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PEMBANGUNAN BIOPENDERIA ELEKTROKIMIA BERASASKAN 

MEMBRAN NILON-6 

 

ABSTRAK 

Jutaan manusia mati disebabkan ketiadaan dan ketidakbolehcapaian 

kemudahan diagnostik terutamanya dalam mengawal penyakit-penyakit penting, 

yang mana membawa kepada pembangunan biopenderia yang progresif. Malangnya, 

pengoksidaan secara langsung analit sasaran pada elektrod terdedah bagi 

biopenderia adalah proses tidak boleh balik dan memerlukan upaya lebih yang 

tinggi, menyebabkan kotoran elektrod dan kepekaan yang rendah. Elektrod yang 

terubahsuai membran nilon-6 telah dicadangkan untuk mengatasi masalah ini. 

Sebagai satu immunocerakin, tindakbalas biokimia antara analit sasaran dan 

tawanan berlaku pada permukaan membran nilon-6, kemudian diterjemahkan 

kepada isyarat rintangan yang boleh diukur. Kajian ini menjelaskan ciri morfologi 

bagi nilon-6 sebagai membran penjerapan protin dan pengaruh mereka dalam 

antaramuka pengecaman biologi. Membran nilon-6 disintesis melalui 

penyongsangan fasa kering dengan kepekataan berbeza bagi polimer nilon-6 dalam 

julat 16 wt. % hingga 28 wt. % dan pelbagai jenis bahan tambah (air dan metanol) 

dalam larutan ‘dope’. Membran nilon-6 yang dibangunkan, N-16B, dengan 16 wt. % 

nilon-6 polimer dan metanol sebagai bukan pelarut telah memperlihatkan kelajuan 

sisi penyumbuan yang terpantas (1.07 mm/saat) dan kapasiti penjerapan protin yang 

sangat baik, (1,650.00 + 85.84 µg/cm3). Kajian semasa mendedahkan kepentingan 

morfologi membran yang mempengaruhi kepekaan dan keberkesanan peranti 

pengesan imun. Isu kestabilan dalam penjerapan biomolekul telah diatasi dengan 

mengintegrasi glutaradehid (GA) ke atas membran nilon-6 sebelum penjerapan 
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protin. Kajian awal telah dijalankan untuk mengkaji kesan masa inkubasi, pH dan 

kepekatan GA pada pengikatan protin ke atas polimer nilon-6. Keadaan optimum 

bagi integrasi GA ditemui pada 40 minit masa inkubasi, pH 7.5 dan 1 wt. % 

kepekatan GA. Analisis statistik dengan program rekabentuk silang dilakukan dan 

keadaan integrasi GA optimum dari analisis statistik didapati pada 25 wt. % bagi 

polimer nilon-6, 75 wt.% campuran pelarut + tak larut, pH 9.0 dan 70 minit masa 

inkubasi. Keputusan eksperimen menunjukkan bahawa GA sebagai penyambung 

lintang pada keadaan optimum mampu mencapai sangkutan GA yang lebih baik 

untuk penjerapan protin yang terakhir. Kajian lanjut telah meneroka penyediaan 

polianilina-ferum (III) oksida (PANI/Fe2O3) yang konduktif yang berfungsi sebagai 

pemindaharuh isyarat elektrik, untuk menukar interaksi elektrokimia kepada satu 

isyarat ketahanan yang dapat diukur. PANI disintesis melalui pempolimeran 

beroksida bagi monomer anilina (AM) dengan kehadiran ammonium persulfat 

(APS). 0.2 M kepekatan AM and 1:3 nisbah sukatan AM:APS didapati 

menghasilkan PANI dengan tindakbalas konduktiviti ionik yang tertinggi pada 7.565 

+ 0.262 mS/cm. Kajian telah mengkaji semula aspek menarik bagi keadaan yang 

berlainan oleh PANI sebagai satu bahan konduktif yang penting untuk peranti 

elektronik/elektrik. Seterusnya, penderia amperometri berasaskan-membran telah 

dipasang dan aktiviti elektrokimia antara asid askorbat (AA, analit sasaran) dan 

askorbat oksidase (analit tawanan) telah dinilai. Had pengesanan bagi penderia 

didapati pada 5.77 mM dan pemalar Michaelis-Menten (Km) dikira sebanyak 26.76 

mM. Tindakbalas bagi spektroskopi galangan elektrokimia (EIS), voltammetry 

kitaran (CV) dan voltammograms denyutan kebezaan (DPV) dijalankan untuk 

menganalis dua lapis elektrokimia ke atas elektrod kerja. Membran nilon-6 yang 

dibangunkan telah menyediakan satu pelantar pengesanan yang menjanjikan untuk 
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pembinaan penderia dan sesuai untuk aplikasi praktikal dalam analisis farmaseutikal 

atau klinikal dan tanaman pertanian. 
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DEVELOPMENT OF ELECTROCHEMICAL BIOSENSOR BASED ON 

