CONSTRAINT ESTIMATION SCHEMES FOR SEMI-ELLIPTICAL SURFACE CRACKS UNDER TENSILE AND BENDING LOADS

RIZMAN HARIZ BIN ABDUL LATIFF

UNIVERSITI SAINS MALAYSIA 2017

CONSTRAINT ESTIMATION SCHEMES FOR SEMI-ELLIPTICAL SURFACE CRACKS UNDER TENSILE AND BENDING LOADS

by

RIZMAN HARIZ BIN ABDUL LATIFF

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

August 2017

ACKNOWLEGDEMENTS

Firstly, I would like to extend many thanks to my supervisor, Dr. Feizal Yusof, for giving me the opportunity to pursue this Masters Degree, for the countless hours of support and indispensable advice. Without his guidance, success would have remained beyond reach. In a similar vein, fellow postgraduate student Leong Karh Heng is deserving of much gratitude, for being a great sounding board and providing an alternative perspective in tackling problems.

I would also like to thank the Ministry of Higher Education of Malaysia for providing funding for this research project in the form of the Fundamental Research Grant Scheme and also for financial assistance in the form of MyBrain15.

TABLE OF CONTENTS

Page

ACKNOWLEGDEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	xvii
LIST OF SYMBOLS	xviii
ABSTRAK	xxiv
ABSTRACT	xxvi

CHAPTER ONE: INTRODUCTION

1.1	Constraint Based Fracture Mechanics	1
1.2	Problem Statement	3
1.3	Objectives	5
1.4	Hypothesis	5
1.5	Scope of Work	5

CHAPTER TWO: LITERATURE REVIEW

2.1	Fundamentals of Deformation		7
	2.1.1	Displacements and Strains	7
	2.1.2	Stress	9
	2.1.3	Elasticity	13
	2.1.4	Yielding	15
	2.1.5	Plane Strain and Plane Stress Conditions	21
2.2	Genera	al Fracture Test Specimens	22
2.3	3 The Semi-elliptical Surface Crack		23

2.4	Fundamentals of Fracture Mechanics		
	2.4.1	Stress intensity factor	25
	2.4.2	<i>J</i> -integral	30
2.5	The Na	ature of Elastic-Plastic Crack Tip Fields	37
	2.5.1	Crack-tip Plasticity	37
	2.5.2	Slip Line Fields	39
	2.5.3	Hutchinson, Rice and Rosengen Field	44
	2.5.4	J-dominance	45
	2.5.5	T-stress	51
2.6	Two-p	arameter Constraint Estimation Schemes	57
	2.6.1	<i>J-T</i> approach	57
	2.6.2	J-Q Approach	60
	2.6.3	J-A ₂ Approach	64
2.7	.7 Three-dimensional Constraint Estimation Schemes		68
	2.7.1	Tz-based Approaches	68
	2.7.2	J-Δσ Approach	71
2.8	Summ	ary	75
CHA	APTER	THREE: METHODOLOGY	
3.1	Meshi	ng Algorithm	79
	3.1.1	Nodal definitions	83
	3.1.2	Elemental Definitions	88
	3.1.3	Complete Finite Element Models	90
3.2	Finite	Element Analysis	92

3.2.1 Model Geometries 92

	3.2.2	Material Response	94
	3.2.3	Loading and Boundary Conditions	94
3.3	Data e	xtraction and analysis	97
	3.3.1	Data extraction procedures	97
	3.3.2	Data transformation procedures	97
	3.3.3	Data analysis	98
3.4	Summ	ary	98

CHAPTER FOUR: RESULTS AND ANALYSIS

4.1	Valida	tion of Finite Element Models	100
4.2	Stress	Intensity Factor	103
4.3	T-Stres	SS	109
4.4	Biaxia	ity ratio	117
4.5	Elastic	-plastic <i>J</i> -integral	119
4.6	J-domi	nance in semi-elliptical surface cracks	121
4.7	Plastic Zone Analysis		126
4.8	Elastic	-Perfectly Plastic Asymptotic Crack Tip Field Analysis	135
	4.8.1	Asymptotic Normal Stresses	135
	4.8.2	Out-of-plane stress, σ_{zz} along the semi-elliptical crack front	153
	4.8.3	Free surface stresses	157
4.9	Stresse	s ahead of the crack tip	161
	4.9.1	Stresses at r=0	161
	4.9.2	Stresses at $r\sigma_{o}/J{=}2$ and $r\sigma_{o}/J{=}5$, at $\theta{=}0$	166
4.10	Constra	aint Estimation using the J- $\Delta\sigma$ Approach	172

