TREATMENT OF RECYCLED PAPER MILL EFFLUENT USING MODIFIED ANAEROBIC INCLINING-BAFFLED REACTOR

HAIDER MOHAMMED NAIMA ZWAIN

UNIVERSITI SAINS MALAYSIA

2016

TREATMENT OF RECYCLED PAPER MILL EFFLUENT USING MODIFIED ANAEROBIC INCLINING-BAFFLED REACTOR

by

HAIDER MOHAMMED NAIMA ZWAIN

Thesis submitted in fulfillment of the

Requirements for the degree of

Doctor of Philosophy

March 2016

ACKNOWLEDGMENT

After many years of living and studying in Malaysia, the journey has come to an end. It seems hard to thank many great people who stood beside me all the way. Besides pursuing my PhD degree, I have obtained my aim in life, cultural interaction, learning, researching, traveling, eating, making friends and many more. On top of that, I gained unquantifiable HOPE and LOVE. [It's not only thanks, but I am putting my heart here.]

Alhamdulillah, a great thank to The Great Almighty ALLAH s.w.t who granted me the determination, knowledge, strength and passion to accomplish my PhD research work. My deepest and heart-felt gratitude goes to my beloved parents Mohammed and Siham for their financial support, love, encouragement, protection, understanding and prayers that supported me throughout my journey. Also, I would like to thank the rest of my family for their continuous support and love.

Dr. Irvan Dahlan, my main supervisor, a humble, knowledgeable, patient, and a great man who provided me motivation, enthusiasm, care and support. My journey would have been impossible without him. A special thank goes to my co-supervisors Professor Hamidi Abdul Aziz and Dr. Nastaein Qamaruz Zaman for providing the constructive comments during my study. I would like to thank my research partner Siti Roshayu Hassan for her kind support and efforts.

I would like to specially thank the Dean of School of Civil Engineering, Professor Ahmad Farhan Mohd Sadullah and Deputy Dean, Assoc. Prof. Dr. Choong Kok Keong for their continuous supports and helps rendered throughout my studies. I wish also to thank my lovely kakak, postgraduate studies registrar, Mrs. Zuraily Mohamed Zahari for her encouragement, help and efforts. To all the technicians and staff in School of Civil Engineering, Mr. Halmi, Mr. Nizam, Mr. Nabil, Mr. Zaini, Mrs. Samsiah, and Mr. Mohad; School of Chemical Engineering, Professor Bassim H. Hameed, Mr. Mohd Roqip, and Mr. Shamsul, and many more, who gave full cooperation and support, an additional measure of thanks is due.

I would like to express my genuine appreciation to Prof. Fauziah Ahmad, Deputy Dean of IPS and Assoc. Prof. Anees Janee Ali, the Director of International Office, for their incessant support, guidance and encouragement. I wish also to convey my sincere gratitude to Professor Sue-Min Chang, my host supervisor in the National Chiao Tung University, Taiwan, for her valuable support, trust and giving me a golden opportunity. I wish also to thank her postdoctoral follower Dr. Sandip Saha for his help and technical support. My appreciation also goes to Dr. Gobi Kanadasan, School of Chemical Engineering USM, for his valuable cooperation and knowledge sharing.

The financial support provided by University Sains Malaysia (RU-I (Grant no. 1001/PJKIMIA/814148) and Iconic grant scheme (Grant no. 1001/CKT/870023)) is gratefully acknowledged. I wish to also thank Muda Recycled Paper Mill Sdn Bhd for their full cooperation. Last but definitely not least, my deepest gratitude to my beloved friends Behnam and his wife Shaghayegh, Tarik, Sami, Ali, Phoumiphon, Carol, Thaif, Dr. Salim, Dr. Jibrail, Sheryl, Arvinthran, Ahmed and Abdullah for making my life happiest.

