆Rrms of epoxy treated by various plasma powers, oxygen flow rates and treatment time.</td>
</tr>
<tr>
<td>4.28</td>
<td>Contact angles and surface energy components of untreated epoxy and silicone calculated using acid-base approach.</td>
</tr>
<tr>
<td>4.29</td>
<td>Chemical characteristics of functional groups (Dilsiz and Wightman, 2000).</td>
</tr>
<tr>
<td>4.30</td>
<td>Linear regression results of surface energy versus plasma power, oxygen flow rate and treatment time.</td>
</tr>
<tr>
<td>4.31</td>
<td>Linear regression analysis on CAH with respect to plasma power, oxygen flow rate and treatment time.</td>
</tr>
<tr>
<td>4.32</td>
<td>Linear regression analysis on surface energy versus O 1s of epoxy treated by various plasma powers, oxygen flow rates and treatment times.</td>
</tr>
<tr>
<td>4.33</td>
<td>Linear regression analysis on surface energy and CAH versus O/C ratio of epoxy treated by varying plasma power, oxygen flow rate and treatment time.</td>
</tr>
<tr>
<td>4.34</td>
<td>Linear regression analysis on surface energy and CAH versus Si$^{4+}$ (SiO$_2$) of epoxy treated in various plasma powers, oxygen flow rates and treatment times.</td>
</tr>
<tr>
<td>4.35</td>
<td>Linear regression analysis on ∆Rrms with respect to plasma parameters.</td>
</tr>
<tr>
<td>4.36</td>
<td>Linear regression analysis on surface energy and CAH of epoxy versus ∆Rrms in various experiments.</td>
</tr>
<tr>
<td>4.37</td>
<td>Linear regression of O 1s, O/C ratio and Si$^{4+}$ (SiO$_2$) versus ∆Rrms.</td>
</tr>
<tr>
<td>Table 4.38</td>
<td>Linear regression results of C-O-C against of ∆Rrms of epoxy treated by varying plasma power, oxygen flow rate and treatment time.</td>
</tr>
<tr>
<td>Table 4.39</td>
<td>Results of linear regression analysis on the effects of plasma parameters on surface properties.</td>
</tr>
<tr>
<td>Table 4.40</td>
<td>Critical surface properties of plasma treated epoxy without ageing.</td>
</tr>
<tr>
<td>Table 4.41</td>
<td>Linear regression results of XPS core-level spectra versus ageing time for weak, moderate and strong plasma conditions.</td>
</tr>
<tr>
<td>Table 4.42</td>
<td>Linear regression analysis on O/C ratio as a function of ageing.</td>
</tr>
<tr>
<td>Table 4.43</td>
<td>Linear regression analysis on C-O-C versus ageing duration of epoxy treated in weak, moderate and strong plasma conditions.</td>
</tr>
<tr>
<td>Table 4.44</td>
<td>Linear regression analysis on Si⁴⁺ (SiO₂) as a function of ageing.</td>
</tr>
<tr>
<td>Table 4.45</td>
<td>Linear regression results of overall LMWOM intensity versus ageing.</td>
</tr>
<tr>
<td>Table 4.46</td>
<td>Linear regression results of the effect of LMWOM intensity on surface energy and CAH of epoxy treated in weak, moderate and strong plasma conditions.</td>
</tr>
<tr>
<td>Table 4.47</td>
<td>Linear regression analysis on intact polymer chains versus ageing.</td>
</tr>
<tr>
<td>Table 4.48</td>
<td>Calculation of decaying rate of surface energy of epoxy after plasma treatment.</td>
</tr>
<tr>
<td>Table 4.49</td>
<td>Linear regression analysis on surface energy versus ageing on epoxy treated at varios plasma powers in oxygen flow rate of 20 sccm for 1 min.</td>
</tr>
<tr>
<td>Table 4.50</td>
<td>Linear regression results of surface energy versus ageing on the epoxy treated in various oxygen flow rates at plasma power of 300 W for 1 min.</td>
</tr>
<tr>
<td>Table 4.51</td>
<td>Linear regression on surface energy versus ageing on the epoxy treated for 1-5 min at plasma power of 300 W in oxygen flow rate of 20 sccm.</td>
</tr>
<tr>
<td>Table 4.52</td>
<td>Linear regression results of CAH versus ageing of epoxy treated in various plasma powers, oxygen flow rates and treatment times.</td>
</tr>
<tr>
<td>Table 4.53</td>
<td>Linear regression on Rrms versus ageing time of epoxy treated in experiments of plasma power, oxygen flow rate and treatment time.</td>
</tr>
<tr>
<td>Table 4.54</td>
<td>Linear regression results of shear strength with respect to plasma power, oxygen flow rate and treatment time.</td>
</tr>
<tr>
<td>Table 4.55</td>
<td>Linear regression analysis on the effect of surface energy and CAH on shear strength of the plasma treated epoxy.</td>
</tr>
<tr>
<td>Table 4.56</td>
<td>Linear regression analysis on shear strength with respect to O/C ratio, O 1s and Si^{4+} (SiO_2).</td>
</tr>
<tr>
<td>Table 4.57</td>
<td>Linear regression results on shear strength as a function of plasma parameters.</td>
</tr>
<tr>
<td>Table 4.58</td>
<td>Linear regression analysis on shear strength versus C–O–C of epoxy treated by varying plasma power, oxygen flow rate and treatment time.</td>
</tr>
<tr>
<td>Table 4.59</td>
<td>Linear regression analysis on shear strength versus ΔRrms.</td>
</tr>
<tr>
<td>Table 4.60</td>
<td>Intensity of positive ions C_2H_4O_2^+ (m/z = 60) detected by ToF-SIMS during ageing of untreated epoxy and epoxy treated in weak, moderate and strong plasma conditions.</td>
</tr>
<tr>
<td>Table 4.61</td>
<td>Intensity of positive ions C_{23}H_{29}O_{6}^+ (m/z = 401) detected by ToF-SIMS during ageing of untreated epoxy and epoxy treated in weak, moderate and strong plasma conditions.</td>
</tr>
</tbody>
</table>
Table 4.62 Linear regression results of shear strength against ageing from zero day to one week.
Table 4.63 Linear regression results of shear strength against ageing from one week to two months.
Table 4.64 Linear regression results of shear strength versus surface energy of epoxy treated by varying plasma power, oxygen flow rate and treatment time from zero day to one week.
Table 4.65 Linear regression results of shear strength versus surface energy of epoxy treated by varying plasma power, oxygen flow rate and treatment time from one week to two months.
Table 4.66 Linear regression analysis of shear strength versus O/C ratio, O 1s and Si⁴⁺ (SiO₂) of epoxy treated in weak, moderate and strong plasma conditions and aged from zero day to one week.
Table 4.67 Linear regression analysis of shear strength versus O/C ratio, O 1s and Si⁴⁺ (SiO₂) of epoxy treated in weak, moderate and strong plasma conditions and aged from one week to two months.
Table 4.68 Linear regression analysis of shear strength versus ageing duration and comparison with C–O–C of epoxy treated in weak, moderate and strong plasma conditions and aged from zero day to one week.
Table 4.69 Linear regression analysis of shear strength versus ageing duration and comparison with C–O–C of epoxy treated in weak, moderate and strong plasma conditions and aged from one week to two months.
Table 4.70 Linear regression analysis on shear strength versus ageing duration and comparison with LMWOM of epoxy treated in weak, moderate and strong plasma conditions and aged from zero day to one week.
Table 4.71 Linear regression analysis on shear strength versus ageing
duration and comparison with LMWOM of epoxy treated in
weak, moderate and strong plasma conditions and aged from
one week to two months.

