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PENGEMBANGAN ALGORITMA YANG MANTAP UNTUK MERANCANG 

LALUAN UAV DALAM PERSEKITARAN 3D 

 

ABSTRAK 

Penyelidikan menyeluruh telah dijalankan berkaitan perancangan laluan 

Pesawat Udara Tanpa Pemandu (UAV) dengan menggunakan algoritma evolusi 

seperti pengoptimuman kerumunan zarah (PSO), algoritma genetik (GA), evolusi 

kebezaan (DE), dan pengoptimuman berasaskan biogeografik (BBO). 

Bagaimanapun, prestasi kebanyakan algoritma ini akan menurun dari segi kos fungsi 

dan pengiraan apabila digunakan dalam sistem yang teguh. Oleh itu, algoritma baru 

yang dikenali sebagai evolusi jangkitan (IE) telah dibina dalam kajian ini. IE 

memudahkan pengiraan dan memaksimumkan kecekapan menjana perancangan 

laluan yang lebih baik dalam persekitaran 3D. 9 peta telah digunakan sebagai kajian 

kes, dan 100 simulasi telah dijalankan dalam setiap kes untuk mendapat purata 

prestasi algoritma. Semua simulasi telah dijalankan melalui MATLAB dengan 

pembayangan perancangan laluan UAV.  Prestasi algoritma IE telah dibandingkan 

dengan PSO, GA, DE dan BBO pada tetapan optimum algoritma masing-masing. IE 

berjaya merancang laluan UAV yang lebih pendek dengan kadar kebarangkalian 92 

peratus dalam 100 kajian kes. Selain itu, IE mencapai kelajuan pemprosesan yang 

lebih cepat berbanding dengan algoritma lain dengan kadar kebarangkalian 97 

peratus. Oleh itu, algoritma IE menunjukkan potensi yang besar dalam perancangan 

laluan UAV. 
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THE DEVELOPMENT OF A ROBUST ALGORITHM FOR UAV PATH 

PLANNING IN 3D ENVIRONMENT 

 

ABSTRACT 

Significant research has been conducted on Unmanned Aerial Vehicle (UAV) 

path planning using evolutionary algorithms, such as Particle Swarm Optimization 

(PSO), Genetic Algorithm (GA), Differential Evolution (DE), and Biogeographic-

Based Optimization (BBO). However, the performance of most of these algorithms 

tend to decline in terms of function and computational cost when dealing with robust 

systems. Thus, a new algorithm known as infection evolution (IE) was developed in 

this study. IE simplifies calculation and maximizes the efficiency of generating an 

improved path plan in a 3D environment. Nine terrain maps were used as case 

studies, and 100 simulations were carried out for each case to determine the average 

performance of the proposed algorithm. All simulations were performed using 

MATLAB with visualization of UAV path planning. The performance of the IE 

algorithm was compared with that of PSO, GA, DE, and BBO at their respective 

optimized settings. IE attained a 92% probability rate of achieving a short path length 

in 100 case studies. With regard to computational cost, IE attained a 97% probability 

rate of achieving a faster processing speed in comparison with tested algorithms. 

Therefore, the IE algorithm exhibits significant potential for UAV path planning 

optimization.  
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   CHAPTER 1 

 INTRODUCTION 

Section 1.1 briefly explains UAV path planning. Section 1.2 discusses the 

configuration of search space in path planning, and Section 1.3 elucidates the 

available algorithms for UAV path planning. Sections 1.4 and 1.5 present the problem 

statement and objectives of this research, respectively. Finally, Section 1.6 discusses 

the scope of the study, and Section 1.7 presents the outline of this thesis.   

1.1  Outline on Path Planning 

In the 21st century, researchers no longer prioritize flight speed and material 

development. Instead, researchers today consider the intelligent development of 

aircraft. Unmanned aerial vehicles (UAVs), in particular, have generated great 

interest among researchers for their potential in intelligent development. Such 

growing interest stems from the small size of UAVs [1] and their relatively lower 

cost compared with manned aircraft; these advantages make them appealing to the 

military sector seeking to reduce uncountable costs especially during dangerous 

missions [2, 3].  

Many studies have been conducted on the development of UAVs because of 

the wide variety of their applications, including in the areas of surveillance [4, 5], 

traffic monitoring [6, 7], rescue missions [8, 9], aerial photography [10, 11], and fire-

fighting [12]. Similar to manned aircraft, UAVs feature fixed wing and rotorcraft 

types. Given the small size of UAVs, multirotor UAVs such as the tricopter, 

quadcopter, hexacopter, and octocopter are developed to achieve excellent stability 

and manoeuvrability.  
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UAVs have been developed for various military and commercial purposes 

[13]. Researchers are developing new UAV technologies to reduce commands from 

pilots on flight missions, such as avoiding obstacles during flight without instructions 

from the pilot. The high manoeuvrability of UAVs, the reduced need for pilots, and 

the relatively low costs of such vehicles strongly motivate researchers to further 

improve UAV performance and ultimately develop UAVs with fully autonomous 

flight capabilities.  

UAV path planning is the process of creating an optimum flight path from a 

starting point to final location. Hardware and software both play important roles in 

allowing UAVs to carry out path planning. Generally, hardware is used to receive 

signals from surroundings, process calculations, and act according to calculations, 

whereas software is used to analyze data from signals, trigger algorithms, and 

determine the next action of UAVs.  

The common hardware used for UAV path planning, including 

microcontrollers, sensors, and motors, and the response performance of UAV path 

planning depend on hardware quality when using the same software. The common 

off-the-shelf microcontroller brands for UAV path planning are Arduino, Hobbyking, 

AutoQuad, and Crius with open source code. In terms of sensor selection, it is 

generally based on user requirements.  