Haider Zwain 3/9/2015

TABLE OF CONTENTS

Acknowledgment	ii
Table of Contents	iv
List of Tables	ix
List of Figures	xi
List of Plates	xviii
List of Abbreviations	xix
Abstrak	xxii
Abstract	xxiv

CHAPTER 1 - INTRODUCTION

1.1	Background of Paper Mills in Malaysia	. 1
1.2	Environmental Problems from Recycled Paper Mill	. 2
1.3	Malaysian Regulations of Effluent Discharges	.4
1.4	Problems Statement	. 6
1.5	Research Objectives	. 8
1.6	Scope and Limitations	. 9
1.7	Content of the Thesis	10

CHAPTER 2 - LITERATURE REVIEW

2.1	Overview of Recycled Paper Mill Processes and Pollutants Production	12
2.2	Recycled Paper Mill Effluent Treatment Processes	16
2.3	Primary Treatment	18
2.4	Secondary Treatment	18
	2.4.1 Activated Sludge Systems	18

	2.4.2	Aerated Lagoons (Stabilization Basins)	20			
	2.4.3	Anaerobic Treatment of Recycled Paper Mill Effluent	21			
2.5	Anaerobic Digestion					
2.6	Environ	mental Parameters Affecting Anaerobic Process	24			
	2.6.1	Organic Loading Rate	24			
	2.6.2	Hydraulic Retention Time	25			
	2.6.3	Temperature	26			
	2.6.4	pH Level	26			
	2.6.5	Inert-Packing Material	27			
	2.6.6	Inoculum to Substrate Ratio	28			
	2.6.7	Effect of Inoculum Source	29			
	2.6.8	Effluent Recycle	30			
2.7	Types o	f Anaerobic Reactors	30			
	2.7.1	Anaerobic contact reactor	31			
	2.7.2	Up-flow Anaerobic Sludge Blanket (UASB) Reactor	32			
	2.7.3	Expanded Granular Sludge Bed (EGSB) Reactor	34			
	2.7.4	Anaerobic Filter (AF)	35			
2.8	Anaerot	bic baffled reactor (ABR)	36			
	2.8.1	Modifications of Anaerobic Baffled Reactor	40			
	2.8.2	Start-up of Anaerobic Baffled Reactor	44			
2.9	Experim	nent Design Using Response Surface Methodology (RSM)	46			
2.10	Microbial Community and Morphology					
2.11	Concluding Remarks					

CHAPTER 3 - MATERIALS AND METHODS

3.1	Overall	Experimental Flowchart
3.2	Modifie	d Anaerobic Inclining-Baffled Reactor (MAI-BR) Fabrication 53
3.3	Recycle	d Paper Mill Effluent as a Substrate55
3.4	Seeding	Inoculums
3.5	Start-up	of Modified Anaerobic Inclining-Baffled Reactor (MAI-BR) 57
3.6	Study or	the Effects of COD _{in} and HRT60
	3.6.1	Experimental Design and Modeling of the Effects of COD _{in} and HRT
		61
	3.6.2	MAI-BR Operation
3.7	Effect of	Temperature
3.8	Analytic	al Techniques
3.9	Microbi	al Diversity Analysis65
	3.9.1	Isolation and Identification of microorganisms
	3.9.2	Morphology of Microbes Using Scanning Electron Microscopy
		(SEM)

CHAPTER 4 - RESULTS AND DISCUSSION

4.1	Charact	erization of Substrate and Seeding Inoculums	68
	4.1.1	RPME as a Substrate	68
	4.1.2	POME and JSTPS as a Seeding Sludge	71
4.2	The Sta	rt-up Performance of MAI-BR	72
	4.2.1	Effect of Start-up Technique on COD Removal Efficiency	72
	4.2.2	The Effect of Start-up Technique on Methane Production	77
	4.2.3	Effect of Start-up Technique on pH Level	81

