INDUSTRIAL AND GEOLOGICAL STUDY OF PROTOZOIC

METACARBONATE ROCKS FROM SOUTHERN AND CENTRAL NIGERIA

by

JIMOH ABDULLATEEF ONIMISI

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

November 2017

ACKNOWLEDGEMENTS

Special thanks to my family: my late mother, Salamat Oyiza Momohjimoh, my father, Momohjimoh Audu Onipe, for their continual and unwavering support throughout my academic journey. I humbly thank my beloved wife, Mariam Abdullahi and my son, Amir Ohinoyi Abdullateef and my daughter, Salma Oyiza Abdullateef for their patience, understanding, sacrifice, support and prayers throughout my programme.

I would like to express my sincere thanks to my main supervisor, Prof Madya Dr. Kamar Shah Ariffin for his help, advise, guidance constructive criticism and valuable suggestion during my research, and also my co-supervisor, Prof Madya Dr Hashim Hussin for his generous assistance and kind support.

Also, my sincere appreciation to Prof Zuhailawati Hussain (the Dean), management and the entire staff in the School of Materials and Mineral Resources Engineering for their support and assistance. Gratitude is also expressed to Okoye Ugochukwu Patrick for his assistance in the research work.

Furthermore, a special acknowledgement is given to Federal University Lokoja for giving me study leave with full pay.

Lastly, I would like to thank all my friends who helped me directly or indirectly in making my stay in USM an exciting and memorable experience.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	X
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	XV
LIST OF SYMBOLS	xvii
ABSTRAK	xviii
ABSTRACT	XX

CHAPTER ONE: INTRODUCTION

1.1	Introduction	1
1.2	Global Consumption of Precipitated Calcium Carbonate	2
1.3	PCC Production Technique	4
	1.3.1 The liquid-Liquid Route	4
	1.3.2 The solid-liquid-gas route	4
1.4	Problem Statement	7
1.5	Research Objectives	9
1.6	Scope of the study	10
1.7	Outline of the thesis	11

CHAPTER TWO: LITERATURE REVIEW

2.1	Regional Geological Setting of Nigeria	13
	2.1.1 The Migmatite Gneiss	14
	2.1.2 The schist belts of Nigeria	14
	2.1.2 (a) The Lokoja- Jakura belt	15

		2.1.2 (b) Ilesha schist belt	16
		2.1.2 (c) The Igarra schist belt	16
	2.1.3	Younger Granite Suite of the North Central Nigeria	17
2.2	Geolo	egy and Chemistry of Carbonates	17
	2.2.1	Mineralogy of marble	18
		2.2.1 (a) Calcite	18
		2.2.1 (b) Dolomite	19
	2.2.2	Other minor carbonate minerals	20
2.3	Geoch	nemistry	20
2.4	Econo	omic geology	21
2.5	Niger	ian marble resources	21
2.6	Some	of the many use for carbonates/metacarbonates	25
2.7	Precip	bitated Calcium Carbonate (PCC)	27
	2.7.1	PCC synthesis using Dolomite	30
	2.7.2	Reactors for PCC Production	31
		2.7.2 (a) Batch Reactor	31
		2.7.2 (b) Continuous Reactor	32
		2.7.2 (c) Tubular Reactor Type	33
		2.7.2 (d) Sprayed-mist Reactor Type	33
	2.7.3	Precipitated calcium carbonate (PCC) and its polymorph	34
		2.7.3 (a) Calcite Polymorph	36
		2.7.3 (b) Aragonite Polymorph	37
		2.7.3 (c) Vaterite Polymorph	37
	2.7.4	Effect of Surfactants and additives on PCC	38

2.7.5	Precipitated Calcium Carbonate Applications	50
	2.7.5 (a) Precipitated Calcium Carbonate Fillers for Papers	51
	2.7.5 (b) Precipitated Calcium Carbonate Fillers for Plastics	53
	2.7.5 (c) Precipitated Calcium Carbonate Fillers for Paint	54
	2.7.5 (d) Precipitated Calcium Carbonate Fillers for Sealants	55
2.7.6	Nucleation and Growth of PCC	55
2.7.7	Effect of Operating Variables in PCC	56
	2.7.7 (a) CO_2 flow rate	56
	2.7.7 (b) Temperature	57
	2.7.7 (c) Supersaturation	59
	2.7.7 (d) Bubbling Time	59
	2.7.7 (e) Stirring Rate	60
	2.7.7 (f) pH	60
Summ	ary	61

