SYNTHESIS AND INTERACTION MECHANISM OF ZWITTERIONIC ADSORBENT COATING FOR CATIONIC AND ANIONIC DYES REMOVAL

SYAHIDA FARHAN BINTI AZHA

UNIVERSITI SAINS MALAYSIA

2019

SYNTHESIS AND INTERACTION MECHANISM OF ZWITTERIONIC ADSORBENT COATING FOR CATIONIC AND ANIONIC DYES REMOVAL

by

SYAHIDA FARHAN BINTI AZHA

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

August 2019

ACKNOWLEDGEMENT

In the name of ALLAH S.W.T, the most gracious and most merciful, all praises and greatness to HIM for keeping me hale and hearty towards the completion of my research study. All praise belongs to Almighty Allah. Special dedications to my affectionate parents, baba and ummi, Haji. Azha Mohamed and Hajjah Salmah Abdullah, my beloved siblings Syahid, Syamilah, Syahira, Amir and baby Yusha', my grandparents as well as other family members for their endless support and prays. Love them to the moon and back.

Besides, the one I am most indebted, my favorite supervisor, PM. Dr. Suzylawati Ismail for giving me the opportunity and trust to be under her supervision. I appreciated for all of her knowledge guides and guidance, brilliant ideas and knowledge, encouragements, advices and motivations, beneficial input and supports throughout my studied. It's indeed a great privilege to have her in providing positive criticism, helps me improve my analytical research, scientific-writing and presentation skills. I am also thankful for her painstaking efforts in reviewing my thesis. The compilation of this thesis would be impossible without her valuable suggestion. Million thanks, Dr. Suzy.

In addition, the deepest thanks to all my beloved friends especially from Dr. Suzy's group, Faraziehan, Laila, Shazlina, Affini, Momina, Sharafee, Aizat, Zahid, Dr. Ahmad, Dr. Ben as well as Dr. Shad for their moral support and sometimes as problem solver for me. Such a fond moments being with them. Also not forgotten to my "usrah-mate" for your kind gesture and endless prayers. My supporters Huda, Ain Aziemah and Salimah. Besides, to all technicians and staffs of School of Chemical Engineering for their assistance especially those in Environmental Lab (EnVie), Chemical Engineering Integrated Research Space (CEIRS). Not to forget, I would like to acknowledge the Kementerian Pengajian Tinggi Malaysia for the scholarship given throughout my PhD study. Thank you.

Frankly, Syahida Farhan binti Azha, Chemical Engineering, USM, August, 2019

TABLE OF CONTENTS

Page

ACKN	OWLEDGEMENT	ii
TABLE	C OF CONTENTS	iii
LIST O	F TABLE	X
LIST O	F PLATES	xii
LIST O	F FIGURES	xiv
LIST O	F SYMBOLS	xviii
LIST O	F ABBREVIATION	xix
ABSTR	AK	xxi
ABSTR	ACT	xxiii
CHAP	TER ONE: INTRODUCTION	1
1.1	Textile industry in Malaysia	1
1.2	Water pollution from textile industry and its adverse effect	1
1.3	Textile effluent treatment	2
1.4	Adsorption	5
1.5	Adsorbent coating	6
1.6	Zwitterionic adsorbent coating for cationic and anionic dyes removal	8
1.7	Problem statement	9
1.8	Research objectives	12
1.9	Research scope	13
1.10	Organization of the thesis	14

CHAPTER TWO: LITERATURE REVIEW

2.1	Introdu	tion		16
2.2	Process	ng in textile industr	ies	16
2.3	Dyes: f	nctions, structure a	nd issues	17
2.4	Current	technology for the t	reatment of dye effluent	19
2.5	Adsorp	ion of dyes		20
2.6	Introdu	tion to adsorbent co	pating	23
	2.6.1	Components of coa	ating	25
	2.6.2	Binders		26
	2.6.3	Additives		29
		2.6.3 (a) Kaolin		30
		2.6.3 Zeolite		32
		(b)		
		2.6.3 (c) Sepiolite		33
		2.6.3 Diatomi	te	34
		(d)		
		2.6.3 (e) Bentoni	e	35
	2.6.4	Method of coating		36
	2.6.5	Support materials		41
	2.6.6	Drying of adsorber	nt coating	48
	2.6.7	Previous study of treatment	f adsorbent coating in wastewater	49
2.7	Zwitter	onic functionality o	f adsorbents and their mechanisms.	62
2.8	Adsorp	ion isotherm studies	3	76
2.9	Adsorp	ion kinetic studies		79
2.10	Adsorp	ion thermodynamic		80