	4.2.4	Evaluation of Compartmental Characteristics at Different Start-up
		Technique
4.3	The Per	formance of MAI-BR at Different COD _{in} and HRT
	4.3.1	The Effect of COD _{in} and HRT Variation on COD Removal Efficiency
	4.3.2	Effect of COD _{in} and HRT Variation on Methane Production91
	4.3.3	Effect of COD _{in} and HRT Variation on pH Level93
	4.3.4	Evaluation of Compartmental Characteristics at Different COD _{in} and
		HRT95
4.4	The Per	formance of MAI-BR at Different Temperatures
	4.4.1	The Effect of Temperature change on COD Removal Efficiency . 107
	4.4.2	Effect of Temperature change on Methane Production109
	4.4.3	Effect of Temperature change on pH Level110
	4.4.4	Evaluation of Compartmental Characteristics at Different
		Temperatres
4.5	Modelin	ng of the Effects of COD_{in} and HRT on the MAI-BR Performance
	Using F	RSM
	4.5.1	Statistical Analysis
	4.5.2	Effects of COD _{in} and HRT on COD and BOD Removal Efficiencies
		and Rates
	4.5.3	Effects of COD _{in} and HRT on lignin removal efficiency137
	4.5.4	Effects of COD _{in} and HRT on effluent VFA, pH level and Alkalinity.
	4.5.5	Effects of COD _{in} and HRT on Methane
4.6	Microbi	ial Identification and Morphology Analysis145

4.6.1	Identificat	tion	of Microbia	al Community in	the Sy	stem	
4.6.2	Analysis	of	Microbial	Morphologies	using	Scanning	Electron
	Microscop	ру					

CHAPTER 5 - CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	154
5.2	Recommendations	157

REFERENCES

APPENDICES

LIST OF PUBLICATIONS

LIST OF TABLES

Page

- Table 1.1Acceptable conditions for discharge of industrial effluent for5mixed effluent of standards A and B (DOE, 2009)
- Table 1.2Acceptable conditions for discharge of industrial effluent6containing chemical oxygen demand (COD) for specific tradeor industry sector (DOE, 2009)
- Table 2.1Typical characteristics of the PPME (Zarkovic et al., 2011)16
- Table 2.2
 Performance of different anaerobic reactors treating RPME and 38

 PPME
- Table 2.3The advantages vs disadvantages of different anaerobic reactors39
- Table 2.4Start-up conditions of ABR treating different types of 45wastewater
- Table 3.1The summary of the reactor operation procedure during each59start-up technique
- Table 3.2Experimental levels and ranges of the independent variables61
- Table 3.3Experimental conditions for the MAI-BR treating RPME based62on three-level factorial design

Table 3.4	The MAI-BR conditions at different temperature, named low mesophilic	64
Table 4.1	Characteristics of raw RPME in compare to other types of paper mill effluents	69
Table 4.2	Characteristics of raw sludge POME and JSTPS	71
Table 4.3	Compartmental-wise comparison of each start-up at steady state condition	84
Table 4.4	MAI-BR operation conditions	89
Table 4.5	Experimental results of three-level factorial design	127
Table 4.6	ANOVA for response surface models applied.	131
Table 4.7	Identity of the genomic sequences from the isolated microbes obtained by sequencing and basic local alignment search tool (BLAST) analysis	146

LIST OF FIGURES

- Figure 2.1 Recycled paper making processes and pollutants production at 13 each stage (EPA, 2012)
- Figure 2.2 General flow scheme of RPME treatment plant (Ince et al., 17 2011)
- Figure 2.3 Metabolic pathways and anaerobic conversion of organic matter 23 to methane (Rittmann and McCarty, 2001)
- Figure 2.4 The overview design of anaerobic contact reactor 32 (Tchobanoglous et al., 2003)
- Figure 2.5 The overview design of up-flow anaerobic sludge bed (UASB) 33 reactor (Tchobanoglous et al., 2003)
- Figure 2.6 The overview design of expanded granular sludge bed (EGSB) 34 reactor (Tchobanoglous et al., 2003)
- Figure 2.7 The overview design of anaerobic filter reactor (Tchobanoglous 35 et al., 2003)
- Figure 2.8 The Original design of vertical baffled reactor (Barber and 37 Stuckey, 1999)