Summary 2.8

CHAPTER THREE: MATERIAL AND EXPERIMENTAL METHODS

3.1	Introduction	62
	3.1.1 Flow chart of the whole study	64
3.2	Scope and Method of Investigation	67
3.3	Location and Access	67
	3.3.1 Topography	68
	3.3.2 Drainage	68
3.4	Geological mapping	68
3.5	Petrographic and Mineralogical Study	69
	3.5.1 Petrographic analysis	70

	3.5.2	X-ray powder diffraction (XRD) analysis	70
	3.5.3	X-Ray Fluorescence (XRF) Analysis	71
	3.5.4	Fourier Transform Infrared (FTIR) Spectrometry	72
	3.5.5	Scanning electron microscopy (SEM)	73
	3.5.6	Particle size analysis	74
	3.5.7	Thermal Analysis (TGA-DTA)	74
	3.5.8	Brightness Test	75
3.6	Geocl	hemical tests	75
	3.6.1	Determination of compressive strength	75
	3.6.2	Determination of water absorption and specific gravity	76
	3.6.3	Determination of loss on ignition	77
3.7	Marb	le (Raw material) Preparation	78
	3.7.1	Crushing of samples	78
	3.7.2	Degree of Calcination and Decrepitation	78
	3.7.3	Reactivity Tests	79
	3.7.4	Slaking	80
	3.7.5	Preparation of milk of lime (Ca $(OH)_2$) and Synthesis of PCC	81
		3.7.5 (a) Preparation 1 L of 1.0 M milk of lime	81
		3.7.5 (b) Aloe vera extract preparation	81
		3.7.5 (c) Synthesis of Okpella PCC using aloe-vera extract	82
		3.7.5 (d) Preparation of calcium glucosate suspension	82
		3.7.5 (e) Synthesis of PCC particles using g/aloe-vera extract	82
	3.7.6	Recarbonation	83
		3.7.6 (a) Description of continuous tabular reactor concept	83
	3.7.7	Drying Process	86
3.8	Produ	ict codes	86

CHAPTER FOUR: RESULTS AND DISCUSSIONS

4.1	Geology	88
	4.1.1 Geological setting	88
	4.1.2 Okpella marble field occurrences and relationships	88
	4.1.3 Emiworo marble field occurrences and relationships	93
4.2	Characterization of the metacarbonate rocks	95
	4.2.1 Mineralogy and Petrography study of Okpella Marble	96
	4.2.2 Mineralogy and Petrography study of Emiworo Marble	98
	4.2.3 SEM-EDX Study of Okpella and Emiworo Marble	99
	4.2.4 X-ray diffractometry studies of Okpella marble	100
	4.2.5 X-ray diffractogram of Emiworo metacarbonate	101
	4.2.6 Geochemistry of Okpella marble	102
	4.2.7 Geochemistry of Emiworo marble	103
	4.2.8 Thermal analysis (TGA-DTA) of Okpella marble	105
	4.2.9 Thermal stability and degradation of Emiworo marble	106
	4.2.10 Physical properties analysis of Okpella marble	109
	4.2.11 Physical properties analysis of Emiworo marble	111
	4.2.12 Decrepitation characteristics of the metacarbonates	113
4.3	Industrial Application of the studied metacarbonates	114
4.4	Lime Product Characterization	118
	4.4.1 Influence of calcination temperature on the Okpella marble	119
	4.4.2 Influence of calcination temperature on the Emiworo marble	125
4.5	Green Precipitated calcium carbonate synthesis using Okpella marble	128
	4.5.1 Product Characterization	128
	4.5.1 (a) Powder X-Ray Diffraction (XRD) Studies	128
	4.5.1 (b) Fourier Transform Infra-red Spectroscopy of PCC	130
	4.5.1 (c) Crystal Morphology	131

