INVESTIGATIVE STUDIES OF EMBEDDED ASSEMBLY LINE AUTOMATION SYSTEM WITH DUAL RFID PLATFORM

SAMIHAH BINTI ABDULLAH

UNIVERSITI SAINS MALAYSIA

2018

INVESTIGATIVE STUDIES OF EMBEDDED ASSEMBLY LINE AUTOMATION SYSTEM WITH DUAL RFID PLATFORM

by

SAMIHAH BINTI ABDULLAH

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

March 2018

ACKNOWLEDGMENTS

Many people have contributed directly and indirectly to the completion of this thesis and their assistance is gratefully acknowledged. First of all, my humble gratitude towards almighty Allah S.W.T for giving me this wonderful privilege to work on my research and entire lesson I have learned along the way. Immeasurable appreciation and deepest gratitude to my supervisor, Professor Dr. Widad Ismail for giving me the opportunity to work on this research work and her willingness to guide, for her support, advices, guidance, valuable comments and unfailing patience have been great motivation for me to excel in my research work. Without her guidance and invaluable time spent with me, this thesis would not have been completed successfully. A special appreciation to my co-supervisor PM Dr. Zaini Abdul Halim and Dr Zalina Abdul Aziz for their guidance and assistance throughout my research.

I would also like to thank my sponsor, Ministry of Education and UiTM for giving me a chance to pursue my studies in this area.

I would like to thank the entire School of Electrical and Electronic Engineering for making such an enjoyable place to work and the support of administrative and technical staff especially Encik Latip, Puan Zammira and Encik Jamal, who helped me a lot in completing my research work.

Special dedicated thanks to my loving husband, Mohd Khairil Anuar Bin Abu Bakar and dearest daughters and son, Mia Batrisya, Muhammad Aqeel Luqman and Mia Khalisyah for their love, caring, patience, remarkable encouragement and accompanied me through all the ups and downs. Last but not least, my appreciation and thanks to my siblings Mamduhah Abdullah, Nadiyah Abdullah and Najihah Abdullah, family members and friends as well for their constructive ideas, comments and critics

ii

throughout the preparations of my research work. Surely it is an experience, which will prove invaluable later in life.

Needless to say, without all the above help and support, the writing and completion of this thesis would not have been possible. Thank you.

Samihah Binti Abdullah

2018

TABLE OF CONTENTS

ACKNOWLEDGMENTS	ii
TABLE OF CONTENTS	iv
LIST OF TABLES	xi
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xx
ABSTRAK	xxiii
ABSTRACT	XXV

CHAPTER ONE: INTRODUCTION

1.1	Motivation	1
1.2	Problem Statement	3
1.3	Objectives	4
1.4	Research Scopes and Limitations	5
1.5	Contribution	6
1.6	Thesis Outline	7

CHAPTER TWO: LITERATURE REVIEW

2.1	Introd	Introduction		
2.2	Trends	Trends and Future Generation of Smart Systems		
2.3	Radio Frequency Identification			
	2.3.1	Passive RFID reader	22	
	2.3.2	Active RFID tag	25	
	2.3.3	RFID reader	27	
	2.3.4	Architecture of RFID system	29	

2.4	Background and Architecture RFID Design in Manufacturing	35
2.5	WSN and ZigBee Technology	44
2.6	Review on Experimental Analysis at Assembly Line and Industry	49
2.7	Important of Factor Factorial Analysis in the System Design	51
2.8	Important of Factor Factorial Analysis in Industrial Application	53
2.9	Summary	57