- Figure 2.9 (A) Side view of a four compartment PABR; (B) Top view of a 40 four compartment periodic anaerobic baffled reactor (Skiadas and Lyberatos, 1998)
- Figure 2.10 The overview design of carried anaerobic baffled reactor (Feng 41 et al., 2008a)
- Figure 2.11 The overview design of split-feed anaerobic baffled reactor 41 (SFABR) (Sallis and Uyanik, 2003)
- Figure 2.12 The overview design of modified anaerobic baffled reactor 42 (MABR) (Bodkhe, 2009)
- Figure 2.13 The overview design of modified anaerobic baffled reactor 43 (MABR) with crested baffles (Han et al., 2004)
- Figure 2.14 The overview design of modified anaerobic crest-baffled 44 reactor (MABR) with first compartment expanded (Malakahmad et al., 2011)
- Figure 3.1 Flowchart of the overall experimental activities involved in this 52 research
- Figure 3.2 Schematic diagram of modified anaerobic inclining-baffled 53 reactor
- Figure 3.3 The collection pointes of a) RPME, b) POME and c) JSTPS 56

- Figure 4.1 Methane production during microbial batch test of POME, 72 JSTPS and mixed sludge inoculums
- Figure 4.2 COD removal efficiency profile during the 1st start-up, 2nd 73 start-up and 3rd start-up
- Figure 4.3 COD removal efficiency profile during the 4th start-up and the 75 5th start-up (phase 1 & 2)
- Figure 4.4 Methane production profile during the 1st start-up, 2nd start-up 78 and 3rd start-up
- Figure 4.5 Methane production profile during the 4th start-up and the 5th 80 start-up (phase 1 & 2)
- Figure 4.6 Effluent pH level profiles during the 1st start-up, 2nd start-up 82 and 3rd start-up
- Figure 4.7 Effluent pH level profiles during the 4th start-up and 5th start- 83 up (phase 1 & 2)
- Figure 4.8 COD removal efficiency and OLR during the effect of COD_{in} 90 and HRT process studies
- Figure 4.9 Methane content and yield during the effect of COD_{in} and HRT 92 process studies

- Figure 4.10 Influent and effluent pH profiles during the effect of CODin and 94 HRT process studies
- Figure 4.11 Characterization of COD according to MAI-BR compartments 96 during steady state at different loading conditions
- Figure 4.12 Characterization of BOD according to MAI-BR compartments 98 during steady state at different loading conditions
- Figure 4.13 Characterization of TSS according to MAI-BR compartments 99 during steady state at different loading conditions
- Figure 4.14 Characterization of VSS according to MAI-BR compartments 100 during steady state at different loading conditions
- Figure 4.15 Characterization of particles size according to MAI-BR 101 compartments during steady state at different loading conditions
- Figure 4.16 Characterization of TDS according to MAI-BR compartments 102 during steady state at different loading conditions
- Figure 4.17 Characterization of lignin according to MAI-BR compartments 103 during steady state at different loading conditions
- Figure 4.18 Characterization of pH according to MAI-BR compartments 105 during steady state at different loading conditions

- Figure 4.19 Characterization of VFA according to MAI-BR compartments 106 during steady state at different loading conditions
- Figure 4.20 Characterization of alkalinity according to MAI-BR 107 compartments during steady state at different loading conditions
- Figure 4.21 COD removal profiles at sub-mesophilic (29 °C), mesophilic 108 (37 °C) and thermophilic (55 °C) condition
- Figure 4.22 Methane yield (L CH₄/g COD) and methane content (%) at submesophilic (29°C), mesophilic (37°C) and thermophilic (55°C) condition
- Figure 4.23 Effluent and influent pH levels at sub-mesophilic (29 °C), 111 mesophilic (37 °C) and thermophilic (55 °C) condition
- Figure 4.24 Characterization of COD according to MAI-BR compartments 113 during steady state at different temperature
- Figure 4.25 Characterization of BOD according to MAI-BR compartments 115 during steady state at different temperature
- Figure 4.26 Characterization of TSS according to MAI-BR compartments 116 during steady state at different temperature
- Figure 4.27 Characterization of VSS and VSS/TSS ratio according to MAI- 118 BR compartments during steady state at different temperature

