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KAEDAH PENGAWAL TEGAP UNTUK KENDERAAN BAWAH AIR 

BERAUTONOMI BAGI PEMERIKSAAN TIANG BAWAH AIR 

 

ABSTRAK 

 

Pelantar luar pantai untuk minyak dan gas menghadapi masalah pertumbuhan 

organisma marin yang tidak diingini. Pemeriksaan berkala pada tiang pelantar yang 

terendam dalam air diperlukan. Kajian ini menyelidik kemungkinan untuk 

melibatkan Kenderaan Bawah Air Berautonomi (AUV) bagi aplikasi pemeriksaan 

tiang bawah air. Laluan pemeriksaan diperlukan untuk meningkatkan kecekapan 

AUV di dalam misi pemeriksaan. Sebaliknya, teknik pengawal tegap diperlukan 

untuk menyekat kesan ketidaktentuan dalam parameter hidrodinamik dan gangguan 

luaran pada sistem AUV. Sebagai jalan penyelesaian, kajian ini mencadangkan satu 

laluan pemeriksaan yang mempunyai masa pemeriksaan optimum untuk pemeriksaan 

tiang yang tegak dengan menggunakan Perancangan Laluan Liputan (CPP) 

berasaskan grid. Sebuah peta satah telah dimodelkan untuk mewakili ruang 3D 

dalam aplikasi pemeriksaan tiang. Lima corak laluan pemeriksaan telah direka dan 

dibandingkan untuk memilih laluan pemeriksaan yang terbaik. Selain itu, pengawal 

tegap yang menggabungkan teknik kawalan penapis dan teknik kawalan logik kabur 

telah dicadangkan. Teknik kawalan penapis digunakan untuk mengimbangi kesan 

jisim tertambah, kesan redaman hidrodinamik, ketaklelurusan model, kesan 

gandingan, dan gangguan luaran pada sistem AUV, manakala teknik kawalan logik 

kabur digunakan untuk memperbaiki daya kawalan. Selain itu, sebuah AUV 

berbentuk kotak yang sesuai dengan aplikasi pemeriksaan tiang telah dibangunkan 

untuk mengesahkan prestasi pengawal yang dicadangkan. Laluan pemeriksaan yang 

dicadangkan direka berdasarkan gerakan Boustrophedon dengan pusingan lancar dan 
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