		4.5.1 (d) Particle Size Distribution of the PCC	135
		4.5.1 (e) Thermal Analysis TGA/DTA	136
4.6	Industri	al features of developed technique	138
4.7	Green	PCC synthesis using Emiworo marble	139
	4.7.1	Characterization	139
		4.7.1 (a) Powder X-Ray Diffraction (XRD) Studies	140
		4.7.1 (b) Fourier Transform Infra-red (FTIR) Spectroscopy	142
		4.7.1 (c) Crystal morphology	143
		4.7.1 (d) Particle Size Distribution of the PCC	148
	4.7.2	Industrial features of developed technique	149
4.8	Chem	nical purity of the PCC	151
4.9	Brigh	tness of the synthesized PCC powder	153
4.10	Speci	fic Gravity (SG) of Both PCC	156

CHAPTER FIVE: CONCLUSION AND RECOMMENDATION

5.1	Conclusions	159
5.2	Recommendation	161

REFERENCES

162

APPENDICES

Appendix A	Field mapping of the Marble deposit in Nigeria
Appendix B	Some of the rock types found in the studied area
Appendix C	Emiworo marble and Okpella marble after reactivity
	Emiworo PCC, after treatment with d-glucose and aloe vera

Appendix D SEM of Emiworo PCC without d-glucose and aloe vera extract SEM of Emiworo PCC with d-glucose and aloe vera extract

LIST OF PUBLICATIONS

LIST OF TABLES

Page

Table 2.1	World Carbonate Outcrop Areas after Williams & Ford 2006	22
Table 2.2	Estimated reserves of some marble deposits in Nigeria	24
Table 2.3	Availability and distribution of calcium carbonate polymorphs	34
Table 2.4	Effect of different additives used in synthesis of PCC	39
Table 3.1 (a)	Characterization code used for Okpella marble PCC synthesis	85
Table 3.1 (b)	Characterization code used for Emiworo PCC synthesis	85
Table 3.1 (c)	Characterization code used for the physical parameters	87
Table 4.1	Geochemical analysis of Okpella marble deposit	103
Table 4.2	Geochemical analysis of Emiworo marble deposit	104
Table 4.3	Physical parameters for Okpella marble deposit	110
Table 4.4	Physical properties comparison of Okpella marble(mean value) and other marble	110
Table 4.5	Physical parameters for Emiworo marble samples	112
Table 4.6	Physical properties comparison of Emiworo marble and other marble	112
Table 4.7	Degree of decrepitation for both marble	114
Table 4.8	world traded marble compared with Emiworo and Okpella marble	115
Table 4.9	Specification for Marble for principal consuming industries	116
Table 4.10	Calcined Okpella marble at different firing conditions and time	122
Table 4.11	Calcined Emiworo marble at different firing conditions and time	127
Table 4.12	Particle size and specific surface area of the PCC with aloe vera extract and without aloe vera extract	135
Table 4.13	PCC yields prepared from different Aloe vera extract concentration	139
Table 4.14	Mg ²⁺ and PCC yields prepared from different Aloe vera additive concentration	147

Table 4.15	Particle size of the PCC particles with/without aloe vera	148
Table 4.16	XRF of both PCC products compared with the raw materials	152
Table 4.17	XRF of both PCC products compared with the raw materials	152
Table 4.18	Chemical composition of PCC in industry (rediffs, 2008)	153
Table 4.19	Brightness and whiteness values of the selected PCC	154
Table 4.20	SG of PCC from both marble with different aloe vera extract	156
Table 4.21	PCC standards for most production in industries	158

