POLYAMIDE/ZEOLITIC IMIDAZOLATE FRAMEWORK-8/POLYSULFONE THIN FILM NANOCOMPOSITE MEMBRANE FOR THE TREATMENT OF PRODUCED WATER VIA FORWARD OSMOSIS

BEH JYH JIUNN

UNIVERSITI SAINS MALAYSIA

2019

POLYAMIDE/ZEOLITIC IMIDAZOLATE FRAMEWORK-8/ POLYSULFONE THIN FILM NANOCOMPOSITE MEMBRANE FOR THE TREATMENT OF PRODUCED WATER VIA FORWARD OSMOSIS

by

BEH JYH JIUNN

Thesis submitted in fulfillment of the

requirements for the degree of

Doctor of Philosophy

May 2019

ACKNOWLEDGEMENT

First and foremost, I express my heart-felt gratitude to my family members particularly my parents for their continuous and endless encouragement and support throughout my Ph.D journey.

I also reserve my sincere appreciation to my supervisor, Assoc. Prof. Dr. Ooi Boon Seng as well as my two co-supervisors, Prof. Dr. Lim Jit Kang and Assoc. Prof. Dr. Ng Eng Poh. They have provided me with countless knowledge, idea and guidance, which enables me to achieve breakthrough during research bottlenecks and complete my entire Ph.D study more smoothly and quickly.

I am very grateful to the wonderful opportunity provided by the School of Chemical Engineering, Universiti Sains Malaysia for me to pursue my research interest. I also wish to thank all technical and administrative staffs for their countless and kind help throughout my research study.

Next, my deepest gratitude goes to my beloved friends: Peng Chee, Jing Yao, Huey Ping, Jian Jie, Susan, Suhaili, Geetha, Swee Pin, Qi Hwa, Sim Seong, Qian Yee, Leslie, Melvin, Arthur and Yin Sim for their support and help along my study.

Lastly, I extend special acknowledgement to the financial support from the Ministry of Energy, Science, Technology, Environment and Climate Change Malaysia (DANA (R&D) MESTECC) (305/PJKIMIA/6013701) and Universiti Sains Malaysia (Research University Grant) (1001/PJKIMIA/8014012) as well as the scholarship by Universiti Sains Malaysia Fellowship Scheme.

BEH JYH JIUNN

May 2019

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xv
LIST OF SYMBOLS	xviii
ABSTRAK	xxi
ABSTRACT	xxiii

CHAPTER ONE: INTRODUCTION

1.1	Produced Water	1
1.2	Forward Osmosis (FO) for Produced Water Treatment	3
1.3	Thin Film Nanocomposite (TFN) Membrane	4
1.4	Problem Statement	6
1.5	Research Objectives	9
1.6	Scope of Study	9
1.7	Thesis Organization	12

CHAPTER TWO: LITERATURE REVIEW

2.1	Produced Water Treatment Technologies		15
	2.1.1	Conventional Produced Water Treatment Methods	15
	2.1.2	Membrane Technology for Produced Water Treatment	18

2.2	Devel	opment of Thin Film Composite (TFC) Membrane	20
	2.2.1	Polyamide Film Tuning via Control of Interfacial Polymerization	21
	2.2.2	Support Membrane Tuning via Control of Phase Inversion	28
2.3	Devel	opment of TFN Membrane	36
	2.3.1	Type of Nanofiller	36
	2.3.2	Zeolitic Imidazolate Framework-8 (ZIF-8) Nanofiller	40
		2.3.2(a) ZIF-8 Based TFN Membrane	40
		2.3.2(b) Size Control of ZIF-8	44
		2.3.2(c) Chemical Stability of ZIF-8	46
2.4	FO Pr	ocess for Produced Water Treatment	48
2.5	Resear	rch Gaps	51

CHAPTER THREE: MATERIALS AND METHODOLOGY

3.1	Raw Materials and Chemicals		53
	3.1.1	Raw Materials	53
	3.1.2	Chemicals	54
3.2	Exper	imental Flow Chart	56
3.3	S Synth	esis and Characterization of ZIF-8 Particles	57
	3.3.1	Size Tuning via Adjustment of Reactant Concentration	57
	3.3.2	Size Tuning via Control of Reaction Temperature	58
	3.3.3	Surface Modification of ZIF-8 Particles via Coating of Poly(sodium 4-styrenesulfonate) (PSS)	59
	3.3.4	Characterization of ZIF-8 Particles	60
		3.3.4(a) Dynamic Light Scattering (DLS)	60
		3.3.4(b) Zeta Potential Measurement	61