- Figure 4.28 Characterization of flocs size according to MAI-BR 120 compartments during steady state at different temperature
- Figure 4.29 Characterization of TDS according to MAI-BR compartments 121 during steady state at different temperature
- Figure 4.30 Characterization of lignin according to MAI-BR compartments 122 during steady state at different temperature
- Figure 4.31 Characterization of pH according to MAI-BR compartments 123 during steady state at different temperature
- Figure 4.32 Characterization of VFA according to MAI-BR compartments 124 during steady state at different temperature
- Figure 4.33 Characterization of alkalinity according to MAI-BR 125 compartments during steady state at different temperature
- Figure 4.34 Response 3D surface and counter plots for COD removal 133 efficiency
- Figure 4.35 Response 3D surface and counter plots for COD removal rate 135
- Figure 4.36 Response 3D surface and counter plots for BOD removal 136 efficiency
- Figure 4.37 Response 3D surface and counter plots for BOD removal rate 137

Figure 4.38 Response 3D surface and counter plots for lignin removal 138 efficiency

Figure 4.39	Response 3D surface and counter plots for effluent VFA	139
Figure 4.40	Response 3D surface and counter plots for effluent pH	140
Figure 4.41	Response 3D surface and counter plots for effluent alkalinity	142
Figure 4.42	Response 3D surface and counter plots for methane content	143
Figure 4.43	Response 3D surface and counter plots for methane yield	144
Figure 4.44	Evolutionary relationship of the bacteria 16S rRNA gene partial sequences received from sludge of five compartments and	150
	POME. The phylogenetic tree was constructed with the	
	neighbor-joining method. Bootstrap values smaller than 50%	

(based on 500 bootstrap re-samplings) were hidden at nodes

LIST OF PLATES

Plate 4.1 Scanning electron microscopy (SEM) showing various types of 152 bacteria in the biomass from Compartments 1 to 5 and POME, respectively. (a) Compartment 1; (b) Compartment 2; (c) Upper of compartment 3; (d) Compartment 4; (e) Compartment 5 and (f) POME

LIST OF ABBREVIATION

AOX	Adsorbable organic halides
ABR	Anaerobic baffled reactor
ACR	Anaerobic contact reactor
AD	Anaerobic digestion
AF	Anaerobic filter
ANOVA	Analysis of variance
BOD	Biological oxygen demand
CABR	Carried anaerobic baffled reactor
COD	Chemical oxygen demand
\mathbb{R}^2	Coefficient of determination
CV	Coefficient of variance
CSTR	Completely stirred tank reactor
DF	Degree of freedom
DOE	Department of environment
EGSB	Expanded granular sludge bed
FISH	Fluorescent in situ hybridization

DGGE	Gradient gel electrophoresis
HABR	Hybrid anaerobic baffled reactor
HUASB	Hybrid up-flow anaerobic sludge blanket
HRT	Hydraulic retention time
COD _{in}	Influent chemical oxygen demand
ISR	Inoculum to substrate ratio
JSTP	Jelutong sewage treatment plant
MABR	Modified anaerobic baffled reactor
MAI-BR	Modified anaerobic inclining-baffled reactor
NCBI	National Center for Biotechnology Information
OLR	Organic loading rate
POME	Palm oil mill effluent
PABR	Periodic anaerobic baffled reactor
рН	Potential of hydrogen
PPME	Pulp and Paper Mill Effluent
R.E.	Removal Effeciency
RPME	Recycled paper mill effluent

RSM	Response surface methodology
RSM	Response surface methodology
rRNA	Ribosomal ribonucleic acid
SEM	Scanning electron microscope
SBR	Sequencing Batch Reactor
SRT	Solid retention time
SD	Standard deviation
TDS	Total dissolved solids
TOC	Total organic carbon
TSS	Total Suspended Solids
2FI	Two factor interaction
UASB	Up-flow anaerobic sludge blanket
VFA	Volatile Fatty Acid
VSS	Volatile Suspended Solids
МЛИТО	Westernater the star and alout