LIST OF FIGURES

Page

Figure 1.1	Global consumption of GCC and PCC by market (a) 2011 (adapted from (Stratton, 2012) (b) 2012	3
Figure 1.2	(a) Flow chart for the synthesis of PCC by carbonation process (b) solution process	6
Figure 2.1	Geological map of Nigeria showing the study area (modified from Obaje, 2009)	13
Figure 2.2	Location of the schist belts in the Nigerian sector of the pan-African province (Modified after Haruna, 2017)	15
Figure 2.3	 SEM micrographs (a) Calcite PCC (Adopted and modified from (Yu et al., 2004a) (b) Vaterite PCC (modified from (Xu et al., 2006) (c) Aragonite PCC (modified from(Yu et al., 2004a) 	35
Figure 3.1	(a) Flow diagram for Okpella marble PCC study(b) Flow diagram for Okpella marble PCC study	65
Figure 3.2	Sample location map in the study area	69
Figure 3.3	Schematic diagram of the tubular reactor	85
Figure 4.1	Geological map of Okpella studied area	89
Figure 4.2	 (a) Okpella marbles in the area are formed as a result of metamorphism of silicate-poor limestone protolith. (b) Okpella marble display some level of lineation indicated by alignment of various impurities (c) migmatite gneiss in the study area with some level of foliation (d) Granite rock type observed in the study area 	91
Figure 4.3	Fairly homogeneous granoblastic medium- to coarse-grained texture of Emiworo marble	95
Figure 4.4	Photomicrograph of Okpella marble showing evidence of polysynthetic twinning planes	97
Figure 4.5	Minerals observed in the marble (ca) calcite, (ch) chlorite (Qtz) quartz (Ph) phlogopite	97
Figure 4.6	Photomicrograph of Emiworo marble displayed a subhedral to anhedral dolomite crystals with	98
Figure 4.7	straight pore lining and many crystal face joint Emiworo marble photomicrograph showing linear fabric with some rhombohedral cleavages at 120°	99

Figure 4.8	EDX spectrum of Okpella with major Ca element and low Mg element	100
Figure 4.9	EDX of Emiworo marble with high Mg and lower Ca content	101
Figure 4.10	XRD phase analysis of Okpella marble with high calcite	
Figure 4.11	XRD phase analysis of Emiworo marble sample	102
Figure 4.12	(a) DTA curve for Okpella marble sample,(b) TGA curve for Okpella marble sample	106
Figure 4.13	(a) DTA curve for Emiworo marble sample,(b) TGA curve for Emiworo marble sample	108
Figure 4.14	(a) Initial Emiworo marble sample before burning(b) Initial Okpella marble sample before burning(c) Final Emiworo marble sample after burning(d) Final Okpella marble sample after burning	120
Figure 4.15 (a)	Reactivity graph for Okpella marble at 120 min.	121
Figure 4.15 (b)	Reactivity graph for Okpella marble at 90 min.	121
Figure 4.15 (c)	Reactivity graph for Okpella marble at 60 min.	122
Figure 4.16 (a)	Quick lime calcined at 1000 °C showed sufficient reactivity characterized with pores structures	124
Figure 4.16 (b)	Quick lime calcined at 900°C showed incomplete and partial thermal decomposition of the metacarbonate micro-surface	124
Figure 4.17 (a)	Reactivity graph for Emiworo marble at 60 minutes soaking time	125
Figure 4.17 (b)	Reactivity graph for Emiworo marble at 90 minutes soaking time	126
Figure 4.17 (c)	Reactivity graph for Emiworo marble at 120 minutes soaking time	126
Figure 4.18	X-ray diffraction (XRD) pattern of PCC (a) without extract (b) with 0.5 v/v% extract (c) 1 v/v% extract (d) 5 v/v% extract	129
Figure 4.19	FTIR of PCC synthesized using different concentration of additive. (a) Without extract (b) 0.5 v/v\% of extract (c) 1 v/v\% of extract (d) 5v/v\% of extract	130

Figure 4.20	 SEM of the samples obtained different concentration of Aloe-vera extract. (a) 0.5 v/v% of extract (b) 1 v/v% of extract (c) 5 v/v% of extract (d) Without extract 	132
Figure 4.21	Schematic of the possible formation mechanism of the unusual PCC morphology in the aloe-vera extract	134
Figure 4.22	TGA/DTA curves of (a) PCC produced with aloe-vera and (b) PCC in absence of aloe-vera extract	137
Figure 4.23	X-ray diffraction (XRD) pattern of PCC (a) Dolomite (b) without additive (c) with 0.5 v/v% Aloe-vera extract (d) with 5 v/v% Aloe Vera-extract extract	141
Figure 4.24	FTIR spectra of PCC synthesized using different conc. of additive (1) Without additive (2) 0.5 v/v% of Aloe-vera (3) 5 v/v% of Aloe-vera additive	143
Figure 4.25	SEM of the samples obtained from different conc.	144
Figure 4.26	SEM-EDX of PCC without D-glucose and Aloe-vera	145
Figure 4.26 (b)	SEM-EDX of PCC with D-glucose and Aloe-vera extract	146
Figure 4.27	Process flow diagram for dolomite PCC synthesis	150
Figure 4.28	Comparison of colour between (a) the raw Okpella sample and (b) the final PCC powder	155
Figure 4.29	Comparison of colour between (a) the raw Emiworo marble and (b) the final PCC powder	155

