SURFACE MORPHOLOGY AND ELECTRICAL PROPERTIES OF COPPER-NICKEL ALLOY THIN FILM DEPOSITED ON PRINTED CIRCUIT BOARD USING THERMAL EVAPORATION METHOD

NURUL KHALIDAH BINTI YUSOP

UNIVERSITI SAINS MALAYSIA

2017

SURFACE MORPHOLOGY AND ELECTRICAL PROPERTIES OF COPPER-NICKEL ALLOY THIN FILM DEPOSITED ON PRINTED CIRCUIT BOARD USING THERMAL EVAPORATION METHOD

by

NURUL KHALIDAH BINTI YUSOP

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

August 2017

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful.

Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this thesis. First and foremost, I offer my sincerest gratitude to my mother for her continuous support, my beloved late father, because of him I pursued my Master study. I also love to thank my supervisor Assoc. Prof. Ahmad Badri Bin Ismal, for his supervision, guidance, patience, understanding and constant support during the research and writing this thesis. One simply could not wish for a better or friendlier supervisor. Special appreciations also go to my co-supervisor, Assoc. Prof Dr. Nurulakmal Binti Mohd Shariff and PPKBSM lecturers who involved directly or indirectly in giving ideas and encouragements regarding the research. Apart from that, I would also like to express my gratitude to all technicians who have assisted me during laboratory work especially technicians from rubber laboratory. I also would like to thanks Susan Chow and T.P. Chuah from Intel Microelectronic Sdn. Bhd. for this amazing collaboration project and assisted me during the simulation timeline. Sincere thanks also dedicated to all my friends for their kindness and moral support during my study. Thank you very much for the friendship and memories.

This journey is only the beginning.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xvii
LIST OF SYMBOLS	xix
ABSTRAK	XX
ABSTRACT	xxi

CHAPTER ONE: INTRODUCTION

1.1	Background	1
1.2	Problem Statement	3
1.3	Objectives of the research	5
1.4	Scope of the thesis	5

CHAPTER TWO: LITERATURE REVIEW

2.1	Introd	uction	7
2.2	Resist	or Technology	8
2.3	Thick	and Thin Film Resistors	11
2.4	Thin I	Film Resistors and Its Properties	12
	2.4.1	Materials in Thin Film Resistor	12
	2.4.2	The Resistive Behavior of Thin Films	16
		2.4.2 (a) Thickness	16
		2.4.2 (b) Surface Roughness of the Films	17
		2.4.2 (c) Temperature Coefficient of Resistance (TCR)	18
2.5	Dieleo	etric Substrate	20
	2.5.1	FR-4 PCB Substrate	21
	2.5.2	Substrate Conditions	22
		2.5.2 (a) Pre-Cleaning	22
		2.5.2 (b) Substrate Roughness and Adhesion	23
2.6	Thin I	Films Fabrication	24
	2.6.1	Fabrication Method of Thin film	24
		2.6.1 (a) Evaporations	25

		2.6.1 (b) Sputtering	26	
	2.6.2	Properties Controlled by Deposition Techniques	28	
2.7	Signal	Integrity of Thin Film Resistors	28	
	2.7.1	Signal Integrity	28	
	2.7.2	Transmission Line Fundamental	30	
	2.7.3	Losses in Transmission Lines	30	
	2.7.4	Types of signal measurements	32	
CHA	CHAPTER THREE: METHADOLOGY 36			
3.1	Introd	uction	36	
3.2	Based	materials	37	
	3.2.1	Copper	37	
	3.2.2	Nickel (Ni)	37	
	3.2.3	Silver (Ag)	37	
	3.2.4	Substrate	37	
3.3	Samp	le preparations	38	

- 3.3.1 Mixing 38
- 3.3.2 Dry Milling39

	3.3.3	Manual pressing	39
3.4	Substr	rate preparation	39
3.5	Depos	ition of thin film	39
3.6	Sampl	e Preparation for Metallography Study after Deposition	41
	3.6.1	Mounting	41
	3.6.2	Grinding/Polishing	41
3.7	Mater	ial Characterization	41
	3.7.1	Particle size of raw/process material	41
	3.7.2	Elemental Compositions	42
	3.7.3	Material Compositions analysis	42
	3.7.4	Thin film Thickness and Morphology	43
	3.7.5	Thermal Analysis	43
3.8	Adhes	ion Analysis	44
	3.8.1	Scratch test	44
	3.8.2	Peel off test	44
3.9	Electr	ical properties analysis	46
	3.9.1	Thermal stability	46

