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SEN Single Edge Notched 

SENB  Single Edge Notched Bend Bar 

SSY Small Scale Yielding 
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LIST OF SYMBOLS 

𝐴  Area 

𝑎  Crack depth 

𝑎𝑒𝑓𝑓  Effective crack length, considering the plastic zone 

𝐴2  Constraint parameter 

𝐴𝑐  Area of cylinder 𝑉 for the EDI method 

𝐴𝜀  Area of cylinder 𝑉𝜀 for the EDI method 

𝐴𝑛  Non-dimensional constants for T-stress equations 

𝐵𝑛  Non-dimensional constants for T-stress equations 

𝐵  SCP specimen width 

𝑐  Crack width 

𝑐𝑐𝑟  Critical dimension of the cracked body 

𝐷𝜃  Length between pairs of outermost nodes 

𝑑1  Non-dimensional constant 

𝐸  Young’s Modulus 

𝐸𝑐𝑓  Number of layers of elements along the crack front. 

𝐸𝑟  Number of radial elements in the Crack Tip Region 

𝐸𝑇  Number of elements in the Transition Region 

𝐸𝜃  Number of elements in the angular direction 

𝑒𝜃  Coordinate system direction 

𝑒𝑟  Coordinate system direction 

𝑒𝑐𝑓  Integer varying between 0 and 𝑁𝑙𝑎𝑦𝑒𝑟 

𝐹(
𝑎

𝑡
,

𝑎

𝑐
,

𝑐

𝑊
, 𝜙)  Geometric function for 𝐾 in semi-elliptical surface cracks 
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𝑓 (
𝑎

𝑤
)  Geometric function for 𝐾 in straight cracks 

𝑓𝑖𝑗(𝜃)  Angular stress function 

𝑓𝑤  Dimensionless function for 𝐾 in semi-elliptical surface cracks 

𝑓𝜙  Dimensionless function for 𝐾 in semi-elliptical surface cracks 

𝐺  Shear Modulus 

𝐺1  Dimensionless function for 𝐾 in semi-elliptical surface cracks 

𝐺2  Dimensionless function for 𝐾 in semi-elliptical surface cracks 

𝑔  Dimensionless function for 𝐾 in semi-elliptical surface cracks 

𝐻  SCP specimen length 

𝐻𝑠  Dimensionless function for 𝐾 in semi-elliptical surface cracks 

𝐻1  Dimensionless function for 𝐾 in semi-elliptical surface cracks 

𝐻2  Dimensionless function for 𝐾 in semi-elliptical surface cracks 

ℎ1  Fully plastic factor 

𝐼(𝑠)  Interaction integral 

𝐼𝑛  Integration constant for HRR fields 

𝐽  J-integral 

𝐽𝐷  Domain Integral 

𝐽𝑒  Elastic component of the J-integral 

𝐽𝑝  Plastic component of the J-integral 

𝐽𝑙𝑜𝑐𝑎𝑙  Local J-integral along the crack front 

𝐽𝜙=90  Local J-integral at 𝜙 = 90 in semi-elliptical surface cracks 

𝐽𝑚𝑎𝑥  Maximum J-integral along the semi-elliptical crack front 

𝐽𝑓  J-integral determined via the Equivalent Domain Integral 

𝑘  Yield stress in shear 
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𝐾  Stress Intensity Factor 