LIST OF ABBREVIATIONS

ACC	Amorphous calcium carbonate
ASTM	American Society of Testing and Materials
BET	Brunauer, Emmet, Teller
CMCS	Carboxymethyl chitosan
СТАВ	Cetyl trimethylammonium bromide
DDS	Dodecyl sulfonate
DDTAB	Dodecyltrimethylamonium bromide
DTA/TGA	Differential/Thermogravimetric Analysis
EDTA	Ethylenediaminetetraacetic acid
EDX	Energy Dispersive X-ray
FGCC	Fine grounded calcium carbonate
FTIR	Fourier Transform Infrared Spectroscopy
GCC	Grounded calcium carbonate
GTE	Green Tea Extract
HCL	Hydrochloric acid
HDPE	High-density polyethylene
IR	Infra-red
KBr	Potassium Bromide
LOI	Loss on Ignition
MOL	Milk of Lime
PAA	Poly acrylic acid
PAAM	Polyacrylamide
PCC	Precipitated Calcium Carbonate
PDDA	Poly-diallyldimethylammonium –chloride
PEO	Polyethylene oxide

PIPAAM	Poly-N-isopropyl acrylamide
PP	Polypropylene
PSA	Particle Size Analysis
P-SA	Poly-2-acrylamido-2-methyl-propane sulfonic acid
PVA	Polyvinyl alcohol
PVP	Poly (N-vinyl-pyrrolidone)
SDS	Sodium dodecyl Sulfate
SEM	Scanning Electron Microscopes
SLS	Sodium lignosulfonate
SMI	Speciality Mineral Inc.
TMA	Thermomechanical analyzer
XRD	X-Ray diffraction
XRF	X-Ray fluorescence
ZnCl	Zinc chloride

LIST OF SYMBOLS

%	Percentage
°C	Degree Celsius
CO_2	Carbon dioxide
CaCO ₃	Calcium Carbonate
MgCO ₃	Magnesium carbonate
Ca(OH) ₂	Calcium hydroxide
Mg(OH) ₂	Magnesium hydroxide
H ₂ O	Water
D ₁₀	10% volume of particles with size value lower than or equal to D_{10}
D ₅₀	50% volume of particles with size value lower than or equal to D_{50}
D90	90% volume of particles with size value lower than or equal to D_{90}
L	Litre
Wt%	Weight percentage
ml	millilitres
Μ	Mole
aq	Aqua solution
S	Solid
g	gas