	3.9.2 Resistance/Resistivity	48
	3.9.3 Hall Effect Measurement	50
3.10	Design/Fabrication of PCB and Test	50
3.11	Simulation Setup	53

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1	Introduction	55
4.2	Electrical properties analysis	55
	4.2.1 Thermal stability	55
	4.2.2 Characterization of FR-4 Board Substrate	58
4.3	Scratch Test/Adhesion Test	60
4.4	Thin Film Resistor Performances	65
	4.4.1 Effect of Film Thickness on Structural and Electrical	65
	Properties	
	4.4.2 Effect of Copper Composition on Structural and	70
	Electrical properties	
4.5	Simulations and Signal Performance	76
	4.5.1 Copper-Nickel	76
	4.5.1 (a) Simulation Modelling of Copper-Nickel	76

	4.5.1 (b) Electrical and Signal Performances for Copper-	77
	Nickel	
4.5.2	Copper-Nickel-Silver	83
	4.5.2 (a) Structural and Electrical Characterization	83
	4.5.2 (b) Simulation Modelling for Copper-Nickel-	84
	Silver	
	4.5.2 (c) Signal Performances for Copper-Nickel-Silver	85

CHAPTER FIVE: CONCLUSIONS

5.1	Conclusion	90
5.2	Recommendations	91

92

REFERENCES

APPENDICES

LIST OF PUBLICATION

LIST OF TABLES

		Page
Table 2.1	Dielectric Properties of Various Substrates	22
Table 3.1	General properties of FR-4 board	38
Table 3.2	The weights of respective material correspond to the alloys	38
Table 3.3	Control parameters of evaporation process	40
Table 4.1	Particle size analysis of Cu, Ni and CuNi alloy	56
Table 4.2	Tape adhesion results of the area of the film coating	63
Table 4.3	Electrical properties of different film thickness deposited	65
Table 4.4	Electrical properties of different film thickness deposited	67
Table 4.5	Thin films compositions verified by EDX test according to thickness	70
Table 4.6	Electrical properties of thin film according to variation of copper content	71
Table 4.7	Parameters for EDX testing according to copper composition	76

Table 4.8	Simulation results at 3GHz	77
Table 4.9	Resistance of prototypes from tip to tip.	79
Table 4.10	Simulation results at 3GHz	84

LIST OF FIGURES

		Page
Figure 1.1	Basic concept in electronic packaging	3
Figure 1.2	The comparison of discrete resistor on board	4
Figure 2.1	Electron drifting in a conductor of length, <i>l</i> subjected to electric field, E	9
Figure 2.2	The phase diagram for Ni-Cr alloys	13
Figure 2.3	Phase diagram of copper nickel alloy	14
Figure 2.4	The graph of TCR	19
Figure 2.5	A standard set up of thermal evaporator	26
Figure 2.6	Sputtering process diagram	27
Figure 2.7	The four families of signal-integrity problems	29
Figure 2.8	Schematic of transmission line and the insertion loss	33
Figure 2.9	Schematic of transmission line and the return loss	34
Figure 2.10	The magnitude of the passive component (coupler) on	35

substrate

Figure 3.1	Flow chart of the experimental work in this research	36
Figure 3.2	Schematic diagram for Turbo Evaporator	40
Figure 3.3	Razor blades use for adhesion testing	45
Figure 3.4	The image of the thin film after scratch test	45
Figure 3.5	The illustration of the tape test	46
Figure 3.6	The schematic diagram of Wheatstone bridge	47
Figure 3.7	Set up of TCR test	47
Figure 3.8	Thin film set up for TCR test	48
Figure 3.9	The schematic of the four point probe testing	49
Figure 3.10	The PCB sample holder in hall-Effect test	50
Figure 3.11	Illustration of copper trace design on the substrate	51
Figure 3.12	Illustration of the place where the deposited material taken place	52

Figure 3.13	The finish look of the copper traces design on the PCB for P1 design	53
Figure 3.14	Basic setup of network analyzer for signal integrity	54
Figure 4.1	Particle size analysis of pure Cu	56
Figure 4.2	Particle size analysis of pure Ni	57
Figure 4.3	Particle size analysis of CuNi after milling	57
Figure 4.4	Plots TGA analysis of FR-4 printed circuit board (a) Heatflow for TGA test (b) Plot of the samples %-weight as a function of temperature	59
Figure 4.5	TGA analysis of FR-4 printed circuit board with CuNi alloys thin film	60
Figure 4.6	(a) Surface morphology of deposited CuNi; (b) EDX analysis of thin film layers	61
Figure 4.7	The interfaces involved in adhesion test, (a) FR-4/CuNi interface (b) Cu/CuNi interface	62
Figure 4.8	Surface observations of the scrtach test (a) FR-4/CuNi interfaces at 100x (b) FR-4/CuNi interfaces at 1000x (c) Cu/CuNi interfaces at 100x (d) Cu/CuNi interfaces at 1000x	63