		3.3.4(c)	Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy	62
		3.3.4(d)	Transmission Electron Microscopy (TEM)	62
		3.3.4(e)	X-Ray Diffraction (XRD)	63
		3.3.4(f)	Nitrogen Adsorption-Desorption Analysis	63
3.4	Prepa	ation of Po	olysulfone (PSf) Support Membrane	64
	3.4.1	Preparatio	on of PSf Casting Dope	64
	3.4.2	PSf Supp	ort Membrane Casting	64
	3.4.3	Thermody	ynamics Evaluation of PSf Casting Dope	65
	3.4.4	Kinetics I	Evaluation of PSf Casting Dope	67
3.5	Devel	opment of	TFC and TFN Membranes	68
	3.5.1	Synthesis	of TFC Membrane	68
	3.5.2	Synthesis	of Polyamide/ZIF-8 TFN Membrane	69
3.6	Memb	orane Chara	acterization	70
	3.6.1	Capillary	Flow Porometry	70
	3.6.2	Atomic F	orce Microscopy (AFM)	71
	3.6.3	Water Co	ntact Angle Measurement	71
	3.6.4	Field Emi	ission Scanning Electron Microscopy (FESEM)	72
	3.6.5	High Reso (HRTEM)	olution Transmission Electron Microscopy)	72
	3.6.6	Thermogr	ravimetric Analysis (TGA)	73
3.7	Evalua	ation of TF	C and TFN Membranes	73
	3.7.1	Reverse C	Osmosis (RO) Filtration Test	73
	3.7.2	FO Filtrat	tion Test	76

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1	Synthe Distril	esis of Nar oution	nosized ZIF-8 Particles with Unimodal Size	81
	4.1.1	Size Con Tuning	trol of ZIF-8 Particles via Reactant Concentration	82
	4.1.2	Size Con Tuning	trol of ZIF-8 Particles via Reaction Temperature	91
	4.1.3	Character	rization of ZIF-8 Particles	96
4.2	Tunin via Co	g of Struct ontrol of In	ural and Separation Properties of TFC Membrane terfacial Polymerization	101
	4.2.1	Propertie Phenylen	s of TFC Membrane at Different m- ediamine (MPD) Concentrations	101
	4.2.2	Propertie Chloride	s of TFC Membrane at Different Trimesoyl (TMC) Concentrations	107
	4.2.3	Propertie	s of TFC Membrane at Different Reaction Durations	114
	4.2.4	Salt Sepa	ration Mechanisms of TFC Membrane	119
	4.2.5	Quantific Membran	ation and Selection of High Selectivity TFC	121
4.3	Tunin Suppo	g of TFC M ort Membra	Membrane Separation Properties via Modification of ane Surface Wettability	123
	4.3.1	Preparation Polymer/2	on of Support Membrane at Different additive Ratios in Casting Dope	124
		4.3.1(a)	Thermodynamics and Kinetics Study of Phase Inversion at Different Polymer/additive Ratios	124
		4.3.1(b)	Surface Properties of Support Membrane Prepared at Different Polymer/additive Ratios	127
	4.3.2	Preparation Solvent in	on of Support Membrane with the Use of Co- n Casting Dope	131
		4.3.2(a)	Thermodynamics and Kinetics Study of Phase Inversion with the Use of Co-Solvent	131
		4.3.2(b)	Surface Properties of Support Membrane Prepared with the Use of Co-Solvent	133

	4.3.3	Separation Characteristics of TFC Membrane with Different Support Membrane Surface Properties	138
4.4	Synthe ZIF-8	esis of Polyamide/ZIF-8 TFN Membrane via Aqueous Phase Dosing	142
	4.4.1	Stability Study of ZIF-8 Particles in Water via PSS Coating	142
	4.4.2	Separation Characteristics of TFN Membrane under PSS Coating of ZIF-8 Particles	150
	4.4.3	Separation Characteristics of TFN Membrane with the Use of Triethylamine (TEA) during Interfacial Polymerization	155
4.5	FO Tr	eatment of Produced Water Using TFN Membrane	162
	4.5.1	TFN Membrane Performance with Synthetic Produced Water as Feed	162
	4.5.2	TFN Membrane Performance with Real Produced Water as Feed	168
	4.5.3	Internal Concentration Polarization (ICP) and Reverse Salt Flux	170

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	173
5.2	Recommendations	176

REFERENCES

177

APPENDICES

Appendix A: Composition of Produced Water from Oilfield
Appendix B: Calculation on Amount of PSS for ZIF-8 Particle Coating
Appendix C: Calculation on Gibbs Free Energy of Mixing of Casting Dopes
Appendix D: Calibration Curves of Aqueous Salt Solutions and Synthetic Produced Water