2.11	Summ	ary	85
СНАР	TER TH	IREE: RESEARCH METHODOLOGY	
3.1	Introdu	action	87
3.2	Proces	s flow diagram	87
3.3	Materi	als and chemicals	89
3.4	Equipr	nent and glassware	89
3.5	Adsort	pent coating techniques and components	90
	3.5.1	Brush-coating technique	90
	3.5.2	Drying method for adsorbent coating	92
	3.5.3	Adsorbate	92
	3.5.4	Binder	94
	3.5.5	Additives	95
	3.5.6	Surfactant	96
	3.5.7	Cotton cloth	97
3.6	Experi	mental procedure of ZwitAd preparation	98
	3.6.1	Experiment procedure for dyes removal on bare cotton cloth	98
	3.6.2	Analysis performance of APE and characterization method.	99
	3.6.3	Screening on different additives for adsorption performance	101
	3.6.4	Measurements of bentonite swelling.	102
	3.6.5	Experimental study of surfactant ratio on adsorbent coating performance	102
	3.6.6	Final formulation of ZwitAd	103
	3.6.7	Preparation of adsorbent coating to powder form	104
3.7	Adsort	pent coating durability studies	104

	3.7.1	Adsorber	t coating in chemical solution exposure	104
	3.7.2	Adsorber	t coating under thermal condition exposure	105
	3.7.3	Multiple	bending test	106
3.8	Adsort	ent charact	erization	106
	3.8.1	Surface c	harges analysis	106
	3.8.2	Viscosity	analysis	107
	3.8.3	Surface n	norphology and elemental analysis of ZwitAd.	107
	3.8.4	Functiona	al group and structural component analysis.	108
	3.8.5	Chemical	composition analysis	108
	3.8.6	Porosity a	and zero point charge (pHPZC) analysis	108
	3.8.7	Measurer	nents of coating thickness	109
	3.8.8	Thermal	properties analysis	109
	3.8.9	Surface a	rea and porosity analysis	110
3.9	Batch	adsorption	and analysis system	111
	3.9.1	Preparati	on of stock solution	111
	3.9.2	Calibratio	on curve	111
	3.9.3	Batch equ	uilibrium studies	111
		3.9.3 (a)	Effect of initial adsorbate concentration and contact time	112
		3.9.3 (b)	Effect of solution temperature	113
		3.9.3 (c)	Effect of solution pH	113
		3.9.3 (d)	Effect of adsorbent dosage	114
		3.9.3 (e)	Effect of ionic strength	114
		3.9.3 (f)	Effect of adsorption of binary and tertiary dyes.	115
		3.9.3 (g)	Effect of adsorption on other types of pollutants	115

	3.9.3 (h)	Study effect of coating on different surface substrate	116
	3.9.3 (i)	Reusability of adsorbent coating	117
3.10	Equilibrium adsor	ption isotherm	118
3.11	Batch kinetic adso	rption studies	118
3.12	Adsorption thermo	odynamic studies	119

CHAPTER FOUR: RESULTS AND DISCUSSION

4.0	Introd	luction	120
4.1	Scree	ning of zwitterionic adsorbent coating (ZwitAd) components	121
	4.1.1	Analysis of bare cotton cloth for dyes removal	121
	4.1.2	Analysis of APE on dyes removal	123
	4.1.3	Screening on different additives for adsorption performance	129
	4.1.4	Performance of surfactant in clays/APE	132
4.2	Prepa	ration of zwitterionic adsorbent coating (ZwitAd)	134
	4.2.1	Bentonite swelling behavior	134
	4.2.2	Bentonite dosage in adsorbent coating formulation	136
	4.2.3	Surfactant ratio	137
	4.2.4	ZwitAd formulation	140
	4.2.5	ZwitAd synthesis procedure	141
	4.2.6	Comparison study	143
	4.2.7	Adsorption mechanism	146
4.3	Chara	cterization of adsorbent coating	149
	4.3.1	Chemical properties and characterization	150
		4.3.1 (a) Surface morphology and textural structure	150
		4.3.1 (b) Elemental analysis of ZwitAd	152

