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PENUMBUHAN GRAFENA BERLAPIS TUNGGAL PADA NIKEL
POLIHABLURAN DAN PEMANGKIN DWILOGAM NIKEL-KUPRUM DAN

KAJIAN UNTUK PENGGUNAAN SEMULA PEMANGKIN NIKEL

ABSTRAK

Grafena merupakan struktur karbon dengan ketebalan satu atom. Grafena
terdedah semua atomnya ke medium sekitar. Selepas penemuan grafena pada 2004,
ia menjadi subjek utama penyelidikan di seluruh dunia. Grafena mempunyai sifat-
sifat yang luar biasa dari segi mekanikal, optik, haba dan elektrik. Sifat-sifat tersebut
menjadikan grafena berpotensi digunakan dalam pelbagai aplikasi. Pemendapan wap
kimia bermangkin (CVD) adalah saluran yang paling baik untuk menghasilkan
grafena berskala wafer, kerana teknik ini mempunyai kelebihan dalam proses
pemisahan grafena daripada pemangkin selepas CVD. Dengan bantuan penyejukan
pantas, grafena berlapis tunggal berjaya dibentuk pada foil nikel polibabluran
dibawah CVD tekanan atmosfera, dengan suhu 850 °C, tekanan separa metana 0.2
atm and 5 min tempoh reaksi. Tetapi grafena berlapis tunggal gagal didentuk dengan
menggunakan foil kuprum sahaja. Penyejukan pantas selepas CVD mendorongkan
pelindapkejutan aktiviti pemangkin dan menghadkan kadar difusi karbon dalam nikel
ke permukaan nikel. Proses ini memudahkan pembentukan grafena berlapis tunggal
berskala wafer. Untuk meningkatkan keseragaman grafena berlapis tunggal, satu
teknik mudah digunakan untuk menumbuh grafena berlapis tunggal secara serentak
pada kedua-dua foil nikel polihabluran dan foil kuprum polihabluran, pada suhu 950
°C, tekanan separa metana 0.2 atm and 5 min tempoh reaksi. Stuktur grafena yang
seragam dan berkualiti tinggi dapat dibukti dengan spektroskopi Raman dan
mikroskop transmisi electron resolusi tinggi. Sistem pemangkin dwilogam yang
dicadang membolehkan pengawalan difusi karbon ke permukaan dalam foil Ni dan
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Cu. Khususnya, kebolehcapaian karbon dapat dikurangkan pada permukaan Ni
dalaman, manakala Cu memainkan peranan sebagai penghalang karbon. Mekanisme
pertumbuhan grafena berlapis tunggal dapat dibantu denagn difusi karbon melalui
bijian Ni dan sempadan bijian Ni. Daya penggerak untuk difusi karbon datang
daripada kepekatan kecerunan karbon antara permukaan yang kaya dengan karbon
dan permukaan kurang karbon. Sempadan bijian Ni telah terbukti memainkan
peranan yang penting dalam kawalan difusi karbon semasa peringkat pertumbuhan.
Dengan bantuan penyejukan pantas, proses pelindapkejut mengurangkan jumlah
atom karbon diasing dari Ni, hanya atom karbon yang terletak berhampiran
permukaan Ni mempunyai masa yang cukup untuk mengasing dan membentuk
grafena. Sementara itu difusi atom karbon dalam tengah foil Ni telah dihalang dan
lepas itu membentuk NizC. NisC dikenali sebagai perlindungan yang baik terhadap
kakisan. Kehadiran Ni3;C digabungkan dengan penggunaan ferum nitrat (0.5mol/L)
sebagai bahan punar lemah semasa pemisahan grafena, foil Ni boleh digunakan
semula sehingga 6 kali tanpa menyebabkan sisihan yang besar terhadap kualiti dan
keseragaman grafena berlapis dua. Ni3C ternyata mampu untuk menghadkan kesan
punaran foil Ni. Kerja-kerja ini telah berjaya mempamerkan cara yang mudah dan

novel untuk mensintesis grafena berlapis tunggal dengan kualiti yang tinggi
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SYNTHESIS OF MONOLAYER GRAPHENE ON POLYCRYSTALLINE
NICKEL AND NICKEL-COPPER BIMETALLIC CATALYST AND STUDY

TOWARD THE REUSE OF NICKEL CATALYST
ABSTRACT

Graphene is a layer of sp2 hybridized carbon atoms with a thickness of only
one atom, which exposed most of its atoms to the surrounding medium. Since the
discovery of graphene in 2004, it has become the main subject of research around the
world. The attractiveness of graphene is mainly attributed to its remarkable
mechanical, optical, thermal and electrical properties, enabling graphene to be
potentially used in various applications. To date, CVD is the promising method to
produce wafer-scale graphene, because it allows an easier separation of graphene
from the catalytic substrate. With the assist of fast cooling, monolayer graphene was
grown directly on polycrystalline Ni foil under atmospheric pressure CVD with
temperature of 850 °C, methane partial pressure of 0.2 atm and reaction duration of 5
min. However, monolayer graphene could not be formed on Cu under the chosen
CVD conditions. Fast cooling after CVD allowed the quenching of the activity of the
catalyst and limiting diffusion of dissolved carbon to the surface of Ni, which later
facilitate the formation of predominantly wafer scale monolayer graphene. To further
improve the uniformity of monolayer graphene, a facile technique was applied to
grow monolayer graphene simultaneously on both polycrystalline Ni and Cu foils
using a Ni-Cu bilayer catalyst at temperature of 950 °C, methane partial pressure of
0.2 atm and reaction duration of 5 min. High uniformity and quality of the crystalline
structure of the grown graphene was evidenced by Raman spectroscopy mapping and
High Resolution Transmission Electron Microscope. The straightforward bimetallic

catalytic system allows the control of carbon diffusion to the interface of Ni and Cu.
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