Figure 4.10 Thickness of the deposited layer of thin films (a) 25 nm (b) 66 50 nm (c) 70 nm and (d) 100 nm

64

- Figure 4.11 Figure 4.11 Surface structure of thin film at thickness (a) 25 68 nm (b) 50 nm (c) 70 nm and (d) 100 nm
- Figure 4.12 Side by side comparison surface structure of thin film 68 thickness
- Figure 4.13 XRD spectrum for Cu-Ni alloys at respective thickness (a) 69 25 nm (b) 50 nm (c) 70 nm and (d) 100 nm
- Figure 4.14 Surface structure of thin film layers according to copper 71 content (a) 50 wt.% (b) 60 wt.% (c) 70 wt.% and (d) 80 wt.%
- Figure 4.15The graph of resistivity against copper content72Figure 4.16Thermal stability of thin films according to copper content73Figure 4.17The graph of R/R0 as a function against temperature74
- Figure 4.18 XRD patterns for the CuNi samples deposited by different 75 Cu compositions

Figure 4.19	XRD patterns for the CuNi samples deposited by different Cu compositions at range 40 – 50 degree theta.	75
	Cu compositions at range 40 – 50 degree meta.	
Figure 4.20		78
	board and (c) P3 board.	
Figure 4.21	Insertion Loss of 80/20 wt.% CuNi at 50 ohms termination	8
Figure 4.22	Return Loss of 80/20 wt.% CuNi at 50 ohms termination	80
Figure 4.23	Impedance Control of 80/20 wt.% CuNi at 50 ohms	81
1 Iguie 4.25	termination	01
Figure 4.24	Insertion Loss of 80/20 wt.% CuNi at 38 ohms termination	82
Figure 4.25	Return Loss of 80/20 wt.% CuNi at 38 ohms termination	82
Figure 4.26	Surface morphology of CuNi with (0.1 wt. %Ag)	83
C		
Figure 4.27	XRD phase of Copper-Nickel-Silver (a) silver (b) CuNi and	84
	(c) Nickel	
Figure 4.28	Fabricated boards (a) Base board, (b) P1 board, (c) P2	85
	board and (c) P3 board	
Figure 4.29	Insertion Loss of CuNi with (0.1 wt. % Ag) at 50 ohms	86

termination

Figure 4.30	Return Loss of CuNi with (0.1 wt. % Ag) at 50 ohms	86
	termination	
Figure 4.31	Insertion Loss of CuNi with (0.1 wt. % Ag) at 38 ohms	87
	termination	
Figure 4.32	Return Loss of CuNi with (0.1 wt. % Ag) at 38 ohms	88
	termination	
Figure 4.33	The comparison of insertion loss at 38 ohms termination	89
	between 80/20 wt.% CuNi and CuNi with (0.1 wt. % Ag)	
Figure 4.34	The comparison of return loss at 38 ohms termination	89
	between 80/20 wt.% CuNi and CuNi with (0.1 wt. % Ag)	

LIST OF ABBREVIATIONS

.gbr	Gerber file
BCC	body-centred cubic
Cu-Ni	Copper-Nickel
CVD	chemical vapor deposition
DC	direct current
DSC	Differential scanning calorimetry
FCC	face-centred cubic
I/O	Input Output
Ni-Cr	nickel-chromium
РСВ	printed circuit board
РТН	Plated through Hole
PVD	physical vapor deposition
SI	Signal Integrity

SiC	silicon carbide
SMT	Surface Mounted Technique
TCR	temperature coefficient of resistance
T _g	Transition temperature
TGA	thermogravimetry analysis

LIST OF SYMBOLS

ε _r	Permittivity
λ	Mean free path
е	Electron charge
R	resistance
ρ	resistivity
R _s	Sheet resistance
α	Temperature coefficient of resistance