Table 4.72 Plasma condition of epoxy exhibit optimum average shear
strengths.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Packaged LED built with epoxy molding part and silicone encapsulant (Chen et al., 2011). Dotted line located at interface of epoxy molding part and silicone encapsulant represents delamination failure.</td>
<td>1</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Schematic of comparison of measured total adhesion and bond strength between polymer and coating, depending on type of interaction and density of these interactions along the polymer-coating interface (Friedrich, 2018).</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Schematic of cross-sectional views of (a) moisture penetration path (shown in dashed lines) into interface of epoxy molding part and silicone encapsulant and (b) delamination failures of LED (Singh and Tan, 2016).</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Optical photos of (a) LED failed for delamination and (b) detach of silicone encapsulant from epoxy molding part (Singh and Tan, 2018).</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Classification of plasma types (Meichsner et al., 2013; Tyczkowski, 2012). T_e and T_g are electron temperature and gas temperature, respectively.</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Trends in T_e and T_g as a function of pressure in glow discharge (Friedrich, 2012).</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Polymer modification techniques and the corresponding processing energies (Friedrich, 2012).</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Normalized electron energy distribution function $g(E)$ for a microwave plasma with a pressure of 20 mTorr at plasma power of 300 W, and an oxygen flow rate of 100 sccm (Heidenreich III et al., 1988).</td>
<td>12</td>
</tr>
</tbody>
</table>
Figure 2.5 The electromagnetic spectrum displaying wavelength, energy of one photon, and frequency of electromagnetic energies including gamma ray (γ), X-ray, ultraviolet (UV) ray, visible (Baalmann et al.) light, infrared (IR) light, microwave and radio frequency (Kappe et al., 2012).

Figure 2.6 Electric and magnetic field components in microwaves (Kappe et al., 2012).

Figure 2.7 Construction components in a microwave chamber (Horikoshi et al., 2018).

Figure 2.8 Schematic of (a) untreated polymer, (b) functionalization and (c) etching on polymer in oxygen plasma (Puliyil et al., 2019).

Figure 2.9 Opening of oxirane ring by nucleophile O− in SN2 mechanism (Morrison and Boyd, 1992). R represents a polymer chain.

Figure 2.10 Schematic of plasma induced selective etching on glass-filled polyphenol composite. Comparison between untreated and plasma treated polyphenol composite reveals great enhancement of surface roughness (Puliyalil et al., 2015).

Figure 2.11 Density of atomic oxygen versus plasma power of microwave chamber filled with various oxygen flow rates from 0.6 to 20 liter per hour (Primc et al., 2017).

