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angle approximately 90° with respect to substrate 

(XYZTEC, 2016). 
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Figure 2.32 TEM micrographs show fractures in epoxy composites 

(Gong et al., 2015). 
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Figure 2.33 TEM imaging of silicon dioxide nanoparticles in epoxy 

(Sprenger, 2013). 
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Figure 3.1 An overview of project methodology. 60 

Figure 3.2 Chemical structures of (a) DGEBA and (b) o-cresol novolac. 62 

Figure 3.3 Chemical structure of curing agent 2,4 toluene diisocyanate 

urone (TDI). 
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Figure 3.4 Chemical formulation of release agent, silicone. 63 
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Figure 3.5 Chemical structure of silicone. n is the number of monomers 

of silicone. 
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Figure 3.6 (a) Desposition of silicone liquid drop by an atutomated 

dispenser, (b) removal of automated dispenser from epoxy 

surface, (c) placement of a glass die on silicone drop and (d) 

formation of assembly of epoxy and silicone. 
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Figure 3.7 (a) Optical photo of side view of glass die and silicone 

adhere to epoxy and (b) schematic representation of cross-

sectional view of epoxy and silicone assembly. 
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Figure 3.8 PVA Tepla GIGA 80 Plus microwave plasma chamber. 66 

Figure 3.9 Microwave system including plasma source of 2.45 GHz, 

waveguides and applicator (Lebedev, 2015; Liebel, 2008; 

Mehdizadeh, 2015). 
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Figure 3.10 Antenna arrays enclosed by quartz tubes in microwave 

plasma chamber (Liebel, 2008). 
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Figure 3.11 Procedure of hydrophobic recovery studies including 

surface analysis, shear testing and reliability testing on 

plasma treated epoxy. 
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Figure 3.12 Photo of Ramé-Hart model 250 used for CAH measurement. 76 

Figure 3.13 (a) Front view and (b) schematic of side view of shear test 

setup. 

 

Figure 3.14 Scal Climats Ctr TC chamber. 77 

Figure 3.15 Schematic of TC profile. 77 

Figure 3.16 Heraeus Votsch HT 7020 chamber. 78 

Figure 4.1 Comparison of XPS survey spectra of untreated epoxy and 

epoxy treated at plasma power of 500 W in oxygen flow rate 

for 1 min. 
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