WWTP Wastewater treatment plant

RAWATAN EFLUEN KILANG KERTAS KITAR SEMULA MENGGUNAKAN REAKTOR ANAEROBIK SESEKAT CONDONG DIUBAH SUAI

ABSTRAK

Pembangunan teknologi rawatan ringkas dan efisien bagi efluen kilang kertas (RPME) kitar semula adalah sangat mencabar disebabkan oleh kandungan tinggi bahan-bahan organik dan pepejal di dalamnya. Dalam kajian ini, objektif utama ialah untuk merawat RPME menggunakan reaktor anareobik sesekat-condong (MAI-BR) yang telah diubahsuai. Reaktor anaerobik sesekat condong diubah suai (MAI-BR) telah berjaya direka bentuk, difabrikasi dan dikendalikan untuk rawatan efluen kilang kertas kitar semula (RPME). Keputusan pencirian RPME menunjukkan bahawa RPME mengandungi nilai permintaan oksigen kimia (COD) yang tinggi iaitu 3,812 mg/L dan nilai permintaan oksigen biologi (BOD5) 1,875 mg/L. Teknik permulaan yang berbeza telah dijalankan bagi mengkaji kesan suapan kelompok, nisbah inokulum substrat (ISR), sumber inokulum dan kitar semula efluen. MAI-BR berjaya dimulakan dalam tempoh 30 hari dengan menggunakan enapcemar POME dengan nilai OLR awal sebanyak 0.33 g COD/L hari, nisbah efluen kitar semula, 2 dan suhu mesofili 37 °C. Tambahan pula, kajian proses MAI-BR telah dijalankan bagi nilai COD_{in} yang berbeza, 1,000-4,000 mg/L, HRT, 1-3 hari dan suhu, 29-55°C. Sepanjang kajian kesan COD_{in} dan HRT, kecekapan penyingkiran COD maksimum sebanyak 96% telah dicapai pada nilai CODin sebanyak 4,000 mg/L dan nilai HRT 3 hari, manakala kecekapan penyingkiran COD mimimum sebanyak 83% telah dicapai pada nilai COD_{in} sebanyak 4,000 mg/L dan HRT 1 hari. Kesan suhu telah menunjukkan bahawa kecekapan penyingkiran COD maksimum diperolehi sehingga 94%, 96% dan 76% untuk sub-mesofili (29°C), mesofili (37°C) dan termofilik (55°C). Menurut analisis statistik RSM, semua model adalah bermakna dengan nilai kebarangkalian yang sangat rendah, antara 0.0337 dan < 0.0001. Walau bagaimanapun, interaksi COD_{in} dan HRT adalah penting bagi mengetahui kadar penyingkiran COD dan BOD, VFA efluen, pH efluen, kealkalian efluen dan penghasilan metana. Interaksi ini walau bagaimanapun tidak penting bagi menyukat kecekapan penyingkiran COD, BOD, lignin dan kandungan metana. Keputusan pengenalan mikrob menunjukkan bahawa sistem MAI-BR terdiri daripada *Bacillus* dominan (25 jenis) dan *Bacterium* (1 jenis) yang telah diasingkan daripada kompartmen 1, 2, 4 dan 5, manakala Bacillus (2 jenis), Pseudomonas (2 jenis) dan Chryseobacterium (2 jenis) telah diasingkan daripada filem bio yang terbentuk pada bahan pembungkusan. Enapcemar POME umumnya mengandungi empat jenis mikrob iaitu Stenotrophomonas (2 jenis) dan Bacillus (2 jenis). Keputusan scanning electron microscope (SEM) daripada mikroorganisma menunjukkan bahawa ia mempunyai beraneka biofasies, manakala mikroorganisma dominan mempunyai pelbagai morfologi dalam setiap kompartmen tersebut sistem.