CHAPTER THREE: METHODOLOGY

3.1	Introduction		59	
3.2	Overall	Overall Proposed System Design		
3.3	Overvie	ew of System Description	62	
	3.3.1	RFID Passive Tag as an Intelligent Electronics Product Code (EPC)	68	
	3.3.2	The selection of passive RFID tags	70	
	3.3.3	Communications Platforms between Hardware Components	73	
	3.3.4	Power Management Design	76	
3.4	Require	ements of Hardware Development	78	
3.5	PAR S	ystem with WMSN	79	
	3.5.1	Processing Unit	81	
	3.5.2	In Circuit Serial Programming	82	
	3.5.3	Interrupt Process Unit	83	
	3.5.4	Networked Based Active RFID Module	84	
	3.5.5	Operational modes	85	
3.6	Propose	ed DOE method	87	
	3.6.1	Readability Detection	89	
	3.6.2	Propagation loss	89	
	3.6.3	Data transformation	90	
3.7	Summa	ıry	92	

CHAPTER FOUR: IMPLEMENTATION, MEASUREMENT AND FACTOR ANALYSIS OF PROPOSED EMBEDDED SYSTEM

4.1	Overvie	W		94
4.2	Active F	RFID tag arc	chitecture of the PAR system	99
	4.2.1	Physical L	ayer Design	101
	4.2.2	Software I	Layer Design	103
		4.2.2 (a) C	communication Method for the proposed PAR system	104
		4.2.2 (b) T	ag Talk First (TTF) mechanism	107
4.3	Active F	RFID reader		112
4.4	GUI Des	sign		113
4.5	Measure	ement of Ha	rdware	119
	4.5.1	Calibration	n Process	120
		4.5.1 (a)	Calibration of UHF White Patch Antenna	120
		4.5.1 (b)	Signal Range Performance of the Passive Reader (Standalone) and Passive and Active Tag (Embedded)	121
		4.5.1 (c)	Calibration for XBee loss, Splitter Loss and Cable Loss Measurement	122
		4.5.1 (d)	Calibration of the power level at the tag setting using splitter to measure signal using Spectrum Analyzer (SA) at the distance of less than 1 m for standalone and embedded system.	125
	4.5.2	Measureme	ent of the RSSI value by varying the power level of a	126
		tag using s	plitter for standalone and embedded system	
	4.5.3	Power con	sumption measurement for standalone and embedded system	127
	4.5.4	Read Rang and embed	ge Measurement in Indoor Environment for standalone Ided system.	128
	4.5.5	Radiation I	Pattern	129
	4.5.6	Wireless Se	ensor Network (WSN) Performance Verification	130
		4.5.6 (a)	Throughput and Latency Test	130
		4.5.6 (b)	Multi hop and self-healing	132

4.6	Desigr	n of Experim	nent (DOE) on Factor Analysis for Proposed System	135
	4.6.1	System Ar	chitecture and Operations for DOE Experiment	136
	4.6.2	Experimen	ntal Setup, Factors and Blocking	137
		4.6.2 (a)	DOE Experimental Design	138
	4.6.3	DOE Anal Orientation	ysis for Arcsine Transformation on Product Speed and n	139
		4.6.3 (a)	Experimental set-up and factors for speed at the conveyor set	141
		4.6.3 (b)	Orientation of the product on the conveyor set	142
	4.6.4	Investigati antenna po	on on the speeds and linear distance between tag and osition on a conveyor set	146
		4.6.4 (a)	Setting for speed at the conveyor set	147
		4.6.4 (b)	The setup of linear distance between antenna and product at the conveyor set	147
	4.6.5	Investigati	ng the types and orientation of the passive tags	150
		4.6.5 (a)	Types of passive tags	151
		4.6.5 (b)	Orientation of vertical or horizontal of position of passive tag at product	151
	4.6.6	Investigati 2-Factor F	ng the Type of Materials of the Products and Tags Using actorial Design	154
		4.6.6 (a)	Type of Materials	155
		4.6.6 (b)	Type Of Passive Tags	156
4.7	Test R	un Setup for	r PAR and PR systems	159
	4.7.1	Process Fl	ow and System Implementation of the Test Run	161
4.8	Summ	ary		164

CHAPTER FIVE: RESULTS AND DISCUSSIONS

5.1	Introd	Introduction		
5.2	Calibr	ation Measurement	167	
	5.2.1	Frequency Calibration	168	
	5.2.2	Detection distance performance of Proposed PAR System (Near field) with different types of passive tags	169	
	5.2.3	Transmission Calibration for Proposed Active RFID System in	172	