		4.3.1 (c)	Chemical composition analysis of ZwitAd.	154
		4.3.1 (d)	Surface elemental distribution of ZwitAd	154
		4.3.1 (e)	Functional group and structural component of ZwitAd	155
		4.3.1 (f)	Surface area and porosity of the adsorbent	157
			coating	
		4.3.1 (g)	Thermal properties of ZwitAd.	159
		4.3.1 (h)	Point zero charge (pHZPC) of ZwitAd	160
		4.3.1 (i)	Viscosity	161
	4.3.2	Physical p	properties	162
		4.3.2 (a)	Chemical exposure test	162
		4.3.2 (b)	Thermal exposure test	163
		4.3.2 (c)	Multiple bending test	167
		4.3.2 (d)	Visible spectra analysis of adsorption	168
4.4	Adsor	ption study		169
	4.4.1	Effect of i	nitial dye concentration and contact time on	169
		adsorptior	n of dyes	
	4.4.2	Effect of t	emperature	173
	4.4.3	Effect of p	pH	176
	4.4.4	Effect of a	adsorbent dosage	179
	4.4.5	Effect of a	co-existed surfactant/ionic strength	180
	4.4.6	Effect of dyes syste	co-existed mixed dyestuffs (binary and tertiary em)	182
	4.4.7	Effect of a	adsorption on other types of pollutants	185
		4.4.7 (a)	Adsorption of other types of dyes	185
		4.4.7 (b)	Adsorption of heavy metal (copper), pharmaceutical wastes (SMX) and aquaculture waste (OTC).	187

	4.4.7 (c) Adsorption of river water	189
	4.4.8 Effect of coating on various substrate	191
	4.4.9 Reusability study of ZwitAd	192
4.5	Adsorption isotherm	195
4.6	Adsorption kinetic	202
4.7	Adsorption thermodynamic	206
4.8	Adsorption comparison from other adsorbent.	210

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS

APPENDICES		
REFERENCES		216
5.2	Recommendations	215
5.1	Conclusions	212

LIST OF PUBLICATIONS, PATENTS AND ACHIEVEMENTS

LIST OF TABLES

Page

Table 2.1	Existing technologies and treatment methods for dye treatment from wastewaters	20
Table 2.2	Summary of usage, function and advantages of cotton cloth in various field of application	46
Table 2.3	Summarizes of various adsorbent coating/film to treat dyes and other contaminated water along with their characteristics (functional material, binder, support, thickness, drying, adsorption capacity)	59
Table 2.4	Mechanism and chemistry involved in amphoteric adsorbent with the possible adsorption interaction	69
Table 2.5	Adsorption isotherm models and their linear form for dyes removal	77
Table 2.6	Definition of every parameter and units for isotherm models equation	77
Table 2.7	Summary of non-linear adsorption isotherm models employed from previous researchers	78
Table 2.8	Kinetic model for adsorption	79
Table 2.9	Application of various kinetic model from past researches	80
Table 2.10	Definition of every parameter and units for kinetic models equation	82
Table 2.11	Adsorption isotherm, kinetic and thermodynamic involved in amphoteric adsorbents from previous studies	83
Table 3.1	List of chemicals and materials	89
Table 3.2	List of equipment used for adsorbent preparation, modification and testing	90
Table 3.3	Physical properties and molecular structure of Brilliant Green dye	93
Table 3.4	Physical properties and molecular structure of Acid Red 1 dye	93
Table 3.5	Properties of acrylic polymer emulsion as binder	95
Table 3.6	Properties of additives	96

Table 3.7	Durability test of adsorbent coating under thermal condition	105
Table 3.8	Physical properties and molecular structure of Sulfamethoxazole (SMX)	116
Table 3.9	Physical properties and molecular structure of Oxytetracycline hydrochloride (OTC)	117
Table 4.1	Chemical composition (%) of acrylic polymer emulsion (APE) using XRF analysis	125
Table 4.2	Chemical composition (%) of bentonite using XRF analysis	136
Table 4.3	Chemical composition (%) of ZwitAd using XRF analysis	154
Table 4.4	The surface area and porosity of ZwitAd	158
Table 4.5	Percentage weight loss of ZwitAd after thermal stability test in drying oven	164
Table 4.6	Percentage weight loss of ZwitAd after thermal stability test in outside building	167
Table 4.7	Value of pH before and after adsorption of AR 1 and BG dyes	179
Table 4.8	pH value for river samples before and after ZwitAd adsorption	190
Table 4.9	ICP-OES result from all water sampling rivers	191
Table 4.10	Turbidity of river samples before and after ZwitAd adsorption	191
Table 4.11	Langmuir, Freundlich and Temkin isotherm parameters	199
Table 4.12	Parameters of pseudo-first order and pseudo-second-order models for BG and AR 1 adsorption prepared ZwitAd	204
Table 4.13	Thermodynamic properties of AR 1 and BG dyes for ZwitAd	208
Table 4.14	Sorption results of different adsorbents and forms for the removal of BG and AR1 dyes from the literature	211