CHAPTER FIVE: SUMMARY AND CONCLUSIONS

LIST	LIST OF PUBLICATIONS		
REFERENCES		184	
5.3	Future Work	182	
5.2	Contribution of MSc Work	182	
5.1	Conclusions	180	

LIST OF TABLES

		Page
Table 2.1	Values of K_I and β for single edge notched bars in tension (Sham, 1991).	52
Table 3.1	Specimen Geometries	93
Table 4.1	Constants for T-stress equations after (Sherry et al., 1995)	101
Table 4.2	Comparisons of the J-dominance limits under bending loads in terms of μ limits for $\phi = 90$ and $\phi = \phi_{Jmax}$	123
Table 4.3	Limits of J-dominance under tensile loads.	125
Table 4.4	Limits of J-dominance under bending loads.	125
Table 4.5	Limits of J-dominance under tensile loads in terms of limit load.	125
Table 4.6	Limits of J-dominance under bending loads in terms of limit load.	126

LIST OF FIGURES

Page

Figure 2.1	Displacement of a circular body by u , from initial position xo to a new position, x .	8
Figure 2.2	Unit vector n_j and a force F_i acting on an area A .	10
Figure 2.3	Stress components in a Cartesian coordinate system	11
Figure 2.4	Transformation between Cartesian and Cylindrical coordinate systems	12
Figure 2.5	Mohr's Circle	13
Figure 2.6	Elastic Loading/Unloading behavior.	14
Figure 2.7	Plastic unloading behavior	16
Figure 2.8	Von Mises and Tresca Yielding criteria	17
Figure 2.9	Elastic-perfectly plastic material behavior	20
Figure 2.10	a) Compact tension specimen and b) Single edge notch bend specimen.	22
Figure 2.11	a) A through crack and b) a part-through surface crack (Shipley and Becker, 2002)	22
Figure 2.12	Crack front of a semi-elliptical surface crack	23
Figure 2.13	Cylindrical coordinate system used in the Surface Cracked Plate (SCP).	24
Figure 2.14	Geometry notation after (Williams, 1957)	25
Figure 2.15	Loading Modes	27
Figure 2.16	Two-dimensional representation of a surface cracked plate with line spring elements representing the part through crack after (Rice and Levy, 1972).	28

Figure 2.17	An arbitrary path around a crack (Rice, 1968a)	30
Figure 2.18	Nomenclature for near crack front of a three-dimensional crack (Nikishkov and Atluri, 1987)	32
Figure 2.19	Fully plastic factor for $a/c = 0.2$ and $a/t = 0.8$ under uniaxial tension (Wang, 2006)	35
Figure 2.20	Variation of J-integral along the semi-elliptical crack front (Terfas, 2010)	36
Figure 2.21	Crack growth under bending (Terfas, 2010)	36
Figure 2.22	Shape of the plastic zone under Plane Strain and Plane Stress conditions after (Kanninen and Popelar, 1985).	38
Figure 2.23	General Slip Line Fields due to an applied load	40
Figure 2.24	Slip Line fields at crack tips for (a) plane strain (Rice, 1968a) and (b)Plane Stress conditions (Sham and Hancock, 1999)	41
Figure 2.25	Variation of the degree of plane strain with the angle measured from the free surface (Levy et al., 1971).	43
Figure 2.26	The Prandtl field and the HRR field $(n = \infty)$.	45
Figure 2.27	Deviation of stresses between small scale yielding conditions and large scale yielding conditions (McMeeking and Parks, 1979)	46
Figure 2.28	Mean stress as a function of level of deformation at $r\sigma_o/J = 2$, $\theta = 0^\circ$ under bending loads (Terfas, 2010)	49
Figure 2.29	Mean stress as a function of level of deformation at $r\sigma_o/J = 2$, $\theta = 0^\circ$ under tensile loads (Terfas, 2010)	49
Figure 2.30	T-stress effects on plastic zone (Du and Hancock, 1991)	52
Figure 2.31	Biaxiality factor for a thin plate for various Poisson's ratios along the crack front (Nakamura and Parks, 1992).	54
Figure 2.32	Elastic T-stress along the crack front of a surface cracked plate under (a) tension and (b) Bending (Nakamura and Parks, 1992)	55