Comparison to Standalone

	5.2.4	Active Tag Power Calibration for Proposed System in Compa to Standalone	arison 176
	5.2.5	RSSI Calibration of Tag Power Level for Proposed System in Comparison to Standalone	n 178
	5.2.6	Current and voltage consumption on PAR system	180
		5.2.6 (a) Calculated Current Consumption	180
		5.2.6 (b) Voltage Measurement of the RF Front-end	182
		5.2.6 (c) Voltage Measurement of Processing Unit	183
		5.2.6 (d) Current Consumption Analysis on PAR system	184
5.3	Perfor	mance Validation on the Embedded PAR system	188
	5.3.1	New improvement on power management design for an embedded system	188
	5.3.2	Indoor Read Range Measurement	189
	5.3.3	Radiation Pattern	191
	5.3.4	Throughput, Latency and Self-Healing Measurement	195
		5.3.4 (a) Throughput Evaluation	195
		5.3.4 (b) Latency Evaluation	197
		5.3.4 (c) Self-Healing Evaluation	198
5.4	Design	n of Experiment (DOE) on Factor Analysis for the proposed PA	R 200
	Systen	n Performance	
	5.4.1	Investigation of the speeds and product orientation between antenna position on a conveyor set	tag and 200
		5.4.1 (a) Statistical Result, Analysis and Discussion	202
		5.4.1 (b) Residual Plots	206
		5.4.1 (c) The Main Effect Plots and Interaction Plots	208
		5.4.1 (d) Discussion	210
	5.4.2	Investigation on the speeds and linear distance between tag an antenna position	d 211
		5.4.2 (a) Data Collection	212
		5.4.2 (b) Statistical Result, Analysis and Discussion	213

		5.4.2 (c)	Residual Plots	215
		5.4.2 (d)	The Main Effect and Interaction Plots	216
		5.4.2 (e)	Discussion	217
	5.4.3	Investigat	ting the types and orientation of the passive tags	218
		5.4.3 (a)	Data Collection	218
		5.4.3 (b)	Statistical Result, Analysis and Discussion	220
		5.4.3 (c)	The Main Effect of the Plots and Interaction Plots	223
		5.4.3 (d)	Discussion	224
	5.4.4	Investiga 2-Factor	ting the Type of Materials of the Products and Tags Using Factorial Design	225
		5.4.4 (a)	Data Collection	225
		5.4.4 (b)	Statistical Result Analysis and Discussion	227
		5.4.4 (c)	Residual Plot	229
		5.4.4 (d)	Main Effect Plot and Interaction Plot	230
		5.4.4 (e)	Discussion	232
		5.4.4 (f)	Summary of DOE experiments	233
5.5	Readab Proof Iı	ility Detect 1 Proposed	ion and Propagation Loss Classification for Eligibility Technology Deployment at the assembly lines	235
	5.5.1	Comparis Approach	on of the Proposed PAR system with the Previous	239
5.6	Test Ru	in at the Ind	lustrial Assembly Line	240
5.7	Summa	ry		247
CHA	PTER S	IX: CONO	CLUSION	
6.1	Conclus	sion		249
6.2	Future	Work		253
REFE	ERENCE	S		255

REFERENCES

APPENDICES

- Appendix A: RF Module Datasheet
- Appendix B: PIC18F46K22 Datasheet
- Appendix C: Test run at the assembly line
- Appendix D: Coding
- Appendix E: Microcontroller and XBee setting
- Appendix F: Calibrations and Experimental Results

