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current at the Ti-TiO2 interface. (d) Dissolution occurring 
at different regions produces different nanostructure 
texture. Dissolution at compact oxide layer generates a 
rough texture with undissolved TiOx debris. Dissolution 
at interface is aided by current flow, generates smooth-
looking nanotubes. 
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Figure 4.28 Photocurrent recorded when TNT is subjected to AM 1.5 
irradiation (a) F7H1(CO), DA. (b) F7H2(CO), DA. (c) 
F7H1, DA. (d) F7H2, DA. (e) F7H1, SA. (f) F7H2, SA. 
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Figure 4.29 Samples anodized in 0.6 wt% NH4F, 1 wt% H2O2 
ethylene glycol electrolyte at 60 V without stirring for (a) 
30 mins (b) 60 mins and (c) 90 mins. Left panel, 1 k 
magnification. Right panel, 10 k magnification. 
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Figure 4.30 Appearance of (a) electrolyte by-product(b) after vacuum 
filtered and (c) grinded and annealed. 
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Figure 4.31 XRD pattern to determine phase present. (a) Pre-anneal 
yellowish powder fits well with (NH4)3TiOF5. (b) Post-
anneal white powder show the presence of (NH4)TiOF3 
and (NH4)2TiF6. 
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Figure 4.32 FESEM images of yellowish by-product collected from 
anodization of Ti foil in EG containing 0.6 wt% NH4F 
and 1 wt% H2O2 prior to annealing. 
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Figure 4.33 FESEM images of whitish by-product collected from 
anodization of Ti foil in EG containing 0.6 wt% NH4F 
and 1 wt% H2O2 after annealing at 200 ºC. 
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Figure 4.34 Nucleation process of titanate crystals by conducting 
FESEM imaging on foil surface. The anodization of Ti 
foil is performed in EG containing 0.6 wt% NH4F and 1 
wt% H2O2 
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Figure 4.35 FTIR spectra of (a) pre-anneal (red-spectrum line) and 
(b) post-anneal (black-spectrum line) samples. 
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Figure 4.36 XPS spectra of pre-anneal (red spectrum line) and post-
anneal (blue-spectrum line) samples. (a), (d) Survey scan. 
(b), (e) F 1s spectra. (c), (f) O 1s spectra (g), (j) Ti 2p 
spectra. (h), (k) N 1s spectra. and (i), (j) C 1s spectra. 
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LIST OF SYMBOLS 

 
2θ Two-theta 

Ag/AgCl Silver-silver Chloride reference electrode 

Cu Kα Copper K-alpha X-ray source 

e- electron 

h+ holes 

hv Photon energy 

H2 Hydrogen gas 

HF Hydrofluoric acid 

H2O Water 

H2O2 Hydrogen peroxide 

KBr Potassium bromide 

MO Methyl Orange dye 

NH4F Ammonium fluoride 

(NH4)TiOF3 Ammonium titanate oxytrifluoride 

(NH4)3TiOF5 Triammonium oxotitanate pentafluoride  

(NH4)2TiF6 Diammonium Hexafluorotitanium 

O16 Oxygen 16 isotope 

O18 Oxygen 18 isotope 

OH- Hydroxyl group 

•OH Hydroxyl radical 

Pt Platinum 

Ti4+ Titanium 4+ cation 

TiF4 Titanium tetrafluoride 

TiO2 Titanium Dioxide 

Xe125 Xenon 125 isotope 
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