Figure 2.33	T-stress distribution along the semi-elliptical crack front (Wang, 2003)	56
Figure 2.34	Hoop stress ahead of the crack at a distance of $r\sigma_o/J = 2$ for two strain-hardening rates, $n = 13$ and $n = \infty$ (Betegon and Hancock, 1991).	58
Figure 2.35	Hydrostatic stress variation due to varying T-stresses (Du and Hancock, 1991).	59
Figure 2.36	Variation of the triaxiality factor with Q-factor at $r\sigma_o/J = 2$ on the mid-plane for three-dimensional three point bend and centre crack panels at varying load levels (Henry and Luxmoore, 1997)	62
Figure 2.37	Q behavior under (a) bending and (b) tensile loads (Wang, 2012)	64
Figure 2.38	Comparison of the (A) radial and (B) hoop stresses from the HRR field, the <i>J-A2</i> solution and finite element results (Nikishkov et al., 1994)	67
Figure 2.39	Prediction of radial variation of the normalized hoop stress for $P/P_o = 0.7$ (Guo, 1995).	69
Figure 2.40	The corner field at the free surface (Yusof and Hancock, 2005)	72
Figure 2.41	The plane strain parameter ρ along the crack front at $r\sigma_o/J = 2$ and $\theta = 0$ for SENB, CCP geometries with $B/(W - a) = 1$, 0.1 (Yusof and Hancock, 2009).	73
Figure 2.42	Loss of crack tip constraint along crack front characterised by $J/z\sigma_o$ for $n = \infty$ (Yusof and Hancock, 2009).	74
Figure 3.1	Methodology Flowchart for the first objective	77
Figure 3.2	Methodology Flowchart for the second objective	78
Figure 3.3	Methodology Flowchart for the third objective	78
Figure 3.4	Division of regions for the Surface Cracked Plate model.	79

Figure 3.5	Crack-tip mesh	79
Figure 3.6	Two dimensional element a) without collapsed edge and (b) with collapsed edge.	80
Figure 3.7	Algorithm process Flowchart	82
Figure 3.8	Parameters relating to user inputs.	83
Figure 3.9	Discretization of the crack front	83
Figure 3.10	Local Cartesian coordinate systems along the crack front	84
Figure 3.11	Order of generation of nodes	85
Figure 3.12	Progression for <i>i</i> , $n_{\theta M}$ and $n_{\theta E}$	86
Figure 3.13	Nodes generated in the outermost boundaries of the Transition Region	87
Figure 3.14	Elemental definition for a C3D20RH element after (ABAQUS, 2013)	88
Figure 3.15	Focused mesh	89
Figure 3.16	Node Labels for Straightened Mesh.	89
Figure 3.17	Mesh along crack front	91
Figure 3.18	Fully Meshed FE Geometry	91
Figure 3.19	(a) Surface Cracked Plate with a semi-elliptical surface crack(b) Quarter model of the SCP specimen	92
Figure 3.20	Semi-elliptical Crack Aspect Ratios	93
Figure 3.21	Application of boundary conditions and load	94
Figure 3.22	Application of the a) tensile and b) bending loads	95
Figure 4.1	Benchmark of the stress intensity factor, K in a semi-elliptical surface cracks under tensile loads.	101
Figure 4.2	Benchmark for T-stress in a semi-elliptical surface crack under tensile loads.	102