KAJIAN INDUSTRI DAN GEOLOGI UNTUK BATUAN METAKARBONAT PROTOZOIK DI SELATAN DAN TENGAH NIGERIA

ABSTRAK

Mendapan metakarbonat di selatan Nigeria terbentuk berselang lapis dengan batuan gneiss kalk-silikat dan gneis magmatit berusia Proterozoik. Kajian ini memberi tumpuan kepada penilaian kesesuaian mendapan metakarbonat Okpella dan Emiworo bagi aplikasi industri dengan merujuk kepada pencirian dan proses pensintesisan bahan. Kajian ini dilaksana menggunakan teknik Pembelauan Sinar-X (XRD), Mikroskop Pengimbas Elektron (SEM), Mikroskop cahaya biasan, terkutub, analisa kimia, pembezaan terma/ analisis terma gravimetrik (DTA/TGA) dan juga sifat-sifat fizikal dan kimia dari sampel-sampel batuan metakarbonat berkenaan. Kalsit adalah fasa mineral utama manakala silika adalah komponen sampingan dalam batuan kapur Okpella ini. Batuan kapur Okpella ini mempunyai cirian seperti serapan air yang rendah, kekuatan mampatan, kadar kehilangan pembakaran dan nilai graviti tentu yang baik. Kapur tohor yang dikalsin pada suhu 900 °C, 1100 °C adalah tidak reaktif selepas masa rendaman 60, 90 dan 120 minit. Kapur tohor yang dikalsin pada suhu 1000 °C mempamerkan kereaktifan yang tinggi. Sebaliknya, kajian fasa mineral untuk batuan Emiworo menunjukkan dolomit adalah fasa mineral utama bersama mineral silikat sebagai fasa sampingan. Kapur tohor yang diukur selepas pengkalsinan pada suhu-suhu berbeza, menunjukkan kapur tohor yang dihasil pada suhu 950 °C dan 1000 °C selama 1 jam adalah lebih reaktif. Perbandingan data menunjukkan Emiworo mempunyai kadar serapan air, kekuatan mampatan, kadar kehilangan pembakaran dan graviti tentu pukal yang lagi rendah berbanding batuan metakarbonat Okpella. Batu kapur ini mempunyai ciri-ciri yang dapat memenuhi permintaan industri bertepatan disebabkan oleh mikrostruktur, komposisi kimia dan perguraian yang baik dari batu tersebut. Ekstrak Lidah buaya (Aloe vera) telah diguna dalam penghasilan kalsium karbonat melalui kaedah mendakan, dan didapati boleh menpengaruhi ciri-ciri Morfologi,

saiz partikel, struktur hablur dan ciri-ciri terma partikal PCC yang disentisis dalam kajian ini. Dengan menggunakan reaktor berbentuk tubular secara aliran berterusan pada suhu bilik (*ambient*) dan kadar aliran gas karbon dioksid 1 liter/minit, polimorf kalsit rombohedron dan komposit polimorf aragonit dengan struktur polikristakin seakan bentuk loceng, dengan hujung bercabang telah dihasilkan daripada Batu marmar Okpella. Selain itu, PCC aragonit " hierarchical" bertingkat bersaiz nano telah dihasilkan menggunakan dolomit Emiworo semulajadi. Pengaruh negatif Mg terhadap ketulenan PCC yang dihasilkan telah diatasi dengan penyingkiran unsur kalsium dolomit menggunakan ekstrak D-glukos.

INDUSTRIAL AND GEOLOGICAL STUDY OF PROTOZOIC METACARBONATE ROCKS FROM SOUTHERN AND CENTRAL NIGERIA

ABSTRACT

The metacarbonate deposits in the southern Nigeria intercalated with calc-silicate gneiss, intrusive granite and migmatite gneiss rocks are of Proterozoic age. The study focused on examining the suitability of the Okpella and Emiworo metacarbonate via characterization and synthesis for industrial applications. This study is based on X-ray Diffractometry (XRD), Scanning electron microscopy (SEM), polarizing and refracted light microscopy; chemical and differential thermal analysis/thermal gravimetric analysis (DTA/TGA) and also the physical properties of the raw marble resources and derived product. Calcite is the dominant phase while silica is the subordinating component of Okpella marble. The Okpella metacarbonate characterized by minimal water absorption, appreciable compressive strength, high loss of ignition (LOI) and bulk specific gravity (SG). The quicklime calcined at 900°C and 1100°C for 60, 90 and 120 minutes of soaking time were unreactive. However, the quicklime calcined at 1000°C exhibited high reactivity. On the other hand, the phase characteristics of the Emiworo marble show that dolomite is the dominant mineral with low silicates. Reactivity of the quicklime measured after calcination at different temperatures revealed that only the quicklime produced in 1 hour at 950°C and 1000°C was found to be more reactive. Physical properties and comparative data show that the Emiworo marble displays lower water absorption, lower compressive strength, and higher loss on ignition compared to the Okpella marble. The marble has affluent industrial applications characteristics attributed to its established microstructure, chemical composition and thermal decomposition behavior. Aloe-Vera extract was found to have an effect on the precipitated calcium carbonate (PCC) morphology, particle sizes, and thermal characteristics of the synthesized PCC. Utilizing a continuous unique tubular reactor under ambient temperature and 1 L/min CO₂ flowrate, rhombohedral calcite polymorph and aragonite polymorph composite with polycrystalline dumb bell-like structure, having radiating ends was produced from Okpella marble. However, uniform hierarchical aragonite precipitated calcium carbonate stacked from nanoparticles was synthesized using a natural occurring Emiworo dolomite. The tainted Mg influence on resultant PCC purity was averted via D-glucose extraction of dolomite constituent.

