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SINTESIS DAN SIFAT-SIFAT KOMPOSIT BERASASKAN FENOLIK

TERISI HIBRID TIUB NANO KARBON/BUKAN ORGANIK

ABSTRAK

Penggunaan pengisi tunggal dalam komposit polimer tidak selalu memenuhi syarat-
syarat permintaan untuk aplikasi polimer komposit termaju. Oleh itu, adalah perlu
untuk menghasilkan pengisi hibrid yang mengandungi lebih daripada satu pengisi.
Kebelakangan ini, tiub nano karbon (CNTSs) dihibridkan dengan pengisi yang lain
untuk mencapai kesan gabungan pengisi. Gabungan pengisi-pengisi tersebut (hibrid
pengisi) harus mempunyai interaksi fizikal dan kimia yang kuat antara satu sama lain
untuk mencapai kesan penguatan yang optimum. Kajian ini mencadangkan kaedah
pemendapan wap kimia (CVD) untuk menghasilkan hibrid CNTs dengan pengisi
bukan organik dan CNTs hybrid yang disintesiskan, akan digunakan sebagai pengisi
dalam komposit fenolik. Bahagian pertama kajian adalah penyiasatan mengenai
hibrid CNTs/alumina dan parameter pemprosesannya seperti suhu dan tempoh
pengkalsinan. Kajian perbandingan di antara CNTs hibrid menggunakan kaedah
CVD dan kaedah fizikal (konvensional) ke atas sifat-sifat komposit fenolik turut
dikaji. Komposit fenolik telah difabrikasikan dengan menggunakan kaedah cagak
panas. Sifat tribological telah dikaji dengan menggunakan penguji pin-atas-cakra di
bawah keadaan gelongsor yang berbeza. Hasil kajian menunjukkan bahawa tempoh
pengkalsinan selama 10 jam pada suhu 900°C adalah parameter yang terbaik untuk
menumbuhkan hibrid CNTs. Hasil kajian juga mendedahkan bahawa hibrid CNTs
menggunakan cara CVD telah meningkatkan kekerasan, kekonduksian terma dan
sifat—sifat tribologikal komposit fenolik hibrid. Dalam bahagian kedua kajian, model

empirikal dengan pembolehubah bebas yang berbeza bagi kelakuan tribologikal

XX



untuk CNTs/alumina terisi komposit fenolik telah dibangunkan menggunakan
pendekatan metodologi permukaan respon (RSM). Pengoptimuman fungsi pemboleh
ubah bebas juga telah dijana. la menunjukkan bahawa 5HYB/FENOLIK
menunjukkan prestasi kehausan yang lebih baik berbanding komposit
5PHY/FENOLIK. Dalam bahagian ketiga, kesesuaian kalsium karbonat, talkum dan
dolomit untuk pertumbuhan CNTs dalam penghasilan sebatian hibrid CNTs/bukan
organic menggunakan kaedah CVD telah dikaji. Hasil kajian menunjukkan bahawa
CNTs tumbuh di atas partikel kalsium karbonat, talkum dan dolomit, yang mana
menunjukkan bahawa mereka juga sesuai untuk menjadi bahan sokongan dalam
penghasilan hibrid CNTs (pertumbuhan menggunakan pemangkin logam nikel dan
metana sebagai stok suapan karbon pada suhu 800°C). Hasilnya juga mendedahkan
bahawa hibrid CNTs/bukan organik meningkatkan kekerasan dan sifat terma

komposit fenolik.
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SYNTHESIS AND PROPERTIES OF PHENOLIC BASED HYBRID

CARBON NANOTUBE/INORGANIC FILLED COMPOSITES

ABSTRACT

The use of a single filler in polymer composites does not always meet the on-demand
requirements of an advanced polymer composite application. Therefore, producing a
hybrid filler that contains more than one filler is necessary. Recently carbon
nanotubes (CNTs) were hybridized with others fillers to achieve the combined
effects of the filler. The combinations of the filler (hybrid filler) should have a strong
physical and chemical interaction with each other in order to achieve the optimum
reinforcing effect. This study proposed the chemical vapour deposition (CVD)
method to produce a CNTs hybrid with inorganic fillers and this synthesised CNTs
hybrid, was used as filler in phenolic composites. The first part of the research was
the investigation of the CNTs/alumina hybrid and its processing parameter such as
calcinations temperatures and duration. The comparative study of hybrid CNTs using
the CVD method and the physical method (conventional) on the properties of the
phenolic composite were also studied. The phenolic composites were fabricated via
hot mounting process. The tribological properties were investigated using a pin-on-
disk tester under different sliding conditions. The results showed that 10 hours
duration of calcination and 900°C were the best parameters to growth the CNTs
hybrid. The result also revealed that hybridising the CNTs via CVD improves the
hardness, thermal conductivity and tribological properties of the phenolic hybrid
composite. In the second part of the research, empirical models with different
independent variables for the tribological behaviour of CNTs/alumina filled phenolic

composites were developed using the response surface methodology (RSM)

XXii



approach. The optimisation of the response as a function of the independent variable
was generated. It shows that SHYB/PHENOLIC exhibited better wear performance
than 5PHY/PHENOLIC composites.In the third part, the suitability of calcium
carbonate, talc and dolomite to growth the CNTs in the production of
CNTs/inorganic hybrid compounds using the CVD method was investigated. The
results showed that the CNTs growth on the calcium carbonate, talc and dolomite
particles, which means they are also suitable as a support material in CNTs hybrids
(growth using a nickel metal catalyst and methane as the carbon feedstock at
800°C). The result also revealed that the CNTs/inorganic hybrid improved the

hardness and thermal properties of the phenolic composites.
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