LIST OF PUBLICATIONS

LIST OF TABLES

		Page
Table 2.1	Advantages of RFID over barcode system	21
Table 2.2	Application and type of RFID in single platform	22
Table 2.3	Classes of Tags (Want, 2004)	23
Table 2.4	The differences between Gen 1 and Gen 2 protocols (Popa, 2011)	24
Table 2.5	Multiband RFID system	25
Table 2.6	RFID technology to address problems in production management (Escribano, 2010)	40
Table 2.7	The differences between the barcode and RFID system	41
Table 2.8	Single RFID verses Multiplatform RFID	41
Table 2.9	Recent applications of RFID, WM and WMN	42
Table 2.10	Features of Wireless Communication Standard (Verma et al., 2016)	48
Table 3.1	Types of passive RFID tags	71
Table 4.1	List of experiments of hardware testing	135
Table 4.2	Factors for DOE experiment	138
Table 4.3	Factors on speed setup at the conveyor set	142
Table 4.4	Factors for position setup in the experiment	143
Table 4.5	Potential factors for DOE experiment.	146
Table 4.6	Potential factors for DOE experiment	150
Table 4.7	The details of the passive tags	151
Table 4.8	Potential factors for DOE experiment	154
Table 4.9	Factors for materials for products	156
Table 4.10	Factors for type of passive tags	157
Table 4.11	List of DOE experiments	159
Table 5.1	Frequency and Amplitude versus Attenuation for the Passive Antenna	168
Table 5.2	Summary result of the performance for standalone and embedded of the proposed system for maximum distance at 90% of successful of detection	171

Table 5.3	Received RF Power for the Proposed Embedded System	172
Table 5.4	Cable loss calibration	173
Table 5.5	Splitter loss measurement using the XBee module and RF Signal Generator	173
Table 5.6	Calibration measurement for standalone and embedded system	177
Table 5.7	Calculated current consumption per circuit for standalone RFID tag	180
Table 5.8	Calculated theoretical current consumption for PAR tag	182
Table 5.9	Measured current consumption of the embedded RFID system	187
Table 5.10	Theoretical and measured current consumption of PAR system	187
Table 5.11	Improvement of the design power management	188
Table 5.12	Average normalized value H-plane radiation pattern	194
Table 5.13	Average normalized value E-plane radiation pattern	194
Table 5.14	Discovering modules in the same network for self-healing test	199
Table 5.15	Factorial design table for experiment	201
Table 5.16	Two-way ANOVA table for speed (speed 1, speed2 and speed 3) by positions (position 1, 2,3,4,5 and 6)	203
Table 5.17	Mean for speed in percentage and arcsine	204
Table 5.18	Mean for position of the products in percentage and arcsine	205
Table 5.19	Summary for products position tested at 3 speed levels	206
Table 5.20	Factorial design table for experiment	212
Table 5.21	Two-way ANOVA table for speed (speed 1, speed2 and speed 3) by linear distance (distance 1, 2 and 3)	213
Table 5.22	Mean for speed in percentage and arcsine	214
Table 5.23	Mean for distance in percentage and arcsine	214
Table 5.24	Factorial design table for experiment	219
Table 5.25	Two-way ANOVA table for type of passive RFID tags and orientation of tag	220
Table 5.26	Mean for the type of tags in percentage and arcsine	221
Table 5.27	Mean for orientation of tag in percentage and arcsine	221
Table 5.28	Factorial design table for the DOE experiment	226

Table 5.29	Two-way ANOVA table detection in percentage versus material of products and type of tag	227
Table 5.30	Mean for the type of materials products in percentage	228
Table 5.31	Mean for the type of passive tag in percentage	228
Table 5.32	Table of summary for standard guidelines based on potential factors from DOE experiment	234
Table 5.33	Comparison between the proposed PAR with selected works. (Colour code: green for RFID, blue for WSN and red for statistical)	240
Table 5.34	Sample data stored in the database	241
Table 5.35	Performance of the input (passive and active section - PAR)	242
Table 5.36	Performance of the database based on the received data (active reader section)	243
Table 5.37	Summary of performance comparison based on the bar code system, PR system (wired) and PAR system (wireless)	246
Table 5.38	RFID PAR specifications	248