For example, an ultrasonic sensor can detect distances from obstacles, a 

thermopile can detect infrared, and a pair of thermopiles could maintain the flying 

level of a UAV by ensuring the same readings. Other available software for UAV 

path planning include the Mission Planner and UAV Planner whereby the algorithms 
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can be implemented into the software for path planning. Figure 1.1 shows the 

window of Mission Planner [14].   

 

 

Figure 1.1: Mission Planner [14] 

The two types of UAV path planning are global path planning (GPP) and 

local path planning (LPP). GPP generates a path using information of a certain area 

without the need for sensed information, whereas LPP is a continuous process of 

finding paths locally in real time for operation mission and vehicle safety [15]. In 

practice, GPP is initiated before a vehicle starts moving on the basis of previously 

acquired area information.  

By contrast, LPP requires the continuous transmission of information from 

sensors to processors during movement from initial coordinates to final locations. 

Therefore, GPP usually occurs during the planning phase, and compared with LPP, 

GPP involves a larger scale of search as well as a longer duration. On the one hand, 

the large scale of search of GPP allows the generation of several efficient flight paths 

without being trapped. On the other hand, LPP should be accomplished at the 
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shortest possible time to avoid obstacles and maintain the stability of UAVs in real 

time, particularly because the response of UAVs is strongly affected by LPP. Hence, 

LPP can generate a safe flight path in a short period, but UAVs might be trapped 

before reaching their final locations.  

The two types of representation for path planning are topological and metric 

[16]. Topological path planning uses identifiable objects or landmarks to generate a 

path. In UAV applications, the flight path produced from topological path planning 

comprises connections between identifiable intersections or landmarks; directions 

may include “fly over the bridge” and “turn right before the next corner.”  

However, most research on the topological path planning of UAVs is 

performed in an indoor environment as it consists of more identifiable objects in 

comparison with an outdoor environment. Topological path planning usually uses 

voronoi diagrams or visibility graphs. Metric path planning applies the (x, y, z) 

coordinate system and is suitable either in indoor or outdoor environments. In metric 

path planning, direction commands include “fly to an altitude of 100 meters at 

30 degrees for 200 meters.” This method works well in computer search algorithms. 

Figure 1.2 presents the difference between topological and metric path planning 

using the same map [16]. 
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Figure 1.2: Topological (left) and Metric (right) Path Planning [16] 

Path planning may be two-dimensional (2D) or three-dimensional (3D). 2D 

path planning only considers x- and y-axes when producing a path, whereas 3D path 

planning considers x-, y-, and z-axes, with the z-axis being the altitude range. 

Typically, non-flayable vehicles, such as cars and ships, use 2D path planning, 

whereas flyable vehicles, such as UAVs, use 3D path planning. Compared with 2D 

path planning, 3D path planning is more complicated and entails higher 

computational cost for the same problem because of its consideration of an additional 

axis. 

1.2  Search Space Configuration 

The three common search space configurations for path planning are cell 

decomposition, roadmap, and potential fields [16]. Cell decomposition configuration 

represents the world in grids, roadmap configuration forms connections between 

particular points, and potential field configuration resorts to mathematical fields to 

present the world. All of these space configurations can be used in either topological 

or metric path planning.  
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In cell decomposition configuration, the map is divided into grids and cells 

adjacent to other cells without overlapping. The method of traveling from one cell to 

an adjacent cell is known as connectivity graph. In fact, the function cost of cells in 

this method can be changed according to terrain information. Several types of cell 

decomposition include approximate decomposition, adaptive cell decomposition, and 

exact cell decomposition [16].  

Approximate cell decomposition is the easiest to apply on a map as it allows 

the map to form regular grids with predefined sizes and shapes, as shown in Figure 

1.3 [16].  

 

Figure 1.3: Approximate Cell Decomposition [16] 

Adaptive cell decomposition reduces the number of cells in a map by using 

large cells in free space and small cells in the presence of objects. All cells are 

maintained in the same shape. Specifically, the number of cells is reduced as follows: 

the map is divided into four cells, and the cells with objects are continuously divided 

into four cells until all cells are completely empty or full, as shown in Figure 1.4 [16]. 
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In exact cell decomposition, cells rely on the shapes and locations of 

obstacles in a map; thus, cells do not have predefined shapes and sizes. All cells 

connect to the edges of obstacles in the search space and thus allows the 

identification of a path, if any. Figure 1.5 shows an example of exact cell 

decomposition [16]. 

 

Figure 1.4: Adaptive Cell Decomposition [16] 

 

Figure 1.5: Exact Cell Decomposition [16] 
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Unlike cell decomposition configuration, roadmap configuration takes less 

time in searching for a path. Roadmap configuration only puts nodes at remarkable 

locations, such as building corners and landmarks. The number of nodes in roadmap 

configuration is smaller than the number of cells in cell decomposition configuration; 

hence, the former is easier to use to obtain a path from an initial point to a final point. 

However, the nodes in roadmap configuration should be remade when information is 

updated [16]. Visibility graphs, voronoi diagrams, and probabilistic roadmaps are 

examples of roadmap configuration [16].  

Visibility graph requires a map with obstacles of a clearly defined polygon 

shape. Such requirement is due to straight lines form and become connected between 

the edges of polygonal obstacles. The paths from the initial to the final locations are 

generated by connecting these straight lines. However, some segments of the path 

may be too close to the boundaries of obstacles using a visibility graph. An example 

of a visibility graph is shown in Figure 1.6, in which the dotted line denotes the 

shortest path [16].  

 

Figure 1.6: Visibility Graph [16] 
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