NYLON-6 MEMBRANE 

 

ABSTRACT 

Millions of people die due to the unavailability and inaccessible of 

diagnostics facilities especially in controlling crucial diseases, which led to the 

progressive development of biosensor. Unfortunately, direct oxidation of target 

analyte at the bare electrode of a biosensor is an irreversible process and requires a 

high overpotential, resulted in electrode fouling and low sensitivity. Nylon-6 

membrane modified electrodes have been proposed to overcome this problem. As an 

immunoassay, the biochemical reaction between target and capture analyte takes 

place on the surface of the nylon-6 membrane, then translated to measurable 

resistance signal. The present study elucidates the morphology characteristic of 

nylon-6 as protein immobilization membrane and their influences in biological 

recognition interface. The nylon-6 membranes were synthesized via dry phase 

inversion with different concentration of nylon-6 polymer in a range of 16 wt. % to 

28 wt.% and different types of additives (water and methanol) in dope solution. The 

developed nylon-6 membrane, N-16B, with 16 wt. % nylon-6 polymer and methanol 

as non-solvent had demonstrated the fastest lateral wicking speed (1.07 mm/sec) and 

excellent protein immobilization capacity (1,650.00 + 85.84 µg/cm3). The current 

study revealed the importance of membrane morphology that affects the sensitivity 

and effectiveness of an immuno-sensing device. The stability issue in biomolecule 

immobilization has been overcomed by integrating glutaraldehyde (GA) onto nylon-

6 membrane prior to protein immobilization. The preliminary study was carried out 

to study the effect of incubation time, pH and concentration of GA on protein 
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binding of the nylon-6 polymer. The optimum conditions of GA integration were 

found at 40 minutes of incubation time, pH 7.5 and 1 wt. % of GA concentration. 

Statistical analysis using crossed design programme was performed and the 

optimum GA integration conditions from the statistical analysis were found at 25 wt. 

% of the nylon-6 polymer, 75 wt. % of mixture solvent + nonsolvent, pH 9.0 and 70 

minutes of incubation time. The experimental results showed that the GA as a cross-

linker reagent at optimum conditions was able to achieve better GA attachment for 

latter protein immobilization. Further study has been explored on the preparation of 

conductive polyaniline-iron oxide (PANI/Fe2O3) that served as the electrical signal 

transducer, to convert the electrochemical interactions to a measurable resistance 

signal. PANI was synthesized via oxidative polymerization of aniline monomer 

(AM) in the presence of ammonium persulfate (APS). 0.2 M concentration of AM 

and 1:3 volume ratio of AM:APS were found to produce PANI logged with the 

highest ionic conductivity response at 7.565 + 0.262 mS/cm. The study had 

reviewed the interesting aspect of different state of PANI as one of the important 

conducting material for electronic/electrical devices. Subsequently, a membrane-

based amperometric sensor was assembled and electrochemical activities ascorbic 

acid (AA, target analyte) and ascorbate oxidase (capture analyte) were evaluated. 

The detection limit of the sensor was found at 5.77 mM and the Michaelis–Menten 

constant (Km) was calculated as 26.76 mM. Electrochemical impedance 

spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammograms 

(DPV) responses were carried out to analyze the electrochemical double layer on the 

working electrode.  The developed nylon-6 membrane has provided a promising 

detection platform for sensor construction and suitable for practical application in 

pharmaceutical or clinical analysis and agricultural crops. 
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CHAPTER 1 

 INTRODUCTION 

 

 

1.1  Membrane as biological recognition interface for immunosensor  

 

Modern technology has achieved better enhancement and sophistication in 

providing treatment, monitoring and controlling the spread of crucial diseases, 

especially those related to waterborne and foodborne outbreaks (Ivnitski et al., 2000, 

Low et al., 2012). Due to the unavailability or inaccessibility of diagnostic facilities, 

a rapid construction, on-site examination, and user-friendly detection system is 

progressively developed to overcome such problem. Under such a scenario, 

immunosensor has emerged as a potential detection system for an effective 

monitoring of pathogen (Donmez et al., 2015, Hosseini et al., 2014, Kolosovas-

Machuca et al., 2015, Nandakumar et al., 2008, Pohanka et al., 2007, Waiyapoka et 

al., 2015), contaminant and toxic material in the biotechnology applications (Grover 

et al., 2015, Hsiue et al., 2004, Khaksarinejad et al., 2015, Srivastava et al., 2014, 

Zahedi et al., 2016). The biomolecules immobilization is the key factor that 

determined the sophisticated development of an immunosensors (Dong et al., 2013, 

García et al., 2012). 