LIST OF FIGURES

Figure 1.1	Flowchart of Overall Research Scope	9
Figure 2.1	Summary flowchart of overall literature review	11
Figure 2.2	Application and challenges scenarios driven by the CloudIoT paradigm as future generation computing (Botta et al., 2016)	12
Figure 2.3	Cloud Computing architectural foundation elements (Moura & Hutchison, 2016)	13
Figure 2.4	The most popular IoT applications now (Díaz et al., 2016).	15
Figure 2.5	M2M communication system model (Verma et al., 2016)	16
Figure 2.6	The architecture healthcare IoT system (Moosavi et al., 2016).	17
Figure 2.7	RFID system components (Sardroud, 2012)	19
Figure 2.8	Active RFID tag (Yoon et al., 2007)	26
Figure 2.9	Active RFID tag architecture (Zanal, 2013)	26
Figure 2.10	Simple structure for an active RFID reader (Yoon, 2008)	28
Figure 2.11	Proposed architecture of the active RFID reader (Yoon, 2008)	28
Figure 2.12	Reader RFID (Zanal, 2013)	29
Figure 2.13	IAAS system architectural design (Younis et al., 2013)	31
Figure 2.14	Proposed system architecture (Kwon et al., 2014)	32
Figure 2.15	Proposed system architecture using RFID/WSN for logistic (Shina, 2010)	33
Figure 2.16	Overall architecture of agent-based smart objects management (Zhang et al., 2011)	34
Figure 2.17	RIDSS architecture for production monitoring and scheduling (Guo et al., 2014)	35
Figure 2.18	Connection setup for RFID system (Miaji, 2013)	37
Figure 2.19	SPC implementation based on RFID architecture (Li & Zhang, 2010)	37
Figure 2.20	Architecture for Active RFID System (Yoon, 2008)	38
Figure 2.21	The embedded architecture of the active tag RFID system (Zulkifli, 2011)	39
Figure 2.22	WSN concepts by Becker et al. (2013)	45
Figure 2.23	Integrated hybrid RFID WSN system architecture (Yanga, 2011).	47

Figure 2.24	Structure of the ZigBee RFID sensor network (Yanga, 2011).	47
Figure 2.25	Steps on developing the experiment by Jaggi (Jaggi et al., 2014).	51
Figure 3.1	Overall research methodologies	60
Figure 3.2	Basic structure of the proposed PAR system for assembly line automat	tion 62
Figure 3.3	Overall system architecture components	63
Figure 3.4	Conventional and Proposed System of Traceability System at the Assembly Line	65
Figure 3.5	Proposed embedded RFID systemwith ZigBee for the PAR system	67
Figure 3.6	Generated label of bar code (Wu et al., 2013)	68
Figure 3.7	Customized of product code EPC via Passive RFID tag	69
Figure 3.8	Writing of EPC on Passive RFID Tag using electronic writer	70
Figure 3.9	Structure of Passive RFID tag	71
Figure 3.10	GUI for read/write passive RFID tag	72
Figure 3.11	Communication between passive RFID tag and passive RFID reader	74
Figure 3.12	Proposed embedment of dual RFID platform	75
Figure 3.13	Power management design block for active tag circuit	76
Figure 3.14	Power management design (a) Initial power management (2 power sources) (b) Improvement power management (1 power source)	77
Figure 3.15	Block diagram (a) The conventional RFID tag prototype block diagram (Omar et al., 2013) (b) The proposed active RFID tag for PAR system	80
Figure 3.16	Proposed Main Block Function of Processing Unit	82
Figure 3.17	Flowchart interrupt function from passive RFID reader to the WSN system	84
Figure 3.18	Modes of Operation for XBee Pro S2 Module for the proposed tag	86
Figure 3.19	Framework for developing guidelines for DOE specification requirements for industrial	88
Figure 3.20	Steps in developing the DOE experimental setup	91
Figure 4.1	Flowcharts of the development and implementation of the proposed system	98
Figure 4.2	Basic block diagram for active tag circuit	99
Figure 4.3	Proposed PAR active tag embedded with Passive RFID reader and power management architecture design	100