Appendix E: Evaluation of Membrane Structural Properties and RO Separation Properties

Appendix F: Evaluation of Membrane FO Performance

LIST OF PUBLICATIONS

LIST OF TABLES

		Page
Table 1.1	Global legal upper oil concentration limit in water of various countries.	2
Table 2.1	Separation properties of TFC membrane prepared at different conditions from literature.	27
Table 2.2	Preparation conditions and surface properties of support membrane as well as separation properties of corresponding TFC membrane from literature.	35
Table 2.3	Separation properties of TFN membrane with various types of nanofiller.	42
Table 3.1	Properties of real produced water.	54
Table 3.2	List of chemicals used in this study.	55
Table 3.3	Initial and final reactant concentrations for ZIF-8 particle synthesis.	58
Table 3.4	Volumetric composition of PSS solutions and ZIF-8 particle suspensions.	60
Table 3.5	Composition and PSf/PVP ratio of PSf casting dopes.	64
Table 3.6	HSP of all components in this study.	67
Table 3.7	Reaction conditions of TFC membranes.	68
Table 3.8	Reaction conditions of TFC and TFN membranes.	69
Table 4.1	Solid yield of ZIF-8 particles at different Zn^{2+} concentrations and constant 2-mIm ⁻ concentration of 0.40 M under room temperature synthesis condition.	86
Table 4.2	Solid yield of ZIF-8 particles at different Zn^{2+} and $2-mIm^{-}$ concentrations under constant reactant ratio of 1 : 8 and room temperature synthesis condition.	90
Table 4.3	Solid yield of ZIF-8 particles synthesized at different reaction temperatures.	94
Table 4.4	Comparison of ZIF-8 synthesis methods in this work and other literature.	95

Table 4.5	Pore properties of ZIF-8 particles synthesized at room temperature and in ice bath condition as well as from other literature.	100
Table 4.6	Hydrated size of ions present in the salts used in this study (Nightingale Jr., 1959).	119
Table 4.7	Separation characteristics of TFC membranes and their corresponding synthesis conditions.	123
Table 4.8	Separation properties of TFC membranes synthesized at 3 w/v% MPD concentration, 0.10 w/v% TMC concentration and 60 s reaction duration as well as their support membrane preparation conditions.	138
Table 4.9	Surface properties of PSf support membranes and their preparation conditions.	139
Table 4.10	Size and zeta potential of ZIF-8 particles dispersed in methanol and water.	143
Table 4.11	Size and zeta potential of ZIF-8 particles dispersed in methanol and water after PSS coating using different coating solvents.	146
Table 4.12	Feed properties of synthetic and real produced water as well as FO performance of TFC and TFN membranes for the treatment of both feeds.	169
Table 4.13	Major FO performance indicators of this study and other	171

literature.

LIST OF FIGURES

Figure 1.1	Repeating unit of ZIF-8 framework (Tan et al., 2017).	6
Figure 2.1	Schematic diagram of FO process for produced water treatment.	20
Figure 2.2	Illustration of TFC membrane structure.	21
Figure 2.3	Illustration of TFN membrane structure.	36
Figure 3.1	Experimental flow chart of this project.	56
Figure 3.2	Schematic diagram of PSS molecules oriented in a hcp arrangement on the surface of a ZIF-8 particle.	60
Figure 3.3	Schematic diagram of dead-end RO filtration test rig.	74
Figure 3.4	Schematic diagram of crossflow FO filtration test rig.	77
Figure 4.1	Temporal evolution of ZIF-8 particle size at different Zn^{2+} concentrations and constant 2-mIm ⁻ concentration of 0.40 M under room temperature synthesis condition before particle purification.	83
Figure 4.2	Temporal evolution of ZIF-8 particle size at different Zn^{2+} and 2-mIm ⁻ concentrations under constant reactant ratio of 1 : 8 and room temperature synthesis condition before particle purification.	87
Figure 4.3	Size distributions of ZIF-8 particles synthesized at Zn^{2+} concentration of 0.025 M to 0.20 M and reactant ratio of 1 : 8 for 10 min under room temperature before particle purification.	88
Figure 4.4	Size distributions of ZIF-8 particles synthesized at room temperature and in ice bath condition after particle purification.	91
Figure 4.5	TEM images of ZIF-8 particles synthesized (a) at room temperature and (b) in ice bath condition under magnification of 110 kx.	94
Figure 4.6	FTIR spectra of ZIF-8 particles synthesized at room temperature and in ice bath condition.	97