LIST OF PLATES

Plate 2.1	Photograph of (a) Brush-coating method applied on cotton cloth, (b) GO-coated cotton cloth after annealing at 300 °C (Wen-wen et al., 2012)	39
Plate 2.2	Image show (a) the fabricated cotton cloth coated with RGO used for heating element devices (Neella et al., 2017) and (b) cultures of microalgae of <i>Chlorella minutissima</i> (1 &2) and <i>Chlamydomonas sp.</i> (3&4) on cotton cloth pieces by exhibiting the immobilization of microalgae cell. SEM images (mag 50 μ m) showing cotton cloth <i>Chlorella minutissima</i> b(2) and <i>Chlamydomonas sp.</i> b(4) with immobilized algal cells (Prasad et al., 2016)	45
Plate 2.3	(a) Chitosan/bentonite hybrid composite film, (b) and (c) SEM images at 1000mag (Dotto et al., 2016b)	52
Plate 2.4	Visual color of adsorbent coating totally changed from transparents film before adsorption to red after adsorption	53
Plate 2.5	(a) Example of two methods of application from iron hydroxide coating (roll and parallel sheets), (b) treatment of textile effluent for easy separation (c) cross senction SEM image of coated FeOOH (Junyi et al., 2016)	54
Plate 2.6	(i) cellulose acetate, (ii) cellulose acetate-organophilic montmorillonite composite, before and after compost test for 6 months (Goswami and Moni, 2019)	55
Plate 3.1	Brush -coating setup	91
Plate 3.2	Adsorbent coating sizes (20 cm length), (5 cm width)	91
Plate 3.3	Adsorbent coating strips dried in oven	92
Plate 3.4	APE as binder	94
Plate 3.5	Additives from clay based materials	96
Plate 3.6	Adsorbent coating clipped in the interior part of glass beaker. Red circle showed the perimeter of beaker is 20 cm	98
Plate 3.7	Bare cotton cloth positioned in beaker with AR 1 and BG dyes	99
Plate 3.8	Condition of adsorbent coating before undergo adsorption process	101
Plate 4.1	APE coated on various surfaces with a promising adhesion	124

Plate 4.2	The appearance of bent/EPIDMA-APE suspension, (a) pouring into crucible (b) in crucible, and (c) ZwitAd strip	141
Plate 4.3	Digital photograph of ZwitAd strip adsorb cationic and anionic dyes as a single solution	149
Plate 4.4	Digital photograph of dyes, mixtures of dyes, and illustration of ZwitAd adsorb dyes by charged interaction	149
Plate 4.5	The FE-SEM micrographs of ZwitAd before adsorption (A1 & A2), ZwitAd after adsorption of BG dye (B1 & B2), and ZwitAd after adsorption of AR 1 dye (C1 & C2). A1, B1, C1 : 100x mag, A2, B2, C2 : 5000x mag, A3-white strip : raw ZwitAd, B3-green strip: ZwitAd after BG adsorption, C3-red strip: after AR 1 dye adsorption	152
Plate 4.6	SEM image (mag 5000x) and major elemental mapping of ZwitAd	157
Plate 4.7	Photographic images of ZwitAd after 10 days of soaking in acidic, alkaline, mixed dyes and distilled water solution	162
Plate 4.8	Photographic images of ZwitAd after 100 days of soaking in acidic, alkaline, mixed dyes and distilled water solution	163
Plate 4.9	Photographic images of ZwitAd after 5 days in 100 °C drying oven	164
Plate 4.10	Thermal stability testing outside building	167
Plate 4.11	Multiple bending test of ZwitAd	168
Plate 4.12	ZwitAd coated on various substrates	192