Figure 4.4	Schematic diagram of the active RFID tag	102
Figure 4.5	Fabrication PCB PAR active tag board	102
Figure 4.6	Example of UART data transmission format (DIGI, 2015)	104
Figure 4.7	Proposed method of data communication of dual RFID from the sensor of PR	105
Figure 4.8	Proposed method of data communication of PIC18F46K22 and XBee PRO S2 RF module	106
Figure 4.9	Examples layout on three assembly lines of the embedded proposed PAR system	108
Figure 4.10	IEEE 802.15.4 super frame structure (a) first version of the standard (b) super frame (c) introduced new protocol in a real-time environment (Valentin Stangaciu, 2013)	109
Figure 4.11	IEEE 802.15.4 general packet (Valentin Stangaciu, 2013)	109
Figure 4.12	Implementation of WSN network on the proposed PAR system	110
Figure 4.13	Architecture of WSN topology on the proposed PAR system	111
Figure 4.14	Basic block diagram for PAR reader	112
Figure 4.15	Proposed WISER-PROMT software architecture	114
Figure 4.16	Client WISER-PROMT GUI	115
Figure 4.17	Com Port selection and connect	116
Figure 4.18	Counter in GUI design	117
Figure 4.19	Database storage	118
Figure 4.20	Database storage	119
Figure 4.21	Types of experimental on the proposed prototypes testing	120
Figure 4.22	Experimental setup for calibration of UHF White Patch Antenna	121
Figure 4.23	Experimental setup for sensor calibration	122
Figure 4.24	Experimental setup to calibrate XBee using Spectrum Analyzer	123
Figure 4.25	Experimental setup to calibrate Xbee and cable using Spectrum Analyzer	123
Figure 4.26	Experimental setup to calibrate the splitter	124
Figure 4.27	Calibration of a power level for standalone and embedded system	125
Figure 4.28	Experimental setup for RSSI value vs. distance for standalone and embedded system for indoor environment.	126

Figure 4.29	Measurement setup for power consumption of embedded RFID system	127
Figure 4.30	Experimental setup for energy analysis	128
Figure 4.31	Experimental setup for read range measurement in indoor environment	129
Figure 4.32	Experimental setup for radiation pattern measurement in indoor environment	130
Figure 4.33	Experimental setup of point-to-point investigation for throughput and latency measurement	131
Figure 4.34	Experimental setup for multi tags latency (3 tags)	131
Figure 4.35	Experimental setup for multi hops (3 tags)	132
Figure 4.36	Illustration of Wireless Sensor Network (WSN) on Self-Healing Test for for Multi tags	r 133
Figure 4.37	Experimental setup for multi hop and self-healing for standalone	1 <u>34</u>
Figure 4.38	The proposed new architecture of RFID system in production line	136
Figure 4.39	Steps in developing the DOE experimental setup	139
Figure 4.40	Passive tag	141
Figure 4.41	Speed controller at the conveyor set (a) at 0.1143 m/s (b) at 0.1476 m/s (c) at 0.179 m/s	142
Figure 4.42	Positions of product at the conveyor set	143
Figure 4.43	Experimental setup in Auto-ID Laboratory	144
Figure 4.44	Experimental flow for data collection	145
Figure 4.45	Product linear distance experimental setup	147
Figure 4.46	Setup for the linear distance	148
Figure 4.47	Experimental flow for data collection	149
Figure 4.48	Windshield tag in vertical and horizontal orientation respectively.	152
Figure 4.49	Experimental flow for data collection	153
Figure 4.50	Type of metal product on the conveyor set	155
Figure 4.51	Wooden product on the conveyor set	156
Figure 4.52	Type of passive tag (a) paper tag (b) universal tag	157
Figure 4.53	Experimental flow for data collection	158
Figure 4.54	Proposed prototype setup at the production line for the test run	160
Figure 4.55	Process flow for the assembly process in line production.	161

