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PENCARIAN KONFIGURASI DAN ANALISIS PERUBAHAN BENTUK MODEL 

BIO-TENSEGRITY YANG DIILHAMKAN OLEH TULANG BELAKANG 

 

ABSTRAK 

 

Biotensegrity yang diilhamkan oleh organisma hidup memiliki sebahagian besar sifat 

mekanik cemerlang yang terkandung dalam sistem biologi seperti kecekapan, berkestabilan 

diri, berhierarki dan berupaya menyalurkan pelbagai fungsi.  Di samping itu, biotensegrity 

sebagai satu model yang terhasil daripada inspirasi rupa bentuk dan fungsi sistem biologi 

yang berhierarki juga menunjukkan potensinya dalam perubahan bentuk.  Maka, kajian 

biotensegrity sebagai satu alternatif baru dalam aplikasi yang memerlukan perubahan bentuk 

seperti lengan fleksibel dalam industri pembinaan adalah diperlukan.  Walau bagaimanapun, 

penyelidikan dalam menghasilkan konfigurasi dan model matematik biotensegrity yang 

melibatkan perubahan bentuk adalah terhad.  Dengan ini, model yang berinspirasikan sistem 

biologi terutamanya dari segi rupa bentuk seperti dimensi dan lengkungan semula jadi 

tetulang belakang manusia yang berkeupayaan dalam perubahan bentuk untuk kegunaan 

sebagai alatan robot adalah tujuan utama kajian ini.  Khususnya, penyelidikan ini bertujuan 

untuk (1) memperolehi konfigurasi model biotensegrity berunsurkan tetulang belakang 

manusia, spine biotensegrity structure (SBS) melalui fomulasi matematik, (2) mencadangkan 

algoritma untuk tujuan simulasi perubahan bentuk, dan (3) mengkaji perilaku model asli SBS.  

Metodologi kajian ini melibatkan tiga fasa.  Dalam fasa pertama, prosedur pencarian 

konfigurasi model biotensegrity yang berunsurkan tetulang belakang manusia yang 

bertingkat empat dan jenis kelas satu telah diterbitkan.  Usaha pencarian konfigurasi ini 

melibatkan kaedah menyelesaikan persamaan sistem keseimbangan melalui cara Moore-

Penrose generalized inverse, penentuan ragam tegasan keseimbangan-diri melalui asas 

penguraian serta pengoptimunan pekali untuk gabungan linear ragam tegasan keseimbangan-

diri.  Kelebihan ciri tetulang belakang manusia seperti kelangsingan, kelengkungan semula 

jadi dan unsur rangkaian penstabilan seperti tetulang dan otot telah digunakan dalam 

pencarian konfigurasi model SBS.  Di samping itu, dua kaedah khusus yang berkesan telah 



 

xvii 

digunakan dalam pencarian konfigurasi model SBS yang berkeseimbangan-diri, iaitu dengan 

melalui pelarasan sudut putaran dan juga penganjakan kordinasi nod asal.  Setelah usaha 

pencarian konfigurasi model SBS yang berkeseimbangan-diri, keupayaan model tersebut 

menjalani proses perubahan bentuk secara tambahan telah disiasat dalam fasa kedua.  

Khususnya, nod model SBS yang tidak dikekang telah dipilih sebagai nod dipantau di mana 

nod tersebut diperlukan untuk mencapai anjakan sasaran yang dinyatakan dalam magnitud  

tertentu.  Keupayaan dalam perubahan bentuk model SBS ke arah sasaran boleh dicapai 

dengan pemanjangan kabel.  Strategi pengiraan untuk perubahan bentuk melibatkan dua 

peringkat:  penerbitan persamaan keseimbangan tambahan dan pengoptimunan pemanjangan 

kabel dengan pengaturcaraan berjujukan quadratik (sequential quadratic programming).  

Dalam fasa ketiga, ciri-ciri model SBS seperti konfigurasi dan perubahan dalam daya paksi 

setelah analisis perubahan bentuk telah disiasat.  Empat mod pergerakan berikut telah dikaji 

untuk menyiasat ciri-ciri model SBS setelah perubahan bentuk: mod pergerakan dalam satu, 

dua, tiga arah dan mod putaran.  Kajian ini telah berjaya memperolehi konfigurasi 

biotensegrity berunsurkan tetulang belakang manusia berkeseimbangan-diri.  Sebanyak tiga 

konfigurasi model yang baru telah dihasilkan.  Kajian ini juga mencadangkan prosedur yang 

melibatkan pengiraan perubahan bentuk secara tambahan untuk model SBS.  Simulasi 

berangka ke atas tensegrity biasa dan model SBS telah menunjukkan sifat penumpuan yang 

unggul untuk algoritma yang dicadangkan dalam analisis perubahan bentuk.  Hasil kajian ini 

menunjukkan algoritma yang dicadangkan adalah berkesan bagi model yang 

berkeseimbangan-diri untuk mencari kordinat sasaran dalam pelbagai mod pergerakan 

melalui pemanjangan kabel.  Hasil kajian ini juga menunjukkan bahawa model SBS 

berkeupayaan dalam perubahan bentuk secara lenturan, ubah bentuk paksi dan kilasan di 

samping menunjukkan perubahan daya dalam anggota yang ketara semasa perubahan bentuk.  

