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PEMBANGUNAN DAN PENCIRIAN PENUJAH JET AIR MENGECUT 

GERAKAN KOMPOSIT POLIMER – LOGAM BERION 

 

ABSTRAK 

 

Komposit Polimer-Logam Berion (IPMC) merupakan salah satu bahan pintar yang 

boleh digunakan sebagai penggerak untuk Penujah Jet Air Mengecut (CWJT) yang 

merupakan penujah jet air alternatif untuk kenderaan bawah air berautonomi (AUV). 

Kelebihan penggerak IPMC adalah ianya ringan, fleksibel, boleh digunakan dalam air 

dan memerlukan voltan yang rendah. Walaubagaimanapun daya gerak IPMC yang 

rendah menghadkan penjanaan daya tujah. Oleh demikian, kajian ini dijalankan untuk  

menyiasat sifat aliran bendalir yang terhasil daripada gerakan IPMC ke atas CWJT. 

Siasatan ini meliputi pemerhatian terhadap hubungkait di antara beberapa faktor yang 

mempengaruhi penghasilan daya tujah seperti saiz muncung jet, bekalan tenaga untuk 

IPMC dan frekuensi gerakan IPMC. Kajian ini melibatkan kerja-kerja merekabentuk 

konsep prototaip penujah, fabrikasi dan mencirikan penggerak IPMC, simulasi 

keadaan bendalir pada rekabentuk prototaip dan juga beberapa ujikaji untuk 

penentusahan data. Hasil ujikaji dan penentusahan data menunjukkan saiz muncung 

jet dan frekuensi penggerak merupakan faktor utama dalam pembangunan penujah jet 

air yang digerakkan oleh IPMC. Frekuensi penggerak yang sesuai adalah di bawah 0.1 

Hz. Sebarang nilai frekuensi melebihi 0.1 Hz akan mengurangkan keupayaan 

pengecutan CWJT. Daya tujahan maksima yang dicapai dalam penyelidikan ini adalah  

4.52 mN pada bekalan kuasa sebanyak 6 V. Ini tidak sesuai untuk AUV yang berat 

dan mempunyai panjang lebih dari 1 m. Walau bagaimanapun, ia sesuai untuk AUV 

kecil atau AUV mikro yang beroperasi dalam air yang berarus rendah. 
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DEVELOPMENT AND CHARACTERIZATION OF THE IONIC POLYMER 

METAL COMPOSITE ACTUATED CONTRACTILE WATER JET 

THRUSTER  

 

ABSTRACT 

 

Ionic Polymer Metal Composite (IPMC) is a type of smart material that can be utilized 

as the actuator for contractile water jet thruster (CWJT) which is an alternative thruster 

for autonomous underwater vehicle (AUV). The advantages of IPMC actuator are 

light, flexible, able to be utilized underwater and consuming low voltage. However, 

IPMC low actuation force has limited the thrust generation. Hence, this research had 

been conducted to investigate the character of the fluid flow generated by the IPMC 

actuation on the CWJT. This investigation includes the observation on the relation of 

few factors that influence the thrust generation such as the nozzle aperture size, supply 

voltage for IPMC actuation and actuation frequency. This research consists of 

designing the conceptual prototype thruster, fabricating and characterizing the IPMC 

actuator, simulating the fluid flow of the prototype design and few experiments for 

data validation. The results and validation from the experiments showed that nozzle 

aperture size and actuation frequency of the IPMC actuator were influential factors in 

the development of IPMC actuated CWJT. The feasible actuation frequency was 0.1 

Hz. Any higher frequency than 0.1 Hz would decline the CWJT contraction 

performance. The maximum thrust achieved in this research was 4.52 mN at 6 V 

supply. It is not feasible for heavy and more than 1 m long AUV. However, it suits for 

small or micro AUV that works in low current waters. 
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CHAPTER ONE 

INTRODUCTION 

 

 Background 

 

The development of autonomous underwater vehicle (AUV) is simply driven by 

three major lines of motivation; the underwater biodiversity exploration, 

environmental ecology concern and the current fast growing sub-ocean industry (Yuh, 

2000b; Roper et al., 2010). The related task that requires AUV service regarding these 

domain of activities including underwater research, oil and gas exploration, 

underwater construction, water quality monitoring, military activities, sub-ocean 

mining and eco-tourism. The working environment and nature of the task has 

determined the design of the AUV. For instance, a linear motion seabed topography 

scanning requires a torpedo shape AUV design for minimal drag influence. On the 

other hand, three dimensional seabed pipeline monitoring would utilize a 6 Degree of 

Freedom (DOF) box shaped AUV design because it has more manoeuvrability and 

linear speed locomotion is not a priority (Guo et al., 2010; Shi et al., 2013). Meanwhile, 

Yue et al. (2015) and Guo et al. (2016) had designed and developed a spherical AUV 

which has the advantage in manoeuvrability, flexibility and outstanding shock 

resistance.  

One of the current trend in the AUV development and has become great 

attention from many researchers is the small scale AUV that is able to do sensing and 

observation tasks in various dimension and complex structure (Curtin et al., 2005; Lin 

and Guo, 2012). In addition, by applying swarm AUV sensing technique, 3D data 

could be recorded and thus would give a better comprehension on the ongoing 
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investigation (Vasilescu et al., 2005; Campos and Codina, 2015). However, though the 

AUV technology had been developed since 1960’s, researchers and engineers are still 

struggling to achieve the ultimate swimming performance under the conventional 

design AUV which is trading off the speed and manoeuvrability of the AUV (Roper 

et al., 2010). Furthermore, for a small scale sensing AUV which has limited space for 

energy supply means shortage of operation time. Another concern is the noise from 

the conventional electric motor is unnecessary. All these constraints had shifted the 

researchers to the out-of-the-box solution; by getting the inspiration from the nature 

for design outcome and promoting new actuation techniques (Shi et al., 2013). 