Figure 4.56	The production line layout	163
Figure 4.57	Antenna positioning during the test run at assembly line	164
Figure 5.1	Overview of chapter results and discussion	167
Figure 5.2	Waveform for 0 dB attenuation at 903.229 MHz	168
Figure 5.3	Percentage of successful detection for standalone and embedded	170
Figure 5.4	Configurations of the transmitted power calibration test using splitter and antenna (Whip Antenna of 2 dBi)	174
Figure 5.5	Received RF Signal measured at 7.205 dBm for power level of 4 for standalone system	176
Figure 5.6	Signal Spectrum Analyzer (dBm) Vs. Power Level of the Standalone and Embedded System	178
Figure 5.7	RSSI value (dBm) v.s. distance (m) at power level 4 (10 dBm) for standalone RFID tag and embedded RFID tag for indoor environment	179
Figure 5.8	Theoretical voltage and current of the PAR system	181
Figure 5.9	Theoretical vs. experimental voltage of the RF transceiver	183
Figure 5.10	Theoretical vs. experimental voltage calibration for the processing unit (Vdd)	184
Figure 5.11	Measured voltage (resistor) during one cycle transmission	185
Figure 5.12	Measured average time interval of 277 ms in the idle mode	185
Figure 5.13	Measured voltage during transmission from passive tag	218
Figure 5.14	Average read range plotted for standalone Dipole antenna and standalone whip antenna at power level 4 (10 dBm) at indoor environme.	190 nt
Figure 5.15	Average read range of indoor environment for standalone and embedded PAR system using Whip antenna at power level 4 at indoor environment	190
Figure 5.16	Radiation pattern	193
Figure 5.17	Example of 10 kbyte data for throughput point-to-point test	195
Figure 5.18	Throughput Results versus Data Sizes for Standalone and Embedded PAR System	196
Figure 5.19	Example of latency of point-to-point test	197
Figure 5.20	Latency Results of Embedded PAR versus Standalone system	198
Figure 5.21	Discovering modules by using XCTU software	199

Figure 5.22	Self-Healing for the embedded PAR system	200
Figure 5.23	Illustration of plane wave at the position of antenna/source with the direction of propagation	206
Figure 5.24	Residual Plots for detection using proposed RFID-system in terms of percentage and arcsine transformation	208
Figure 5.25	Main Effect Plot for data means for (i) Position (ii) Speed	209
Figure 5.26	Interaction Plot for data means for (i) Position (ii) Speed	210
Figure 5.27	Residual Plots for detection using proposed RFID-system in terms of percentage and arcsine transformation	216
Figure 5.28	Main Effect Plot for data means of (i) Speed (ii) Distance	216
Figure 5.29	Interaction Plot for data means for (i) Speed (ii) Distance	217
Figure 5.30	Tag detection test (a) snake antenna (b) meandered TWAs array (Michel & Nepa, 2016)	218
Figure 5.31	Residual Plots for detection using proposed RFID-system in terms of percentage and arcsine transformation	222
Figure 5.32	The plot of the Main Effect of (i) Type of tag (ii) Orientation	223
Figure 5.33	Interaction Plot of data means for (i) Type of tags (ii) Orientation	224
Figure 5.34	Residual Plots for detection using proposed RFID-system in terms of percentage and arcsine transformation	230
Figure 5.35	Main Effect Plot for the mean data for (i) Type of product materials (ii) Type of passive tag	231
Figure 5.36	Interaction Plot for mean data for (i) Type of product materials (ii) Type of passive tag	232
Figure 5.37	PD Comparison of factors selection prediction using modelling equation	235
Figure 5.38	Extrapolation distance of PAR model	237
Figure 5.39	Extrapolation number of assembly lines of PAR model	238
Figure 5.40	RFID ID Tag sample	241
Figure 5.41	Data comparison of PR (wired) and PAR (wireless) for the test runs at the industry assembly lines	243
Figure 6.1	Overall flowchart of conclusion and recommendation	250