Figure 4.7	XRD patterns of ZIF-8 particles synthesized at room temperature and in ice bath condition.	99
Figure 4.8	Nitrogen adsorption isotherms of ZIF-8 particles synthesized at room temperature and in ice bath condition.	100
Figure 4.9	(a) Pore size and (b) effective thickness/porosity of TFC membrane at different MPD concentrations.	102
Figure 4.10	Theorized polyamide film formation at different MPD concentrations.	104
Figure 4.11	(a) Pure water permeability, (b) inorganic salt rejection and (c) inorganic salt permeability of TFC membrane at different MPD concentrations.	106
Figure 4.12	(a) Pore size and (b) effective thickness/porosity of TFC membrane at different TMC concentrations.	108
Figure 4.13	Theorized polyamide film formation at different TMC concentrations.	110
Figure 4.14	(a) Pure water permeability, (b) inorganic salt rejection and (c) inorganic salt permeability of TFC membrane at different TMC concentrations.	112
Figure 4.15	(a) Pore size and (b) effective thickness/porosity of TFC membrane synthesized under 2 w/v% MPD concentration and 0.10 w/v% TMC concentration at different reaction durations.	115
Figure 4.16	Theorized formation of polyamide film synthesized under 2 w/v% MPD concentration and 0.10 w/v% TMC concentration at different reaction durations.	116
Figure 4.17	(a) Pure water permeability, (b) inorganic salt rejection and (c) inorganic salt permeability of TFC membrane synthesized under 2 w/v% MPD concentration and 0.10 w/v% TMC concentration at different reaction durations.	118
Figure 4.18	Gibbs free energy of mixing upon water addition into single polymer systems.	126
Figure 4.19	Viscosity of casting dope at different PSf/PVP ratios.	127
Figure 4.20	(a) Surface pore size distribution, (b) RMS surface roughness and (c) water contact angle of PSf support membrane at different PSf/PVP ratios.	128

- Figure 4.21 Gibbs free energy of mixing upon water addition into 132 different solvent systems.
- Figure 4.22 Viscosity of casting dope for different solvent systems. 133
- Figure 4.23 (a) Surface pore size distribution, (b) RMS surface 134 roughness and (c) water contact angle of PSf support membrane prepared from different solvent systems.
- Figure 4.24 AFM images of PSf support membrane prepared from 137 solvent system of (a) pure NMP, (b) NMP-DMAc and (c) NMP-DMF.
- Figure 4.25 Theorized polyamide film growth on (a) support membrane 141 surface with different poor conditions and (b) support membrane surface with good conditions.
- Figure 4.26 TEM images of ZIF-8 particles dispersed in (a) methanol 145 and (b) water under magnification of 140 kx.
- Figure 4.27 TEM images of ZIF-8 particles dispersed in methanol (a) 149 before PSS coating and (b) after PSS coating using 75 vol% methanol-water as coating solvent under magnification of 140 kx.
- Figure 4.28 Surface FESEM images (left, magnification of 20 kx) and 150 cross-sectional HRTEM images (right, magnification of 2.25 kx) of (a) TFC membrane (TFC), (b) TFN membrane containing 0.2 w/v% PSS-coated ZIF-8 particles (TFN-ZIF/PSS) and (c) TFN membrane containing 0.2 w/v% uncoated ZIF-8 particles (TFN-ZIF).
- Figure 4.29 Pure water and NaCl separation properties of TFC and TFN 154 membranes containing 0.2 w/v% PSS-coated and uncoated ZIF-8 particles.
- Figure 4.30 Surface FESEM images (left, magnification of 20 kx) and 156 cross-sectional HRTEM images (right, magnification of 2.25 kx) of (a) TFC membrane at 0 w/v% TEA concentration (TFC), (b) TFC membrane at 2 w/v% TEA concentration (TFC-TEA), (c) TFN membrane at 0 w/v% TEA concentration (TFN-ZIF/PSS) and (d) TFN membrane at 2 w/v% TEA concentration (TFN-TEA/ZIF/PSS).
- Figure 4.31 Pure water and NaCl separation properties of TFC and TFN 160 membranes at different TEA concentrations.
- Figure 4.32 FO flux of different feed solutions for (a) TFC membrane 163 and (b) TFN membrane.