LIST OF FIGURES

Page

Figure 1.1	Process flow diagram of textile wastewater treatment plant in Kuala Lumpur (Pang and Abdullah, 2013)	4
Figure 2.1	Chemical structure of synthetic dyes most frequently used in adsorption study	18
Figure 2.2	Number of publications listed by Science Direct on 28 th March 2019 specifying "dye adsorption" as the keyword plotted against the publication year	22
Figure 2.3	Publication numbers of adsorbent coating through 10 years studies	23
Figure 2.4	Illustration of dip coating and spin-coating method (Muresan and Maria, 2015)	38
Figure 2.5	Coating granulation apparatus, 1. Coating reagent vessel, 2) Peristaltic pump; 3) atomize gas; 4) Flow meter; 5) Fluidized gas; 6) Flow meter, 7) Fluidized bed, 8) Nozzle	40
Figure 2.6	The latex paint film formation; (a) Particle dispersed in water; (b) Particles pack closely together; (c) Latex particles have fused, entrapping pigments particles in a tough and continuous paint (Institute, 2010)	48
Figure 2.7	Preparation of magnesium carbonate basic coating on the cotton cloth ($Mg_2CO_3(OH)_2/CC$) (Lei et al., 2015)	57
Figure 2.8	Summarize of possible adsorption interaction between zwitterionic adsorbent coating onto both cationic and anionic dye	68
Figure 3.1	Flow chart for the experimental procedure	88
Figure 3.2	Chemical formula of EPIDMA	97
Figure 4.1	SEM micrographs of cotton cloth at top surfaces (mag. 300x)	122
Figure 4.2	Absorption of AR1 and BG dye solution in the visible light region before and after dyes adsorption on cotton cloth	123
Figure 4.3	Zeta potential distribution of APE. (-14.8 mV)	124
Figure 4.4	a) EDX analysis and b) SEM image at 3000 magnification of dried APE	126

Figure 4.5	Performance of APE towards BG and AR 1 removal	127
Figure 4.6	APE ratio on percentage removal of BG	129
Figure 4.7	Screening of clays/APE adsorbent coating towards BG and AR 1 dyes removal	130
Figure 4.8	Removal performance of BG dye based on contact time	131
Figure 4.9	Performance of surfactant in clays/APE for the removal of AR 1 and BG dye	133
Figure 4.10	Pictographic diagram of swelled bentonite after absorbing water with the swelling bentonite testing image in measuring cylinder	135
Figure 4.11	Study effect of bentonite dosage in adsorbent coating for the removal of AR 1 and BG dye	137
Figure 4.12	Study of surfactant ratios for the removal efficiency (%) of AR 1 and BG dyes	139
Figure 4.13	FTIR spectra of 1 wt % to 5 wt % EPIDMA concentration	140
Figure 4.14	Proposed illustration of ZwitAd synthesis process	143
Figure 4.15	Comparison study in terms of adsorption capacity (mg/g) for the presence of fillers in adsorbent coating	144
Figure 4.16	Illustration of EPIDMA intercalation into bentonite interlayer framework	145
Figure 4.17	Performance of adsorbent between powder and coating form	146
Figure 4.18	Proposed mechanism of ZwitAd adsorption towards AR 1 and BG dyes	148
Figure 4.19	EDX analysis spectra of a) ZwitAd before dyes adsorption, b) ZwitAd after adsorption of AR 1, and c) ZwitAd after adsorption of BG dye	153
Figure 4.20	FTIR spectra of pristine ZwitAd (a), ZwitAd after adsorption of BG (b) and AR 1 dyes (c)	156
Figure 4.21	TGA thermogram of ZwitAd	160
Figure 4.22	Point of zero charge (pH _{ZPC}) of ZwitAd used for adsorption experiment.	161
Figure 4.23	Wavelength changes detected in water at temperature (a) 30 °C, (b) 50 °C, (c) 70 °C	165