Perubahan daya paksi yang aktif terutama dalam kumpulan elemen yang jauh dari nod 

dipantau juga dikesan.  Sebagai kesimpulan, hasil kajian ini memberi sumbangan ke arah 

merealisasikan lengan fleksibel yang berunsurkan tetulang belakang yang berkeupayaan 

pelbagai corak perubahan bentuk. 
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FORM FINDING AND SHAPE CHANGE ANALYSIS OF SPINE INSPIRED  

BIO-TENSEGRITY MODEL 

 

ABSTRACT 

 

Biotensegrity mimicking the living organisms possesses excellent characteristics that duly 

demonstrate most of the properties in biological systems such as efficiency, self-stabilization, 

multi-modularity and multi-functional. Moreover, biotensegrity as a model emulated from 

the forms and functions of hierarchical biological system reveals its great potential in shape 

change ability.  Therefore it is highly suitable to study biotensegrity as a new alternative 

choice for possible application where shape change ability is desired such as flexible arm in 

construction industry.  However, there are limited studies on form finding of biotensegrity 

configurations and mathematical models on shape change of biotensegrity.  Mimicking 

biological system by their shape, pertinent anatomical dimensions and natural curvature of 

human spine to seek its potential in shape change beneficial to application like automated 

robotic tools is the overall aim of this study.  Specifically, this basic study aims to (1) 

formulate mathematical procedures for finding self-equilibrated configurations of spine bio-

tensegrity structure (SBS) models (2) formulate computational strategy for simulating the 

shape change of novel SBS models, and (3) evaluate the characteristics of the novel SBS 

models.  The methodology for this study consists of three phases.  In the first phase, 

assemblage and mathematical formulation procedure for form finding of self-equilibrated 

four-stage class 1 biotensegrity models inspired by human spine or spine biotensegrity (SBS) 

models are established.  The form-finding procedure involves method of solving the system 

of equilibrium equations through the use of Moore-Penrose generalized inverse, 

determination of self-equilibrium stress modes via eigenvector basis decomposition and 

optimization of coefficients for the linear combination of linearly independent self-

equilibrium stress modes.  Advantageous features of human spine like the slenderness and 

natural curvature in the geometry, as well as the stabilizing network consist of spinal column 

and muscle are incorporated in the mathematical formulation of the configuration of the SBS 
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models.  Additionally, two specific approaches in modification of nodal coordinates are 

implemented to improve the efficiency for form-finding of self-equilibrated SBS models, i.e. 

by means of adjustment of twist angles and modification of initial nodal coordinates.  After 

successful searching of the configuration of self-equilibrated SBS models, the ability of the 

models to undergo shape change to achieve the prescribed state is investigated in the second 

phase.  Specifically, unconstrained nodes of SBS model are chosen as monitored nodes 

where these nodes are required to reach a set of target displacements in prescribed 

magnitudes and directional modes.  The shape change of SBS models towards target state is 

achieved by means of forced elongation of cable.  Computational strategies for the shape 

change consist of two stages: the derivation of incremental equilibrium equations and 

optimization of the cables forced elongation by sequential quadratic programming.    In the 

third phase, the structural characteristics of SBS models such as the deformed configurations 

and changes of axial force at the end of shape change analysis are investigated.  The 

following four cases of target displacements are studied in order to investigate the 

characteristics of SBS models after shape change: uni-, bi-, tri-directional and twisting 

modes.  The current study has successfully formulated mathematically the self-equilibrated 

configuration of SBS models inspired by human spine.  A total of three novel self-

equilibrated configurations of SBS models were searched. This study has also proposed a set 

of procedures involving incremental calculation for shape change analysis of SBS models.  

Numerical simulations of the regular tensegrity and SBS models have proven the superior 

convergent characteristic of the proposed algorithm for shape change analysis.  The results 

reveal that the proposed approach for shape change analysis has a very strong ability for a 

self-equilibrated model to search their desired target coordinates in multi-directional modes 

through optimization of the forced elongation in cables.  It is also found that the SBS models 

are capable to undergo bending, axial and torsional deformation.   Active changes in forces 

in element groups even within the far-away element groups of SBS models are observed 

during the shape change analysis.  In conclusion, the findings of this basic study have paved 

the way for realization of spine inspired flexible arm with magnitude shape change ability. 
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CHAPTER ONE 

INTRODUCTION 

 

 

1.1 Introduction 

 

Over the past decade, extensive investigations on shape change of tensegrity structure 

particularly in deployable tensegrity structures and tensegrity-robots have been performed, 

owing to the advantageous characteristics of the tensegrity structure of being lightweight, 

flexible, scalability and energy efficient (Duffy et al., 2000, Korkmaz et al., 2011, Moored et 

al., 2011a, Koizumi et al., 2012).  Stability of tensegrity structure is maintained through the 

integration of only compression and tensional forces through strut and cable like elements. 

