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PENGIRAAN PRINSIP-PERTAMA TERHADAP CIRI-CIRI 

OPTOELEKTRONIK PARTIKEL NANO SOL-GEL ZINK OKSIDA  

ABSTRAK 

 

Diagnostik berkesan antara eksperimentasi dan pengiraan teori adalah perlu untuk 

memastikan sinergi antara kedua pendekatan. Kajian ini menggunakan input struktur 

daripada experimentasi ke dalam rangka kerja teori. Permulaannya, partikel nano 

ZnO telah disintesis melalui kaedah sol-gel pada waktu penuaan berbeza. Analisa 

fasa dan struktur mengesahkan penghasilan struktur ZnO wurtzit heksagon dengsn 

sampel dituakan selama 36 j menunjukkan penghabluran tertinggi dan memberikan 

visual tepat terbaik dalam analisa Rietveld. Pemerhatian morfologi menunjukkan 

penghasilan partikel nano sfera yang seragam pada masa penuaan melebihi 6 j 

manakala variasi yang kecil direkodkan pada jurang jalur tenaga antara 3.08 – 3.12 

eV. Jalur kependarkilauan menunjukkan pelepasan hijau kerana kekosongan oksigen. 

Di dalam pengiraan prinsip pertama, sel unit ZnO dibina berdasarkan parameter 

struktur daripada analisa Rietveld bagi menghubungkan kajian eksperimental. 

Beberapa fungsi penukaran-korelasi termasuk LDA, GGA-PBE, GGA-PBESol, 

LDA+U, GGA-PBE+U dan GGA-PBESol+U. Fungsi GGA-PBE+U (Ud,Zn = 10 eV 

dan Up,O = 6.1 eV) menunjukkan sisihan kekisi terendah dan berjaya mengulang 

jurang jalur tenaga eksperimentasi. Struktur ZnO super sel bersama kekosongan 

oksigen menunjukkan kedudukan kecacatan lebih nyah-setempat dan berada pada 

1.90 eV dari atas jalur konduksi. Posisi ini menepati tenaga pembebasan foton (2.06 

eV) seperti terlihat di spektrum kependarkilauan. Dapatan ini bermanfaat dalam 

rekabentuk anod sel solar bagi meningkatkan penyerapan cahaya nampak.     
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FIRST-PRINCIPLES CALCULATIONS ON SOL-GEL ZINC OXIDE 

NANOPARTICLES OPTOELECTRONIC PROPERTIES 

ABSTRACT 

 

An efficient diagnostic between experimental and theoretical calculation is 

essential to ensure the synergy between these two approaches. This study made 

attempt to use structural input from experimental in the theoretical framework. 

Initially, ZnO nanoparticles were synthesized by sol-gel method at different aging 

time. The phase and structural analyses confirmed the formation of hexagonal 

wurtzite ZnO structure at which sample aged at 36 h showed highest crystallinity and 

gave the best visual fit in Rietveld analysis. Morphological observation revealed 

spherical nanoparticles were formed at aging time higher than 6 h while only small 

variation in energy band gap recorded between 3.08 – 3.12 eV. The 

photoluminescence spectra revealed a green emission due to oxygen vacany. In first-

principles calculation, the ZnO unit cell was built based on structural parameter from 

Rietveld analysis in order to provide a bridge with experimental study. Several 

exchange-correlation functional including LDA, GGA-PBE, GGA-PBESol, LDA+U, 

GGA-PBE+U and GGA-PBESol+U were tested. The GGA-PBE+U (Ud,Zn = 10 eV 

and Up,O = 6.1 eV) showed lowest lattice deviation and successfully reproduced the 

experimental band gap. ZnO supercell structure with oxygen vacancy showed that 

defect state were more delocalized and appeared at 1.90 eV from top of conduction 

band. This position was close to the photon energy released due to recombination of 

electron (2.06 eV) as observed in luminescence spectra. The results are beneficial in 

designing photoanode material in solar cell that will enhance visible light absorption.  