The effectiveness of biomolecule immobilization strongly depends on the 

membrane material (the detection platform) (Betty, 2016, Sadeghi et al., 2015)  that 

provides excellent stability, fast lateral wicking speed and reduces biomolecule 

desorption (Yong et al., 2010). As an immunoassay, the biochemical reaction 

between antigen and antibody takes place on the surface of the porous membrane, 

which is greatly influenced by the membrane morphology and its intrinsic chemical 

composition. The membrane material should be insoluble in water and has a high 
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binding capacity to the specifically targeted biomolecules (Pundir et al., 2008). By 

manipulating the structure of the membrane support, a sensor’s bio-catalytic 

efficiency can be easily achieved to produce an effective and accurate 

immunological analysis (Ahmad et al., 2016). Recently, polymeric porous 

membranes offer the most available support material for recognition interface in 

biosensing applications. The drive to improve the response signal, increase 

sensitivity, lower detection limit and better reproducibility are the reason of the 

growing need of the polymeric porous membrane (Luo et al., 2017, Santhy et al., 

2018, Tang et al., 2019). Polyvinyl alcohol (PVA) (Braiek et al., 2018, Luo et al., 

2017), polyvinyl chloride (PVC) (Afkhami et al., 2014, Ezzeldin et al., 2012, K 

Gupta et al., 2011, Santhy et al., 2018), polysulfone (Zhao et al., 2016), nylon-6 

(Tang et al., 2019, Yaqoob et al., 2016) and polyvinylidene fluoride (PVDF) (Chen 

et al., 2015, Zhao et al., 2015) are the most potential polymeric porous membrane in 

development of biosensing application. 

Among these polymeric membranes, nylon-6 is the most desirable material 

and is proven to be a suitable immobilization platform (Jackeray et al., 2010). This 

polymer comprises of high mechanical strength (Salapare et al., 2015, Shakaib et al., 

2013, Zhou et al., 2013), good stability and high resistance towards microbial attack 

(Pant et al., 2013b). Nylon-6 membrane is commonly produced by phase inversion 

technique through immersion precipitation (Chang et al., 2013, Lin et al., 2002, 

Shakaib et al., 2013, Shih et al., 2012, Sobhanipour and Karimi, 2013) or dry phase 

inversion (Fatarella et al., 2014, Leo et al., 2011, Pant et al., 2013a, Pant et al., 

2013b, Yan et al., 2007). Liu et al. (2013),  reported the use of nylon-6 membrane as 

a porous matrix to immobilize antibody in the detection of two main serum 

biomarkers for down syndrome, which were β-human chorionic gonadotrophin (β-
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HCG) and α-fetal protein (AFP). The nylon-6 membrane was chosen as the sensor’s 

detection platform because of its large total surface area, high mechanical strength, 

and good biocompatibility. Antibodies were first immobilized onto the nylon-6 

membrane surface, so as to capture the target antigens to form the 

immunocomplexes (antibodies–antigens) prior to react with the labelled antibodies 

to form the triplex “sandwich” structures. Then the target antigen will be detected 

through photoluminescence. A low detection limit of the biosensor at 1×10-6 IU/L 

for β-HCG and 1 ng/mL for AFP were detected within the short assay time (Liu et 

al., 2013). 

Biosensor is the most effective method in monitoring and detection of target 

interest. In biosensing application, biomolecules immobilization is the key factor to 

determine the effectiveness of the developed biosensor. Biomolecule immobilization 

strongly depends on the membrane material (the detection platform). Polymeric 

membrane is the most desirable material for biomolecules immobilization. Among 

of the polymeric membrane, nylon-6 has proved to be an effective detection 

platform. However, due to the lower hydrophilicity of the membrane, had limit the 

usage of the membrane in biosensing application. 

 

 

1.2 Challenges of protein immobilization  

 

Immobilization process is defined as the attachment of biomolecules to a 

substrate surface resulting in a reduction or loss of mobility (Rusmini et al., 2007). 

The attachment of the protein onto a surface should not affect the protein 

conformation and its function for fully retain biological activity. There are many 

immobilization techniques, includes physical adsorption, covalent and bioaffinity 
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