CHAPTER ONE

INTRODUCTION

1.1 Introduction

The chemical composition and purity of Proterozoic metacarbonate rocks (marble), require adequate consideration to know its quality. This will determine its commercial application in terms of construction, plastics paints, cosmetics, rubber and pharmaceutical items among others. Marbles are generally considered as metamorphosed limestone or dolostone depending on the recrystallization settings (Max, et al., 2017; Zsolt et al., 2016), they are from the aggregate of calcite minerals, and/or aragonite and quartz crystal grains. Precipitated calcium carbonate (PCC) are normally derived from metacarbonate and carbonate-rich rocks.

PCC is a bright white synthetic calcium carbonate in its purest form characterized by unique crystal morphology, shape, and size (texture). They are utilized mostly as functional fillers in plastics, papers, adhesives, inks, pharmaceuticals, rubber, nutritional supplements, and cosmetics. PCC find widespread application as additives in many industries that depends mostly on their purity or chemical content. Therefore, prior concise chemical characterizations are necessary before any industrial application. PCC is a value added product (in high demand), due to its wide applications in industries such as paper, paint, textile, detergents, adhesives, rubber, plastics, magnetic recordings, electronics, ceramics, polymer composites, foods, cosmetics, detergent, biomaterials etc. (Zhang et al., 2012).

1.2 Global Consumption of Precipitated Calcium Carbonate (PCC)

There are different types of PCC morphology and particle sizes, each of which possesses different properties. Thus, PCC can be marketed in more than one grade by varying the particle size, particle size distribution, surface area, and particle morphology. Compared to ground calcium carbonate (GCC), PCC has better physical properties, including high brightness, opacity, and purity (Towler and Sinnott, 2012). PCC has internal porosity and a higher specific area, together with a very good chemical absorption and binding performance. However, PCC has a high degree of aggregation, with several crystals growing together forming a single particle. Particle size distribution is also more uniform than with GCC, providing smoothness and low abrasion (Declet et al., 2016). A high standard of technical knowledge is crucial in being able to produce PCC of consistently high quality. However, PCC finds it difficult to achieve the > 70% solids coating slurries requirements and rheological behaviour of PCC is more difficult to control. This is due to the high amount of PCC ratio required for filler use.

The adhesive and sealant usage incorporate a wide range of products extending from household caulks to joint cement compounds and carpet backings. The use of PCC accounts for about 5% of total coating collective usage (Bajpai, 2015).

Asia is by far the highest regional world consumer of FGCC and PCC. China tops the world in FGCC usage, with about 26% of entire FGCC consumption, trailed closely by the United State of America, with about 25%. Asia is also the world's major consumer of PCC, China accounts for over half of global PCC consumption. The United States is also the second-largest PCC consumer, with 16%, with just a little beneath 13% Western Europe (the largest consumer). However, in 2013, PCC demand

2

by papermaking industries in Western Europe accounted for roughly 85% of overall demand (Bajpai, 2015). The paper industry has remained the driving force behind the growth of PCC market, as shown in Figure 1.1. The impending growth of PCC in Europe rest on the capacity of new PCC on-site plants, which can be cost-competitive with fine ground calcium carbonate producers. In Malaysia, PCC production is limited to Schaefer Kalk (M) Sdn Bhd and Specialty Minerals Malaysia Sdn. Bhd. They produce a capacity equivalent of 50,000 and 25,000 to 35,000 tons of PCC manufactured annually respectively. This is estimated to be at 0.08% of the global PCC consumption (Thenepalli, 2015)

Figure 1.1: Global consumption of GCC and PCC by market (a) 2011 (b) 2012

(adapted from Stratton, 2012).