- Figure 4.24 UV-visible spectra of dye solutions recorded at different 168 reaction time, (a) BG and (b) AR1 dyes removal. [Experimental condition: 200 ml of 150 mg/L (BG) and 100 mg/L (AR 1) dye concentration, 100 cm² adsorbents sizes.]
- Figure 4.25 Effect of initial concentration based on (a) removal efficiency 171 (%) and (b) dye uptake (mg/g) on the adsorption of AR 1 dye. [Constant condition: original pH, atmospheric temperature]
- Figure 4.26 Effect of initial concentration based on (a) removal efficiency 172 (%) and (b) dye uptake (mg/g) on the adsorption of BG dye. [Constant condition: original pH, atmospheric temperature]
- Figure 4.27 Effect of temperature on AR 1 and BG adsorption on ZwitAd, 175 at normal pH.
- Figure 4.28 Effect of initial solution pH on adsorption of BG and AR 1 178 dyes using ZwitAd. [Constant condition:50 mg/L of initial dye concentration, atmospheric temperature, adsorbent dosage 0.3 g]
- Figure 4.29 Removal efficiency and adsorbent capacity through the effect 180 of ZwitAd dosage study. [Constant condition : 50 mg/L of initial dye concentration, atmospheric temperature, adsorbent dosage 0.3 g]
- Figure 4.30 Effect of ionic strength (a) NaCl and (b) Na₂SO₄ towards dyes 182 performance
- Figure 4.31 Adsorption towards binary dyes (mixture between AR 1 and 184 BG dyes)
- Figure 4.32 Adsorption towards tertiary dyes (mixture between AR 1, BG 184 and Rhodamine B dyes)
- Figure 4.33 Absorbance differences (a) Amido Black 10B, (b) Direct 186 Yellow dyes, (c) Reactive Blue India, and (D) Remazol Red B
- Figure 4.34 Removal of copper, SMX and OTC using ZwitAd 187
- Figure 4.35 Illustrated mechanism for SMX, OTC and Copper sorption on 189 ZwitAd
- Figure 4.36 Reusability study of BG and AR 1 adsorption on ZwitAd 193
- Figure 4.37 Comparison experimental and calculated equilibrium 198 adsorption capacity using isotherm models for the adsorption of ZwitAd of (a) AR 1 dye and (b) BG dye

Figure 4.38	(a) Langmuir, (b) Freundlich and (c) Temkin isotherm models for AR 1 dyes at 30, 40, 50, 60, and 70°C, respectively	200
Figure 4.39	(a) Langmuir, (b) Freundlich and (c) Temkin isotherm models for BG dyes at 30, 40, 50, 60, and 70 °C, respectively	201
Figure 4.41	Kinetic pseudo first order and pseudo second order models for AR 1 dyes	205
Figure 4.42	Kinetic pseudo first order and pseudo second order models for BG dyes	206
Figure 4.43	Thermodynamic plots for AR 1 dye adsorption onto ZwitAd	209
Figure 4.44	Thermodynamic plots for BG dye adsorption onto ZwitAd	209

LIST OF SYMBOLS

λ_{max}	maximum wavelength
V	volume
W	weight
C_0	highest initial adsorbate concentration
Ce	equilibrium concentration of adsorbate
Ct	liquid-phase concentrations
q _e	amount at equilibrium
Qm	maximum adsorption amount
K _L	Langmuir constant
R ²	correlation coefficient
R	Universal gas constant

LIST OF ABBREVIATIONS

ATR-FTIR	Attenuated Total Reflectance Fourier Transform Infrared
AAS	Atomic Absorption Spectrometry
APE	Acrylic Polymer Emulsion
AR 1	Acid Red 1
AB 75	Acid Brown 75
AO	Acid Orange
ASTM	American Society for Testing and Materials
BG	Brilliant Green
BY 28	Basic Yellow 28
CEC	Cationic Exchange Capacity
СМС	Carboxy Methyl Cellulose
CV	Crystal Violet
CS	Chitosan
DO	Dissolved Oxygen
EDX	Energy-dispersive X-ray spectroscopy
ENR	Epoxidized Natural Rubber
EPIDMA	Epichlorohydrin Dimethyl Amine
HDTMA-Br	Hexadecyltrimethylammonium bromide
ICP-OES	Inductively Couple Plasma Atomic Emission Spectroscopy
LDH	Layered Double Hydroxide
MB	Methylene Blue
МСМ	Microfibriller Cellulose Mat
MG	Malachite Green

MMT	Montmorillonite
MR	Methyl Red
MIDA	Malaysian Investment Development Authority
PAA	Polyacrylate
PEG	Polyethylene glycol
pHpzc	pH potential zeta charge
PVA	Polyvinyl alcohol
PVC	Polyvinyl Chloride
PVDF	Vinylidene difluoride
RBBR	Remazol Brilliant Blue R
RO 16	Reactive Orange 16
SEM	Scanning Electron Microscope
SMX	Sulfamethoxazole
UV-Vis	Ultra- Violet Spectrophotometer
VOC	Volatile Organic Compound
XRF	X-ray Fluorescence
ZwitAd	Zwitterionic Adsorbent Coating