𝐾𝑓𝑎𝑟  Far field Stress Intensity Factor 

𝐾𝐼  Stress intensity factor under mode I loading 

𝐾𝑒𝑓𝑓  Effective 𝐾, considering the plastic zone 

𝐿𝑟  Proximity to plastic collapse 

𝑀  Global bending moment 

𝑀𝐿  Limit load in 𝑁𝑚 

𝑀𝑜  Limit bending moment 

𝑀1  Dimensionless function for 𝐾 in semi-elliptical surface cracks 

𝑀2  Dimensionless function for 𝐾 in semi-elliptical surface cracks 

𝑀3  Dimensionless function for 𝐾 in semi-elliptical surface cracks 

𝑁𝐿  Limit load in 𝑁 

𝑁(𝑠)  Membrane Force 

𝑁𝑙𝑎𝑦𝑒𝑟  Number of layers of nodes along the semi-elliptical crack front 

𝑁𝑒𝑑𝑔𝑒  Number of Edge nodes along the angular direction 

𝑁𝑚𝑖𝑑−𝑠𝑖𝑑𝑒  Number of Mid-side nodes along the angular direction 

𝑛𝑐𝑜𝑟𝑛𝑒𝑟  Node label for Corner nodes 

𝑛𝑀𝑖𝑑𝑑𝑙𝑒  Node label for Middle nodes 

𝑛𝑀𝑖𝑑−𝑠𝑖𝑑𝑒  Node label for Mid-side nodes 

𝑛𝜃𝑀  Integer varying between 0 and 𝑁𝑚𝑖𝑑−𝑠𝑖𝑑𝑒 

𝑛𝜃𝐸  Integer varying between 0 and 𝑁𝑒𝑑𝑔𝑒 

𝑛  Strain hardening exponent 

𝑃  Applied load 

𝑃𝑜  Limit load 
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𝑝  Dimensionless function for 𝐾 in semi-elliptical surface cracks 

𝑄  Constraint parameter 

𝑄𝑠  Dimensionless constant 

𝑄𝑇  Modified 𝑄 term used in the 𝐽-𝑄𝑇-𝑇𝑧 approach 

𝑟  Radial distance ahead of the crack tip 

𝑟𝑖  𝑖𝑡ℎ layer of nodes from the crack tip 

𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙  Size of the element at the crack tip 

𝑟𝑝  Plastic zone size 

𝑟𝑖
𝑇𝑅  𝑖𝑡ℎ layer of nodes in the Transition Region 

𝑟𝑓𝑖𝑛𝑎𝑙  Radius of Crack Tip Region 

𝑅𝐹  Reaction Force 

𝑆  Span between load and boundary condition 

𝑆1  Term in HRR field 

𝑆𝑏  Far field bending stress 

𝑆𝑡  Far field tensile stress 

𝑠𝐸𝐷𝐼  Arbitrary function for EDI method 

𝑡  Thickness of SCP specimen 

𝑡𝑁  Calibration factor for T-stress in SEN specimens 

𝑡𝑀  Calibration factor for T-stress in SEN specimens 

𝑇  T-stress 

𝑇𝑧  Triaxiality parameter 

𝑢𝑖(𝑖 = 1,2,3)  Displacement components in (𝑥1, 𝑥2, 𝑥3)  

𝑉  Cylinder for EDI method 

𝑉𝜀  Cylinder for EDI method 
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𝜈  Poisson’s ratio 

𝑋𝑖  Constants used for T-stress calculations, (𝑖 = 1,2,3 … ) 

𝑊  SCP specimen width 

𝑤  Straight crack width 

𝑧  Distance along the semi-elliptical crack front  

𝛼  Material constant 

𝛼𝑠  Slip line 

𝛽  Biaxiality ratio 

𝛽𝑡ℎ𝑖𝑛  Biaxiality for thin plates 

𝛽2𝐷  Two-dimensional biaxiality  

𝛽𝑠  Slip line 

𝛽𝑓𝑠  Corner singularity constant 

𝜎  Stress 

𝜎𝑎𝑝𝑝  Applied stress 

𝜎𝑜  Yield stress 

𝜎𝑖𝑗(𝑖, 𝑗 = 1,2,3)  Stress components in (𝑥1, 𝑥2, 𝑥3) directions 

𝜎𝑖𝑗(𝑖, 𝑗 = 𝑟, 𝜃, 𝑧)  Stress components in (𝑟, 𝜃, 𝑧) 

𝜎𝑒, 𝜎 Von Mises stress 

𝜎𝑚  Mean stress 

𝜀  Strain 

𝜀𝑖𝑗(𝑖, 𝑗 = 1,2,3)  Strain components in (𝑥1, 𝑥2, 𝑥3) directions 

𝜀𝑜  Yield strain 

𝜀̅𝑝  Equivalent plastic strain 

𝜀𝑝  Plastic strain 
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𝜇  Level of plastic deformation 

𝜃  Angular notation about the crack tip 

𝜃𝑜  Angular interval between nodes 

𝜙  Angular position along the semi-elliptical crack front 

𝜙𝐽𝑚𝑎𝑥  Position along semi-elliptical crack front with the highest 𝐽 

Π  Potential energy 

Γ  Arbitrary contour about the crack tip 

𝜌  Triaxiality parameter 

𝛾𝑖𝑗(𝑖, 𝑗 = 1,2,3)  Shear strains in (𝑥1, 𝑥2, 𝑥3) directions 

𝛾𝑟  Non-dimensional number for 𝐽-Δ𝜎 approach 

𝛾𝑟𝑡  Non-dimensional number for semi-elliptical 𝐽-Δ𝜎 approach 

𝛾𝑟𝑏  Non-dimensional number for semi-elliptical 𝐽-Δ𝜎 approach 
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