Figure 2.12 Oxygen plasma density as a function of plasma power of microwave plasma (Latrasse et al., 2016).

Figure 2.13 Density of atomic oxygen versus pressure in microwave plasma (Primc et al., 2011).

Figure 2.14 Trend of plasma density against oxygen pressure in microwave plasma (Latrasse et al., 2016).
Figure 2.15 Oxygen plasma treatment on polymer surface to enhance surface roughness and introduce polar groups composed of OH, C–O–C, C=O and COOH to polymer surface (Friedrich, 2012).

Figure 2.16 The structure and properties of epoxy (Petrie, 2006). \(n \) is number of repeating units of epoxy in polymer chain.

Figure 2.17 Etherization reaction between DGEBA epoxy and silicone (Ge et al., 2017). Number of monomers in silicone and epoxy are represented by \(m \) and \(n \), respectively.

Figure 2.18 Ethylene of silicone react with epoxide ring in (a) protonation and (b) SN2 mechanism. \(R_1 \) and \(R_2 \) are silicone cross-linked polymer chains and epoxy, respectively.

Figure 2.19 Adhesion between adhesive and substrate formed by (a) good and (b) bad wetting interface (Fourche, 1995).

Figure 2.20 Schematic represents presence of weak boundary layer on oxygen plasma treated polymer. LMWOM created on polymer exhibit different compatibility with metal coating and glue, respectively (Friedrich, 2012).

Figure 2.21 Reorientation of polar groups (red dots) of polymer chain from polymer surface towards the bulk and unmodified parts of polymer chains tend to expose to polymer surface during ageing (Mortazavi and Nosonovsk, 2012).

Figure 2.22 The XPS spectra of C1s spectra of epoxy (a) without modification and (b) air plasma modification for 360 s in air pressure of 94.7 kPa and power of 92.5 W (Hong et al., 2019).

Figure 2.23 Collision cascade and secondary ion production during ToF-SIMS analysis (Mazel and Ricardin, 2009).
Figure 2.24 Water contact angles of (a) hydrophobic and (b) hydrophilic surfaces.

Figure 2.25 Schematic representation of a sessile drop on a solid surface (Kwok and Neumann, 1999).

Figure 2.26 Schematic of a probe liquid on tilting plate for measuring advancing and receding contact angles (Yuan and Lee, 2013).

Figure 2.27 AFM scanning on (a) untreated and (b) oxygen and argon plasma treated epoxy-based photoresist SU-8 show increase in surface roughness root mean square (Ashraf et al., 2015).

Figure 2.28 Tapping-mode AFM topographic image of nodular LMWOM on polypropylene film treated in air corona discharge (Strobel et al., 2003).

Figure 2.29 (a) Height and (b) phase images of epoxy blended with poly(ε-caprolactone) crystalline (Meng et al., 2006).

Figure 2.30 FTIR-ATR spectra of epoxy subjected to 24 and 48 hours hygrothermal treatment (Ulrich et al., 2015).

Figure 2.31 Contact tool shall load against die edge which forms an angle approximately 90° with respect to substrate (XYZTEC, 2016).

Figure 2.32 TEM micrographs show fractures in epoxy composites (Gong et al., 2015).

Figure 2.33 TEM imaging of silicon dioxide nanoparticles in epoxy (Sprenger, 2013).

Figure 3.1 An overview of project methodology.

Figure 3.2 Chemical structures of (a) DGEBA and (b) o-cresol novolac.

Figure 3.3 Chemical structure of curing agent 2,4 toluene diisocyanate urone (TDI).

Figure 3.4 Chemical formulation of release agent, silicone.
Figure 3.5 Chemical structure of silicone. n is the number of monomers of silicone.

Figure 3.6 (a) Desposition of silicone liquid drop by an automated dispenser, (b) removal of automated dispenser from epoxy surface, (c) placement of a glass die on silicone drop and (d) formation of assembly of epoxy and silicone.

Figure 3.7 (a) Optical photo of side view of glass die and silicone adhere to epoxy and (b) schematic representation of cross-sectional view of epoxy and silicone assembly.

Figure 3.8 PVA Tepla GIGA 80 Plus microwave plasma chamber.

Figure 3.9 Microwave system including plasma source of 2.45 GHz, waveguides and applicator (Lebedev, 2015; Liebel, 2008; Mehdizadeh, 2015).

Figure 3.10 Antenna arrays enclosed by quartz tubes in microwave plasma chamber (Liebel, 2008).

Figure 3.11 Procedure of hydrophobic recovery studies including surface analysis, shear testing and reliability testing on plasma treated epoxy.

Figure 3.12 Photo of Ramé-Hart model 250 used for CAH measurement.

Figure 3.13 (a) Front view and (b) schematic of side view of shear test setup.

Figure 3.14 Scal Climats Ctr TC chamber.

Figure 3.15 Schematic of TC profile.

Figure 3.16 Heraeus Votsch HT 7020 chamber.

Figure 4.1 Comparison of XPS survey spectra of untreated epoxy and epoxy treated at plasma power of 500 W in oxygen flow rate for 1 min.