ABSTRACT

The increased in input/output (I/O) density due to the demand of high performances in devices caused the routing density on printed circuit board increased. This caused the board size increases due to the increased of trace width and trace spacing. Apart from that, the consumers preferred a small devices. This definitely against the customer's need because increasing in width trace caused the size of package also increases. One way to overcome this is by replacing the passive resistor with the thin film resistor. Therefore in this study CuNi thin film was selected as a thin film resistor material. The experiments consists of 3 parts (1) to measure the thickness of the thin film with desired resistance (2) to determine the Cu content with the desired electrical properties (3) to build the prototypes of the thin film resistor into suitable size as used by the industry and simulate the design to obtain a high value of insertion loss and low value of return loss. All samples were deposited using thermal evaporator at constant pressure. The adhesion between the film and the substrate were observed by using peel off test. The morphology were observed using SEM while the composition of the phase of the samples were confirmed using XRF, EDX and XRD. It was found out that 70 nm is the minimum thickness that suitable for thin film resistor. The quality of thin film resistors depends on Cu contents. 80/20 wt.% CuNi was found to be the desired composition with the best electrical properties compared to others. The same compositions was used for simulation purpose. From the simulation it can be said that all the thin film resistor are able to perform in frequency up to 5GHz. 80/20 wt.% CuNi able to achieved -2 dB for insertion loss and -30 dB for return loss

ABSTRAK

Peningkatan ketumpatan kemasukan/pengeluaran disebabkan oleh permintaan yang tinggi terhadap prestasi peranti menyebabkan kepadatan penghalaan pada papan litar tercetak meningkat. Ini menyebabkan saiz papan meningkat disebabkan peningkatan terhadap kelebaran dan jarak surih. Selain itu, pengguna juga lebih gemarkan peranti yang kecil. Ini pastinya menyanggahi keperluan pengguna kerana peningkatan dalam jejak lebar menyebabkan saiz pakej juga meningkat. Satu cara untuk mengatasinya ialah dengan menggantikan perintang pasif dengan perintang filem tipis. Oleh itu dalam kajian ini CuNi filem tipis dipilih sebagai bahan perintang filem tipis. Eksperimen ini terdiri daripada 3 bahagian (1) untuk mengukur ketebalan filem nipis dengan rintangan yang dikehendaki (2) untuk menentukan kandungan Cu dengan sifat-sifat elektrik yang dikehendaki (3) untuk membina prototaip perintang filem nipis ke saiz yang sesuai seperti yang digunakan oleh industri dan mensimulasikan reka bentuk untuk mendapatkan nilai kerugian kemasukan yang tinggi dan nilai kehilangan pulangan yang rendah. Semua sampel disimpan menggunakan penyejat haba pada tekanan malar. Lekatan antara filem dan substrat diperhatikan dengan menggunakan ujian pengupasan. Morfologi diperhatikan menggunakan SEM manakala komposisi fasa sampel disahkan menggunakan XRF, EDX dan XRD. Telah didapati bahawa 70 nm adalah ketebalan minimum yang sesuai untuk perintang filem tipis. Kualiti perintang filem nipis bergantung kepada kandungan Cu. CuNi berkomposisi 80/20 wt.% didapati komposisi yang dikehendaki dengan sifat elektrik yang terbaik berbanding dengan yang lain. Komposisi yang sama digunakan untuk tujuan simulasi. Dari simulasi, boleh dikatakan bahawa semua perintang filem tipis mampu beroperasi pada frekuensi sehingga 5GHz. CuNi berkomposisi 80/20

wt.% mampu mencapai -2 dB untuk kehilangan sisipan dan -30 dB untuk kehilangan kembali.

CHAPTER ONE

INTRODUCTION

1.1 Background

In general, electronic components can be classified into two; active or passive according to their effect on the power of signals applied to them. An active component can increase the power of signal, using energy that is supplied usually by a direct current (DC) supply. Passive component on the other hands, cannot increase the power of any signals applied to them and will inevitably cause power to be lost. They can be used to reduce power of a signal deliberately, to select part of a signal by its voltage, its frequency or its time relationship to another signal, to change shape of a waveform or to pass a signal from one section of a circuit to another, but in every case the power of a signal is decreased or unchanged (Kuphaldt, 2009).

Resistors, capacitors and inductors are the fundamental passive components. Resistors are one of the passive components that are commonly seen on the printed circuit board (PCB) of the electronic packaging. A resistor is used to reduce the flow of electricity in an electric circuit. Depending on the applications, resistors can come in a fixed resistor or a variable type. A fixed resistor cannot be changed as it set at a specific value, whereas variable resistor can manage flow at and below specific level (Sinclair, 2001). Resistors can be manufactured from a variety of materials and some of these materials have been used for a very long time example of the material used as resistor was copper alloy (Kang *et al.*, 2005a; Jeon, *et al.*, 2008). However, in this research study, the film resistors will be focused on.