Figure 4.3	Benchmark for J-integral in a semi-elliptical surface crack under tensile loads.	102
Figure 4.4	Stress intensity factors, <i>K</i> under (a,c,e) Tensile and (b,d,f) Bending loads for $\nu = 0.49$.	105
Figure 4.5	Stress intensity factor, <i>K</i> under (a,c,e) Tensile and (b,d,f) Bending loads for $\nu = 0.4$	106
Figure 4.6	Stress intensity factor, <i>K</i> under (a,c,e) Tensile and (b,d,f) Bending loads for $\nu = 0.3$	107
Figure 4.7	Stress intensity factor, <i>K</i> under (a,c,e) Tensile and (b,d,f) Bending loads for $\nu = 0.2$	108
Figure 4.8	Percentage difference in stress intensity factor.	109
Figure 4.9	T-stress under (a,c,e) Tensile and (b,d,f) Bending loads for $\nu = 0.49$.	111
Figure 4.10	T-stress under (a,c,e) Tensile and (b,d,f) Bending loads for $\nu = 0.4$.	113
Figure 4.11	T-stress under (a,c,e) Tensile and (b,d,f) Bending loads for $\nu = 0.3$.	114
Figure 4.12	T-stress under (a,c,e) Tensile and (b,d,f) Bending loads for $\nu = 0.2$.	115
Figure 4.13	Difference in T-stress compared to T-stress in $\nu = 0.49$ for $a/c = 0.5$, $a/w = 0.5$ under a tensile load	116
Figure 4.14	Difference in T-stress compared to T-stress in $\nu = 0.49$ for $a/c = 0.5$, $a/w = 0.5$ under a bending load	116
Figure 4.15	Biaxiality under (a,c,e) Tensile and (b,d,f) Bending loads for $\nu = 0.49$	118
Figure 4.16	Percentage difference in biaxiality, β a)Tensile loads and b) bending loads	119

Figure 4.17	Normalized J-integral variation along the crack front under (a) tensile and (b) bending loads	120
Figure 4.18	Normalized <i>J</i> variation along the crack front under Bending loads for varying relative crack depths, a/t .	121
Figure 4.19	Hoop stress $\sigma_{\theta\theta}$ ahead of the crack tip at the deepest point ($\phi = 90$) for $a/c = 0.5$, $a/t = 0.5$ under bending loads.	122
Figure 4.20	Plastic Zone along crack front for $a/t = 0.5$ under a tensile load	127
Figure 4.21	Plastic Zone along the crack front under tension for (a,b) $a/c = 0.33$, (c,d) $a/c = 0.5$, (e,f) $a/c = 0.67$	129
Figure 4.22	Plastic Zone along crack front for $a/c = 0.5$, $a/t = 0.5$ under bending at the limit of J-dominance.	130
Figure 4.23	Plastic Zone along crack front for $a/c = 0.5$, $a/t = 0.5$ under bending at $\mu = 1500$.	131
Figure 4.24	Plastic Zone along the crack front under bending for (a) $a/c = 0.33$ and (b) $a/c = 0.67$.	132
Figure 4.25	Plastic Zone along crack front under bending for $a/c = 0.33$ and (a,b) $a/t = 0.33$ and (c,d) $a/t = 0.2$.	134
Figure 4.26	Hoop stresses, $\sigma_{\theta\theta}$ for $a/c = 0.33$ under bending and tensile loads for relative crack depths of (a,b) $a/t = 0.5$, (c,d) $a/t = 0.33$ (e,f) $a/t = 0.2$.	137
Figure 4.27	Hoop stresses, $\sigma_{\theta\theta}$ for $a/c = 0.5$ under bending and tensile loads for relative crack depths of (a,b) $a/t = 0.5$, (c,d) $a/t = 0.33$ (e,f) $a/t = 0.2$.	138
Figure 4.28	Hoop stresses, $\sigma_{\theta\theta}$ for $a/c = 0.67$ under bending and tensile loads for relative crack depths of (a,b) $a/t = 0.5$, (c,d) $a/t = 0.33$ (e,f) $a/t = 0.2$.	139