SINTESIS DAN MEKANISME INTERAKSI LAPISAN PENJERAP ZWITERION UNTUK PENYINGKIRAN BAHAN PEWARNA KATION DAN ANION

ABSTRAK

Penjerapan adalah satu teknik yang digunakan secara meluas dalam rawatan air sisa berwarna kerana proses ini pratikal, murah, cekap dalam pengoperasian dan fleksibel dalam reka bentuk bahan penjerapnya. Walaubagaimana pun, penjerap yang berbentuk serbuk halus dan berkepingan yang mempunyai nano-saiz, bentuk tidak sekata dan ketumpatan yang tidak stabil akan mengakibatkan kesukaran terutamanya dalam system aliran berterusan. Oleh yang demikian, kajian ini telah memberi tumpuan kepada penghasilan lapisan penjerap yang mempunyai fungsi zwitterion untuk penyingkiran bahan pewarna kation dan anion dari larutan akueus. Lapisan penjerap disediakan melalui kaedah yang mudah dengan menggunakan kombinasi bahan seperti aditif (tanah liat bentonit), surfaktan (polielektrolit kation, EPIDMA), pelarut (air suling) and pengikat (emulsi polimer akrilik, APE), yang kemudiannya di salut ke atas kain kapas sebagai substrak. Nisbah formula yang optimum telah disahkan sebagai 1: 2: 4, yang bersamaan dengan bentonit (g): APE (g): EPIDMA (wt.%). Lapisan penjerap zwiterion yang selepas ini dirujuk sebagai ZwitAd telah di cirikan dan di analisis untuk memastikan sifat kimia dan fizikalnya. ZwitAd mempamerkan prestasi yang baik dalam kecekapan penyingkiran dan keupayaan penjerapan untuk kedua-dua jenis pewarna sama ada secara penjerapan tunggal atau serentak, bersama-sama dengan kekuatan salutan yang baik, dan stabil dari sudut kimia dan haba. Mekanisma penjerapan pewarna boleh digambarkan melalui tarikan elektrostatik antara permukaan penjerap amphoterik (caj positif dan negatif) dengan anionik sulfonat

 $-SO_3$ dari pewarna Acid Red 1 (AR1) dan (=NH)⁺ dari pewarna Brilliant Green (BG). Tarikan lain juga melibatkan ikatan hidrofobik dan hidrogen. Kesan kepekatan awal pewarna (10 ppm-250 ppm), dos penjerap (0.1 g- 0.5 g), pH awal (2-12), kekuatan ionik (1 g / L - 5 g / L) dan kesan suhu (30-70 ° C), kesan pewarna binari dan tertiari, penjerapan pada jenis pencemar lain dan kajian kitaran juga dikaji secara mendalam. Di samping itu, keseimbangan isoterma, kinetik, termodinamik dan kajian mekanisme juga dinilai. Keputusan menunjukkan dengan bertambahnya masa dan kepekatan pewarna, membawa kepada pertambahan keupayaan penjerap ZwitAd terutama untuk penyingkiran pewarna AR 1. Variasi dalam kepekatan awal pewarna dari 50 mg/L hingga 250 mg/L memberikan peningkatan keupayaan penjerap dari 33.33 mg/g kepada 74.50 mg/g untuk pewarna AR 1 dan 34.83 mg/g kepada 183.01 mg/g untuk pewarna BG. Selain itu, ZwitAd sangat baik menjerap dalam jangkauan pH dari 2 hingga 12. Maksimum 10 kali kitaran penjerapan-penyahjerapan pewarna BG dicapai dengan menggunakan kebolehsanaan pemulihan secara terma. Data penjerapan yang diperolehi dinilai berdasarkan keseimbangan isoterma dan kedua-dua pewarna mengikut isotherm Freundlish. Model tersebut menunjukkan penjerapan terdiri daripada pelbagai lapisan heterogen. Kajian kinetik menunjukkan pewarna AR 1 mengikuti pseudo-tertib pertama dan pewarna BG mengikuti pseudo-tertib kedua. Kajian termodinamik juga mendedahkan bahawa penjerapan berlaku proses spontan dan endotermik. Kajian semasa mendapati ZwitAd berpotensi sebagai lapisan penjerap yang boleh dilaksanakan dan praktikal untuk teknologi rawatan air sisa di masa hadapan.