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PENUMBUHAN GRAFENA BERLAPIS TUNGGAL PADA NIKEL 

POLIHABLURAN DAN PEMANGKIN DWILOGAM NIKEL-KUPRUM DAN 

KAJIAN UNTUK PENGGUNAAN SEMULA PEMANGKIN NIKEL 

ABSTRAK 

 

 Grafena merupakan struktur karbon dengan ketebalan satu atom. Grafena 

terdedah semua atomnya ke medium sekitar. Selepas penemuan grafena pada 2004, 

ia menjadi subjek utama penyelidikan di seluruh dunia. Grafena mempunyai sifat-

sifat yang luar biasa dari segi mekanikal, optik, haba dan elektrik. Sifat-sifat tersebut 

menjadikan grafena berpotensi digunakan dalam pelbagai aplikasi. Pemendapan wap 

kimia bermangkin (CVD) adalah saluran yang paling baik untuk menghasilkan 

grafena berskala wafer, kerana teknik ini mempunyai kelebihan dalam proses 

pemisahan grafena daripada pemangkin selepas CVD. Dengan bantuan penyejukan 

pantas, grafena berlapis tunggal berjaya dibentuk pada foil nikel polibabluran 

dibawah CVD tekanan atmosfera, dengan suhu 850 ºC, tekanan separa metana 0.2 

atm and 5 min tempoh reaksi. Tetapi grafena berlapis tunggal gagal didentuk dengan 

menggunakan foil kuprum sahaja. Penyejukan pantas selepas CVD mendorongkan 

pelindapkejutan aktiviti pemangkin dan menghadkan kadar difusi karbon dalam nikel 

ke permukaan nikel. Proses ini memudahkan pembentukan grafena berlapis tunggal 

berskala wafer. Untuk meningkatkan keseragaman grafena berlapis tunggal, satu 

teknik mudah digunakan untuk menumbuh grafena berlapis tunggal secara serentak 

pada kedua-dua foil nikel polihabluran dan foil kuprum polihabluran, pada suhu 950 

ºC, tekanan separa metana 0.2 atm and 5 min tempoh reaksi. Stuktur grafena yang 

seragam dan berkualiti tinggi dapat dibukti dengan spektroskopi Raman dan 

mikroskop transmisi electron resolusi tinggi. Sistem pemangkin dwilogam yang 

dicadang membolehkan pengawalan difusi karbon ke permukaan dalam foil Ni dan 
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Cu. Khususnya, kebolehcapaian karbon dapat dikurangkan pada permukaan Ni 

dalaman, manakala Cu memainkan peranan sebagai penghalang karbon. Mekanisme 

pertumbuhan grafena berlapis tunggal dapat dibantu denagn difusi karbon melalui 

bijian Ni dan sempadan bijian Ni. Daya penggerak untuk difusi karbon datang 

daripada kepekatan kecerunan karbon antara permukaan yang kaya dengan karbon 

dan permukaan kurang karbon. Sempadan bijian Ni telah terbukti memainkan 

peranan yang penting dalam kawalan difusi karbon semasa peringkat pertumbuhan. 

Dengan bantuan penyejukan pantas, proses pelindapkejut mengurangkan jumlah 

atom karbon diasing dari Ni, hanya atom karbon yang terletak berhampiran 

permukaan Ni mempunyai masa yang cukup untuk mengasing dan membentuk 

grafena. Sementara itu difusi atom karbon dalam tengah foil Ni telah dihalang dan 

lepas itu membentuk Ni3C. Ni3C dikenali sebagai perlindungan yang baik terhadap 

kakisan. Kehadiran Ni3C digabungkan dengan penggunaan ferum nitrat (0.5mol/L) 

sebagai bahan punar lemah semasa pemisahan grafena, foil Ni boleh digunakan 

semula sehingga 6 kali tanpa menyebabkan sisihan yang besar terhadap kualiti dan 

keseragaman grafena berlapis dua. Ni3C ternyata mampu untuk menghadkan kesan 

punaran foil Ni. Kerja-kerja ini telah berjaya mempamerkan cara yang mudah dan 

novel untuk mensintesis grafena berlapis tunggal dengan kualiti yang tinggi   
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SYNTHESIS OF MONOLAYER GRAPHENE ON POLYCRYSTALLINE 

NICKEL AND NICKEL-COPPER BIMETALLIC CATALYST AND STUDY 

TOWARD THE REUSE OF NICKEL CATALYST 

ABSTRACT 

Graphene is a layer of sp2 hybridized carbon atoms with a thickness of only 

one atom, which exposed most of its atoms to the surrounding medium. Since the 

discovery of graphene in 2004, it has become the main subject of research around the 

world. The attractiveness of graphene is mainly attributed to its remarkable 

mechanical, optical, thermal and electrical properties, enabling graphene to be 

potentially used in various applications. To date, CVD is the promising method to 

produce wafer-scale graphene, because it allows an easier separation of graphene 

from the catalytic substrate. With the assist of fast cooling, monolayer graphene was 

grown directly on polycrystalline Ni foil under atmospheric pressure CVD with 

temperature of 850 ºC, methane partial pressure of 0.2 atm and reaction duration of 5 

min. However, monolayer graphene could not be formed on Cu under the chosen 

CVD conditions. Fast cooling after CVD allowed the quenching of the activity of the 

catalyst and limiting diffusion of dissolved carbon to the surface of Ni, which later 

facilitate the formation of predominantly wafer scale monolayer graphene. To further 

improve the uniformity of monolayer graphene, a facile technique was applied to 

grow monolayer graphene simultaneously on both polycrystalline Ni and Cu foils 

using a Ni-Cu bilayer catalyst at temperature of 950 ºC, methane partial pressure of 

0.2 atm and reaction duration of 5 min. High uniformity and quality of the crystalline 

structure of the grown graphene was evidenced by Raman spectroscopy mapping and 

High Resolution Transmission Electron Microscope. The straightforward bimetallic 

catalytic system allows the control of carbon diffusion to the interface of Ni and Cu. 
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