- Figure 4.29 Hoop stresses, σ_{22} for a/c = 0.33 under bending and tensile 140 loads for relative crack depths of (a,b) a/t = 0.5, (c,d) a/t = 0.33 (e,f) a/t = 0.2.
- Figure 4.30 Hoop stresses, σ_{22} for a/c = 0.5 under bending and tensile 141 loads for relative crack depths of (a,b) a/t = 0.5, (c,d) a/t = 0.33 (e,f) a/t = 0.2
- Figure 4.31 Hoop stresses, σ_{22} for a/c = 0.67 under bending and tensile 142 loads for relative crack depths of (a,b) a/t = 0.5, (c,d) a/t = 0.33 (e,f) a/t = 0.2.
- Figure 4.32 Mean stresses, σ_m for a/c = 0.33 under bending and tensile 144 loads for relative crack depths of (a,b) a/t = 0.5, (c,d) a/t = 0.33 (e,f) a/t = 0.2
- Figure 4.33 Mean stresses, σ_m for a/c = 0.5 under bending and tensile 145 loads for relative crack depths of (a,b) a/t = 0.5, (c,d) a/t = 0.33 (e,f) a/t = 0.2.
- Figure 4.34 Mean stresses, σ_m for a/c = 0.67 under bending and tensile 146 loads for relative crack depths of (a,b) a/t = 0.5, (c,d) a/t = 0.33 (e,f) a/t = 0.2
- Figure 4.35 Radial stresses, σ_{rr} for a/c = 0.33 under bending and tensile 147 loads for relative crack depths of (a,b) a/t = 0.5, (c,d) a/t = 0.33 (e,f) a/t = 0.2
- Figure 4.36 Radial stresses, σ_{rr} for a/c = 0.5 under bending and tensile 148 loads for relative crack depths of (a,b) a/t = 0.5, (c,d) a/t = 0.33 (e,f) a/t = 0.2
- Figure 4.37 Radial stresses, σ_{rr} for a/c = 0.67 under bending and tensile 149 loads for relative crack depths of (a,b) a/t = 0.5, (c,d) a/t = 0.33 (e,f) a/t = 0.2

- Figure 4.38 Shear stresses, $\sigma_{r\theta}$ for a/c = 0.33 under bending and tensile 150 loads for relative crack depths of (a,b) a/t = 0.5, (c,d) a/t = 0.33 (e,f) a/t = 0.2
- Figure 4.39 Shear stresses, $\sigma_{r\theta}$ for a/c = 0.5 under bending and tensile 151 loads for relative crack depths of (a,b) a/t = 0.5, (c,d) a/t = 0.33 (e,f) a/t = 0.2
- Figure 4.40 Shear stresses, $\sigma_{r\theta}$ for a/c = 0.67 under bending and tensile 152 loads for relative crack depths of (a,b) a/t = 0.5, (c,d) a/t = 0.33 (e,f) a/t = 0.2
- Figure 4.41 Out-of-plane stresses, σ_{zz} for a/c = 0.33 under bending and 154 tensile loads for relative crack depths of (a,b) a/t = 0.5, (c,d) a/t = 0.33 (e,f) a/t = 0.2
- Figure 4.42 Out-of-plane stresses, σ_{zz} for a/c = 0.5 under bending and 155 tensile loads for relative crack depths of (a,b) a/t = 0.5, (c,d) a/t = 0.33 (e,f) a/t = 0.2.
- Figure 4.43 Out-of-plane stresses, σ_{zz} for a/c = 0.67 under bending and 156 tensile loads for relative crack depths of (a,b) a/t = 0.5, (c,d) a/t = 0.33 (e,f) a/t = 0.2
- Figure 4.44 Free surface stresses for a/c = 0.33 under bending and tensile 158 loads for relative crack depths of (a,b) a/t = 0.5, (c,d) a/t = 0.33 (e,f) a/t = 0.2
- Figure 4.45 Free surface stresses for a/c = 0.5 under bending and tensile 159 loads for relative crack depths of (a,b) a/t = 0.5, (c,d) a/t = 0.33 (e,f) a/t = 0.2
- Figure 4.46 Free surface stresses for a/c = 0.67 under bending and tensile 160 loads for relative crack depths of (a,b) a/t = 0.5, (c,d) a/t = 0.33 (e,f) a/t = 0.2