LIST OF ABBREVIATIONS

ANOVA	Analysis of Variance
ASCII	American Standard Code for Information Interchange
AT	Transparent
CC	Cloud Computing
DOE	Design of Experiments
EM	Electromagnetic
EN	End Node
EPC	Electronic Product Code
GEN 1	Generation 1
GEN 2	Generation 2
GUI	Graphical User Interface
HF	High Frequency
IEEE	Institute of Electrical and Electronics Engineers
IC	Integrated Circuit
ID	Identification
ІоТ	Internet of Things
ISM	Industrial, Scientific and Medical
ISO	International Organization for Standardization
ITU	International Telecommunication Union
LAN	Local Area Network
LED	Light Emitting Diode
LCD	Liquid Crystal Display
LF	Low Frequency
LOS	Line-of-Sight
M2M	Machine to machine
MCU	Microcontroller Unit

NLOS	Non-Line-of-Sight
PAN	Personal Area Network
PAR	Passive and Active RFID
PR	Passive RFID
PC	Personal Computer
PCB	Printed Circuit Board
PD	Percentage Detection
PL	Path Loss
PIC	Programmable Integrated Circuit
RF	Radio Frequency
RFID	Radio Frequency Identification
RSSI	Received Signal Strength Indicator
RTOS	Real-Time Operating System
SA	Spectrum Analyzer
SOC	System on Chip
TTF	Tag Talk First
TX	Transmitter
UART	Universal Asynchronous Receiver/Transmitter
UHF	Ultra-High Frequency
USA / US	United States of America
USB	Universal Serial Bus
UPC	Universal Product Code
UWB	Ultra-Wide Band
Wi-Fi	Wireless Fidelity
WM	Wireless Manufacturing
WMN	Wireless Mesh Network
WMSN	Wireless Mesh Sensor Network

- WSN Wireless Sensor Network
- ZC ZigBee Coordinator
- ZED ZigBee End Device
- ZR ZigBee Router

KAJIAN-KAJIAN PENYIASATAN BAGI SISTEM BARIS PERHIMPUNAN TERBENAM DENGAN DUA PLATFORM RFID

ABSTRAK

Kelemahan sistem inventori kawalan dan ketinggalan zaman telah meningkatkan kerumitan pengurusan barisan pengeluaran kilang, terutamanya oleh peningkatan jualan dan permintaan dalam industri. Sistem yang tidak terurus di dalam barisan pemasangan menyebabkan masalah ketidakcekapan dalam menjejaki kelantangan produk. Objektif penyelidikan ini adalah untuk membangunkan reka bentuk baru seni bina RFID yang dibenamkan (pasif dan sistem aktif) ke dalam satu sistem untuk mengesan dan memantau proses penghantaran produk di barisan pemasangan di industri. Gabungan baru RFID berasaskan 2.4 GHz ZigBee yang beroperasi di platform rangkaian sensor tanpa wayar dicadangkan sebagai penyelesaian kepada masalah pengurusan produk. Sementara itu, sistem yang dicadangkan melibatkan reka bentuk perkakasan dan perisian yang dibenamkan dengan pembaca RFID pasif di Ultra High Frequency (UHF). Keputusan dari eksperimen yang dijalankan menunjukkan bahawa sistem terbenam iaitu Passive and Active RFID (PAR) menghasilkan prestasi keseluruhan yang lebih baik berbanding sistem RFID (PR) pasif yang berdiri sendiri. Ujian jarak dalaman diukur dari jarak 0 hingga 60 m. Pengukuran yang diperolehi pada jarak 1 m dan 60 m dari rangkaian penghantaran adalah -33 dB dan -51 dB masing-masing. Ia juga diperhatikan bahawa sistem terbenam mempunyai nilai kekuatan isyarat yang lebih baik 7.84% berbanding sistem kendiri pada 60 m. Untuk tahap kuasa tertinggi, iaitu tahap 4 (10 dBm) didapati hanya 0.02 dB kehilangan isyarat dan berlaku 99.8% kepada nilai teori bagi sistem PAR. Nilai-nilai throughput untuk tertanam adalah antara 12 kbps hingga