 

1 

 

CHAPTER ONE 

INTRODUCTION 

 

1.1 Study background 

The 21
st
 century has marked a tremendous research work focusing on potential 

clean and renewable energy technology. The new generation of solar cell known as 

dye-sensitize solar cell (DSSC) is an example of energy device that actively studied. 

In DSSC, the photoanode consist of a metal oxide semiconductor plays important 

role that contributes to overall efficiency. It serves as a scaffold that supports the dye 

molecules and transferring electrons [1]. Zinc oxide (ZnO) has become a potential 

photoanode material pertaining to its unique and comparable properties from its 

former counterpart.  

 

  ZnO is a II-VI semiconductor with a wide energy band gap (3.3 eV) and high 

electron mobility with magnitude larger than anatase TiO2  μTiO2 = 0.1-4 cm
2
 Vs

-1
, 

μZnO = 200-300 cm
2
 Vs

-1
) [2]. To date, issue on the incapability of ZnO to fully utilize 

visible light due to its wide band gap has limited its potential use especially in solar cell. 

Several attempts have been conducted such as the introduction of a doping element 

and monitoring the native defects [3, 4]. These work in return involved number of 

experiments before the ideal properties can be achieved.  

 

Pure ZnO nanoparticles can be obtained through several synthesis routes such as 

solid state reaction [5], hydrothermal [6] and sol-gel methods [7-9]. Notably, the sol–

gel method has been favoured for the synthesis of  nO  ecause it can take place at a 
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lower temperature          , involves simple starting materials, and produces  nO 

with excellent chemical homogeneity. The synthesis condition including solution pH 

[8, 10], type of starting materials [11], and pre- and post-heat treatment [12] are found to 

give impact on properties of sol-gel derived ZnO. 

 

Meanwhile, the current practice used first-principles calculations based on the 

density functional theory (DFT) to study the properties of ZnO. DFT has become the 

preferred computational method due to the simplicity of the software and its ability 

to calculate the ground state properties with predictive accuracy. The principles of 

DFT are based on two theorems pioneered by Hohenberg-Kohn [13] and Kohn-Sham 

[14] that simplify the complexity of the many-body Schrodinger equation. By 

considering the electron density instead of many-body wave function, DFT has made 

the computational work much easier to be solved [15].  

 

A number of theoretical studies have been conducted to simulate the 

optoelectronic properties ZnO [16-19]. Based on this method, fast and accurate 

results have been achieved, along with reduced trial and error, as often happens in 

experimental work. However, calculations based on the DFT are sensitive as the 

varying of unnecessary parameters may lead to unphysical and misinterpreted results. 

 

1.2 Problem Statement 

Previous studies have shown that intensive investigations on the properties of 

ZnO have been carried out by means of experimental and theoretical methods. 

Hence, it is necessary to verify these two approaches to ensure the synergy of each 
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work and in return leading to a significant improvement. One intriguing approach is 

to integrate the theoretical calculation with the input from the experimental result.  

 

This approach used lattice parameters and atomic coordination obtained from 

experimentation to build the ZnO crystal structure in theoretical framework. 

However, the reported studies had used lattice inputs from random literature during 

the structure modelling stage [20, 21]. This strategy successfully created a ZnO 

model, but it did not offer a close representation of experimentally-grown ZnO. As a 

result, no bridging is attained and the calculated optoelectronic properties are merely 

belong another system.    

 

To obtain an exact crystal structure is a challenging task. The refined diffracted 

profile from X-ray diffraction analysis offered structural information that is close 

representation to the synthesized version. Therefore, a well synthesized ZnO must be 

produced with a controlled parameter and carefully characterized.     

 

In the sol-gel method, several processes involved such as hydrolysis, 

condensation, nucleation and aging. The growth of ZnO mainly occurred during 

aging [22] and if the gel is freely aged over time, the formation of ZnO nanoparticles 

could be investigated. Previous literature has noted that stabilized ZnO can be 

obtained after short-time aging lasting 0–36 h [23], 48 h [7, 8], and even after a 

month [24]. The range of aging time is rather very wide and may lead to difficulties 

when the optimum aging is to be chosen for practical consideration. Hence, aging 

time must be carefully examined to allow complete formation of ZnO. 
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