- Figure 4.47 Distribution of $\sigma_{\theta\theta}$ ahead of the crack tip at r = 0 along the 164 semi-elliptical crack front for (a,b) a/c = 0.33, (c,d) a/c = 0.5, (e,f) a/c = 0.67.
- Figure 4.48 Distribution of σ_m ahead of the crack tip at r = 0 along the 165 semi-elliptical crack front for (a,b) a/c = 0.33, (c,d) a/c = 0.5, (e,f) a/c = 0.67.
- Figure 4.49 Distribution of $\sigma_{\theta\theta}$ ahead of the crack tip at $r\sigma_o/J = 2$ along 168 the semi-elliptical crack front for (a,b) a/c = 0.33, (c,d) a/c = 0.5, (e,f) a/c = 0.67.
- Figure 4.50 Distribution of σ_m ahead of the crack tip at $r\sigma_o/J = 2$ along the 169 semi-elliptical crack front for (a,b) a/c = 0.33, (c,d) a/c = 0.5, (e,f) a/c = 0.67.
- Figure 4.51 Distribution of $\sigma_{\theta\theta}$ ahead of the crack tip at $r\sigma_o/J = 5$ along 170 the semi-elliptical crack front for (a,b) a/c = 0.33, (c,d) a/c = 0.5, (e,f) a/c = 0.67.
- Figure 4.52 Distribution of σ_m ahead of the crack tip at $r\sigma_o/J = 5$ along the 171 semi-elliptical crack front for (a,b) a/c = 0.33, (c,d) a/c = 0.5, (e,f) a/c = 0.67.
- Figure 4.53 Variation of J- $\Delta\sigma$ curve due to γ_r . 175
- Figure 4.54 Constraint characterisation at $r\sigma_o/J = 2$ based on the $J-\Delta\sigma$ 178 approach
- Figure 4.55 Constraint characterisation at $r\sigma_o/J = 5$ based on the $J-\Delta\sigma$ 179 approach

LIST OF ABBREVIATIONS

ASME	American Society of Mechanical Engineers
BLF	Boundary Layer Formulation
ССР	Center cracked tension panel
СТ	Compact Tension
HRR	Hutchinson, Rice & Rosengren
EDI	Equivalent Domain Integral
LEFM	Linear Elastic Fracture Mechanics
MBLF	Modified Boundary Layer Formulation
SCP	Surface Cracked Plate
SEN	Single Edge Notched
SENB	Single Edge Notched Bend Bar
SSY	Small Scale Yielding

LIST OF SYMBOLS

Α	Area
а	Crack depth
a _{eff}	Effective crack length, considering the plastic zone
<i>A</i> ₂	Constraint parameter
A _c	Area of cylinder <i>V</i> for the EDI method
A_{ε}	Area of cylinder V_{ε} for the EDI method
A_n	Non-dimensional constants for T-stress equations
B_n	Non-dimensional constants for T-stress equations
В	SCP specimen width
С	Crack width
C _{cr}	Critical dimension of the cracked body
$D_{ heta}$	Length between pairs of outermost nodes
d_1	Non-dimensional constant
Ε	Young's Modulus
E _{cf}	Number of layers of elements along the crack front.
Er	Number of radial elements in the Crack Tip Region
E_T	Number of elements in the Transition Region
$E_{ heta}$	Number of elements in the angular direction
$e_{ heta}$	Coordinate system direction
e _r	Coordinate system direction
e _{cf}	Integer varying between 0 and N_{layer}
$F(\frac{a}{t},\frac{a}{c},\frac{c}{W},\phi)$	Geometric function for K in semi-elliptical surface cracks

$f\left(\frac{a}{w}\right)$	Geometric function for <i>K</i> in straight cracks
$f_{ij}(\theta)$	Angular stress function
f_w	Dimensionless function for K in semi-elliptical surface cracks
$f_{oldsymbol{\phi}}$	Dimensionless function for K in semi-elliptical surface cracks
G	Shear Modulus
G ₁	Dimensionless function for K in semi-elliptical surface cracks
<i>G</i> ₂	Dimensionless function for K in semi-elliptical surface cracks
g	Dimensionless function for K in semi-elliptical surface cracks
Н	SCP specimen length
H _s	Dimensionless function for K in semi-elliptical surface cracks
H_1	Dimensionless function for K in semi-elliptical surface cracks
H_2	Dimensionless function for K in semi-elliptical surface cracks
h_1	Fully plastic factor
I(s)	Interaction integral
In	Integration constant for HRR fields
J	J-integral
J _D	Domain Integral
J _e	Elastic component of the J-integral
J_p	Plastic component of the J-integral
J _{local}	Local J-integral along the crack front
$J_{\phi=90}$	Local J-integral at $\phi = 90$ in semi-elliptical surface cracks
J _{max}	Maximum J-integral along the semi-elliptical crack front
Jf	J-integral determined via the Equivalent Domain Integral
k	Yield stress in shear