There is a potential to convert local pressure into global deformation and subsequently seek 

for another balanced configuration in tensegrity.  This makes tensegrity a suitable model for 

shape change studies.  Living organisms, from as small as cells to as complete as organisms, 

respond to the environment in expansion and contraction to generate complex transformation 

for performing various functions required.  The expansion and contraction mechanism in 

living organism has been described as biotensegrity by Levin (2002).  Biotensegrity as a 

model emulated from the forms and functions of sophisticated and sustainable biological 

system is highly suitable for consideration as a new alternative choice to be adopted for 

robotic tools (i.e. for inspection, automation in manufacturing ect.) and deployable structures.   

 

This chapter firstly introduces the concept of tensegrity and its shape change potential in 

deployable structures and robots.  Next, application of tensegrity in biology or biotensegrity 

is introduced.  The characteristics of biotensegrity are also explained based on the forms and 

functions of biological system.  Later, motivation of spine biotensegrity model for the study 

is explained which is then followed by the presentation of the problem statement of the study.  

After the problem statement, the objectives of the study and layout of the thesis are described.          
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1.2 Tensegrity 

 

Tensegrity is an amazing system with characteristics of being lightweight, self-stressed, 

flexible and controllable.  The design of tensegrity system is different from the traditional 

ways with continuous transmission of compression.  In tensegrity system (Figure 1.1), the 

tensional network is assembled in order to support the floated compression.  Most 

importantly, the system can maintain its shape via self-equilibrium without any supports with 

gravitational load.   

 

 Figure 1.1 Three-strut tensegrity structure 

 

In addition to stability, this kind of network arrangement provides aesthetics feature to the 

system due to its appearance of lightweightness.  Although the study on tensegrity system 

only started since 1950’s, the development and extensiveness of the study has fruitfully 

contributed to new independent branches of studies. 

 

There are numbers of published definition to describe tensegrity system (Tensegritywiki, 

2010a).  In this study, the definition extended by Motro (2003) is adopted.  According to 

Motro (2003), a tensegrity system is a system in a stable self-equilibrated state comprising a 

discontinuous set of compressed components inside a continuum of tensioned components.  

Undoubtedly, the purely compressed components at the condition of not touching each 

others are held in position by the continuous purely tensioned components that eventually 

Discontinuous 

compression (strut) 

Compressive Strut 

Equilibrium at all 

nodes (Force=0) 

Prestressed, tensional cable  
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form tensegrity system.  In the definition, the term “system” includes all the structures that 

have the qualitative or quantitative characteristics whereas term “component” includes wider 

shape of the constituent in a tensegrity system such as a line, surface, volume or combination 

of them.    Besides, expression “in a stable self-equilibrated state” indicates that tensegrity 

systems are stable and in self-equilibrium condition.  Appendix A shows the history and 

some patented figures of tensegrity. 

 

1.2.1 Potential of Tensegrity for Shape Change  

Deployable and transformation capability of tensegrity system has been utilized in smart, 

active deployable structure (particularly for space engineering) as well as the robotic and 

automation community in the recent years.  This section surveys the shape change potential 

of tensegrity system especially deployable tensegrity system and tensegrity robots.    

 

1.2.1(a)  Deployable Tensegrity System 

Tensegrity systems can simply alter their configuration and deal with large displacement 

once being loaded.  Additionally, simple joints (pinned jointed) and controllable cables in 

tensegrity systems make them fit for use as deployable structures compared with the usage of 

complex joints and telescopic struts in traditional systems.  Moreover, the ability of cables in 

tensegrity systems to act as actuator or sensor is advantageous to the design of deployable 

structures. 

 

Furuya (1992) was probably the first researcher to use tensegrity as deployable structures.  

However the investigation was at conceptual level.  A proper deployment procedure begun 

with the concept of cable control by Sultan and Skelton (1998).  Later, a procedure was 

established based on cable control through symmetrical motion by Sultan et al. (2002).  The 

deployment strategy to achieve the trajectory based on an equilibrium manifold was also 

presented by Sultan and Skelton (2003).  Although this strategy produces widely 

reconfiguration shapes, control of all the cables remains the challenging issue.  An 
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optimization method to determine the reference trajectory for deployment of an arbitrary 

tensegrity structure was developed by van de Wijdeven and de Jager (2005).  Furthermore, a 

two-phase setting procedure to deploy a tensegrity beam designed under ultimate and 

serviceability limit state was proposed by Averseng and Dubé (2012).   

 

Application of deployable tensegrity in ring shape as reflectors for small satellites (Figure 

1.2a) was suggested by Tibert and Pellegrino (2002).  The tensegrity reflector has lower 

construction cost and higher precision in geometrical assemblage.  A deployable class 2 

tensegrity boom via open loop control strategy was designed and built by Pinaud et al. 

(2004).   

 

 

Figure 1.2 Deployable tensegrity structures 

(b) Pentagonal tensegrity-ring footbridge (Rhode-Barbarigos et al., 2012) 

(a) Tensegrity reflector (Tibert and Pellegrino, 2002) 
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