Naturally, aquatic animals such as fish, squid and eels are excellent swimmers 

with high propulsion efficiency in term of both speed and manoeuvrability (Yu et al., 

2005). Without rotating propeller, fish for instance manages to move at fast speed (up 

to 65mph for sailfish) and able to accelerate at difficult angle either to catching its prey 

or escaping away from its predators (Hingham, 2007). Besides, those aquatic animals 

manage to move in near silent motion. Ability to move stealthily is a vital characteristic 

for predator fish. In order to achieve the optimum propulsion efficiency at high 

manoeuvrability degree and lower drag, researchers had imitated these aquatic animal 

swimming principles in their AUV design (Chu et al., 2012). This non conventional 

AUV is known as bio-inspired or biomimetic AUV.  In general, there are three main 

classifications for aquatic animal swimming mechanism which are; 

i. Oscillating 

ii. Undulatory  

iii. Jet propulsion   

There are few subcategories between the oscillating and undulatory swimming 

mechanism or propulsion system as depicted in Figure 1.1 (Colgate and Lynch, 2004). 
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Almost all aquatic vertebrates such as fish, eels and quite large number of reptile 

species such as snake, crocodile and iguana utilize oscillating and undulatory 

swimming mechanics. Only few invertebrates such as squid, jellyfish, octopus and 

nautilus apply the water jet locomotion. Unlike the oscillating and undulatory 

swimming mechanism, the water jet propulsion is based on impulse.  

 

 

 

Figure 1.1: Classification of Swimming Mechanism (Colgate and Lynch, 2004) 

 

This impulse is generated from pressurized fluid. Currently, most of the small 

scale water jet propulsion system is driven by electric motor. The obvious difference 

between the squid water jet mechanism and the motor powered water jet mechanism 

is the fluid compression technique. The squid generates water jet pressure using body 

contraction while the motor powered water jet applies rotary blade compression 

without body deformation. The utilization of rotary blade compression in commercial 

thrusters generates noise while the blade propeller induces cavitation in most of the 

condition and would be harmful for underwater creatures (Wang et al., 2011). The 
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electric motor itself, contribute unnecessary load. Body contraction water jet which is 

applied by the squid, compresses the fluid by reducing the mantle volume. This 

contraction is not a continuous process but it is an intermittent process. Thus, the 

contraction frequency has significant influence on the thrust efficiency. There are few 

option of actuators that can be utilized to perform the intermittent contraction. In 

addition to the contraction frequency, contraction force, water inlet and water outlet 

opening are another few parameters that must be considered to achieve the optimum 

thrust efficiency.  

Hence, in this research the main goal is to developed contractile water jet 

thruster (CWJT) and conduct parametrical studies to investigate its performance as a 

thruster for small AUV. A suitable actuator which is more silent, light and compatible 

to the sensing measurement condition will be adapted. Based on preliminary studies, 

there are few options of actuators that could be utilized to substitute the fluid 

compression techniques which is driven by blade – motor integration. The potential 

actuators would be pneumatic based actuators and smart material actuators. Though 

the air is compressible and the actuators could be miniaturized, a complete pneumatic 

system require air reservoir, compressor and control valve which are too bulky for 

small scale AUV (Nishioka et al., 2011). Smart material actuators seems likely to fit 

in the actuation system. However, there are numbers of smart materials with various 

actuation characteristics and input requirements (Mikhrafai et al., 2007).  

Basically, smart material is a man-made material that has one or more 

properties that is being changed due to external inputs such as electric, electromagnetic 

fields and light (Chopra, 2002). This characteristics had made smart material as an 

option to fabricate actuators and artificial muscle. Though there is no specific category 

for this smart material actuators yet, this actuators could be recognized by its based 
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materials, which are metal based, ceramic based and polymer based. Shape Memory 

Alloys (SMA) is one example for metal based smart material and piezoelectric material 

is a kind of ceramic based smart material. Dielectric elastomer (DE), Conducting 

Polymers and Ionic Polymer Metal Composite (IPMC) are few examples for polymer 

based smart materials. Based on the requirement, IPMC had been selected as the 

potential actuator for the CWJT. IPMC requires low driving voltage, flexible and able 

to work underwater (Shahinpoor and Kim, 2001). However, the main challenge for 

this research is mainly comes from the limitation of IPMC whereby the actuation force 

is between 1.0 gf and 8.0 gf per actuator, depending on the dimensional geometry 

(Shahinpoor and Kim, 2001). The research works would involve the design and 

development of CWJT using smart material actuator and investigating the water jet 

generation performance at different inputs.   

 

 Problem Statement 

 

Currently most of the commercial thruster available in the market for AUV is 

developed based on electric motor powered rotary blade. The combination of electric 

motor and the rotary blade along with batteries requires a rigid and stiff AUV body 

structure to support those items. Basically, rotary thruster produces thrust in one 

straight direction which represents one axis of motion. Generally, there are three axis 

of motions for AUV locomotion which are forward – backward motion or surge, 

upward – downward motion or heave and right – left motion or sway (Benetazzo et al. 

2015). Therefore, to perform these motions AUV will be equipped with at least three 

thrusters. Rotational motion at every axis which are the roll, pitch and yaw requires 

another three thrusters. Though this thrusters increases the manoeuvrability degree of 
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