Κ	Stress Intensity Factor
K _{far}	Far field Stress Intensity Factor
K _I	Stress intensity factor under mode I loading
K _{eff}	Effective <i>K</i> , considering the plastic zone
L _r	Proximity to plastic collapse
М	Global bending moment
M_L	Limit load in Nm
M _o	Limit bending moment
<i>M</i> ₁	Dimensionless function for K in semi-elliptical surface cracks
<i>M</i> ₂	Dimensionless function for K in semi-elliptical surface cracks
<i>M</i> ₃	Dimensionless function for K in semi-elliptical surface cracks
N_L	Limit load in N
N(s)	Membrane Force
N _{layer}	Number of layers of nodes along the semi-elliptical crack front
N _{edge}	Number of Edge nodes along the angular direction
N _{mid-side}	Number of Mid-side nodes along the angular direction
n _{corner}	Node label for Corner nodes
n _{Middle}	Node label for Middle nodes
n _{Mid-side}	Node label for Mid-side nodes
$n_{ heta M}$	Integer varying between 0 and $N_{mid-side}$
$n_{ heta E}$	Integer varying between 0 and N_{edge}
n	Strain hardening exponent
Р	Applied load
Po	Limit load

p	Dimensionless function for K in semi-elliptical surface cracks
Q	Constraint parameter
Q_s	Dimensionless constant
Q_T	Modified Q term used in the $J-Q_T-T_z$ approach
r	Radial distance ahead of the crack tip
r _i	i^{th} layer of nodes from the crack tip
r _{initial}	Size of the element at the crack tip
r_p	Plastic zone size
r_i^{TR}	i^{th} layer of nodes in the Transition Region
r_{final}	Radius of Crack Tip Region
RF	Reaction Force
S	Span between load and boundary condition
<i>S</i> 1	Term in HRR field
S _b	Far field bending stress
S _t	Far field tensile stress
S _{EDI}	Arbitrary function for EDI method
t	Thickness of SCP specimen
t_N	Calibration factor for T-stress in SEN specimens
t_M	Calibration factor for T-stress in SEN specimens
Т	T-stress
T_z	Triaxiality parameter
$u_i(i = 1,2,3)$	Displacement components in (x_1, x_2, x_3)
V	Cylinder for EDI method
$V_{arepsilon}$	Cylinder for EDI method

ν	Poisson's ratio
X _i	Constants used for T-stress calculations, $(i = 1,2,3)$
W	SCP specimen width
W	Straight crack width
Ζ	Distance along the semi-elliptical crack front
α	Material constant
α_s	Slip line
β	Biaxiality ratio
β^{thin}	Biaxiality for thin plates
β^{2D}	Two-dimensional biaxiality
β_s	Slip line
β_{fs}	Corner singularity constant
σ	Stress
σ_{app}	Applied stress
σ_o	Yield stress
$\sigma_{ij}(i,j=1,2,3)$	Stress components in (x_1, x_2, x_3) directions
$\sigma_{ij}(i,j=r,\theta,z)$	Stress components in (r, θ, z)
$\sigma_e, \bar{\sigma}$	Von Mises stress
σ_m	Mean stress
ε	Strain
$\varepsilon_{ij}(i,j=1,2,3)$	Strain components in (x_1, x_2, x_3) directions
E ₀	Yield strain
$ar{arepsilon}^p$	Equivalent plastic strain
ε_p	Plastic strain

μ	Level of plastic deformation
θ	Angular notation about the crack tip
$ heta_o$	Angular interval between nodes
ϕ	Angular position along the semi-elliptical crack front
ϕ_{Jmax}	Position along semi-elliptical crack front with the highest J
П	Potential energy
Г	Arbitrary contour about the crack tip
ρ	Triaxiality parameter
$\gamma_{ij}(i,j=1,2,3)$	Shear strains in (x_1, x_2, x_3) directions
γ _r	Non-dimensional number for J - $\Delta\sigma$ approach
γ _{rt}	Non-dimensional number for semi-elliptical J - $\Delta\sigma$ approach
γ_{rb}	Non-dimensional number for semi-elliptical J - $\Delta\sigma$ approach