Figure 4.33 TGA profiles of (a) TFC membrane and (b) TFN membrane before and after FO filtration run.		167	
Figure 4.34	FO flux of TFC and TFN membranes for real produced water.	168	
Figure 4.35	Schematic representation of ICP.	171	

LIST OF ABBREVIATIONS

AFM	Atomic Force Microscopy
ATR-FTIR	Attenuated Total Reflectance-Fourier Transform Infrared
BET	Brunauer-Emmett-Teller
BTEC	3,3',5,5'-biphenyl tetraacyl chloride
CNTs	Carbon nanotubes
CTAB	Cetyltrimethylammonium bromide
DAHP	1,3-diamino-2-hydroxypropane
DETA	Diethylenetriamine
DLS	Dynamic Light Scattering
DMAc	N,N-dimethylacetamide
DMF	N,N-dimethylformamide
DSPM	Donnan Steric Pore Model
EDADMBSA	3,3'-(ethane-1,2-diylbis(azanediyl))bis(2,6- dimethylbenzenesulfonic acid)
FESEM	Field Emission Scanning Electron Microscopy
FO	Forward osmosis
FTIR	Fourier Transform Infrared
GO	Graphene oxide
hcp	Hexagonal close packed
HRTEM	High Resolution Transmission Electron Microscopy
HSP	Hansen Solubility Parameters
ICP	Internal concentration polarization
IPC	Isophthaloyl dichloride
IR	Infrared

MD	Membrane distillation
MF	Microfiltration
MPD	m-phenylenediamine
MWCNTs	Multiwalled carbon nanotubes
MXDA	m-xylylenediamine
NF	Nanofiltration
NIPS	Nonsolvent induced phase inversion
NMP	N-methylpyrrolidone
PAN	Polyacrylonitrile
PDA	Polydopamine
PEG	Polyethylene glycol
PEI	Polyethylenimine
PEIm	Polyetherimide
PES	Polyethersulfone
PIP	Piperazine
PSf	Polysulfone
PSS	Poly(sodium 4-styrenesulfonate)
PVDF	Polyvinylidene fluoride
PVP	Polyvinylpyrrolidone
RMS	Root mean square
RO	Reverse osmosis
RT	Room temperature
S-BAPS	Bis[4-(3-aminophenoxy)phenyl]sulfone
ТА	Tannic acid
TEA	Triethylamine

TEG	Triethyleneglycol
TEM	Transmission Electron Microscopy
TEPA	Tetraethylenepentamine
TETA	Triethylenetetramine
TFC	Thin film composite
TFN	Thin film nanocomposite
TGA	Thermogravimetric Analysis
TMC	Trimesoyl chloride
TOC	Total Organic Carbon
UF	Ultrafiltration
UV	Ultraviolet
UV-Vis	Ultraviolet-Visible
VIPS	Vapor induced phase inversion
XRD	X-Ray Diffraction
ZIF-8	Zeolitic imidazolate framework-8

LIST OF SYMBOLS

Α	Pure water permeability	L/m ² ·h·bar
$A_{i,j}$	HSP term for component pair of i and j	MPa
A_m	Effective membrane area	m^2
В	Salt permeability	$L/m^2 \cdot h$
B_{DS}	Draw solute permeability	$L/m^2 \cdot h$
С	Solute concentration	Μ
$C_{D,f}$	Final concentration of draw solute in draw solution	Μ
$C_{D,i}$	Initial concentration of draw solute in draw solution	Μ
C_{f}	Bulk feed concentration	Μ
C_o	Equilibrium solute concentration	Μ
C_p	Permeate concentration	Μ
D_{DS}	Diffusivity of draw solute in water	m ² /s
f_s	Solid fraction	-
i	van't Hoff's factor	-
J_s	Reverse salt flux	mol/m ² ·h
$J_{v,FO}$	FO flux	$L/m^2 \cdot h$
J_w	Water flux	$L/m^2 \cdot h$
k	Boltzmann constant	J/K
k3	Third order rate constant	$M^{-2}s^{-1}$
т	Number of ZIF-8 units that dissolve in water	-
n	Number of ZIF-8 units that form a ZIF-8 particle	-
ni	Number of mole of component <i>i</i>	mol
P/P_o	Relative pressure	-
R	Universal gas constant	J/mol·K

R_s	Salt rejection	-
r	Roughness ratio factor	-
r*	Critical size	m
S	Structural parameter of support membrane	mm
Т	Temperature	Κ
T_e	Solid-liquid equilibrium temperature	Κ
$V_{D,f}$	Final volume of draw solution	L
$V_{D,i}$	Initial volume of draw solution	L
V_m	Molar volume of the reference segment	cm ³ /mol
γ	Surface energy of solid phase nucleated	J/m ²
ΔG_m	Gibbs free energy of mixing	J
ΔG_v	Gibbs free energy per unit volume	J/m ³
ΔH_f	Latent heat of fusion per unit volume	J/m ³
Δm_D	Change of mass of draw solution	g
ΔP	Transmembrane pressure	bar or Pa
ΔT	Supercooling	Κ
Δt	Time	h
ΔV	Permeate volume	L
ΔV_D	Change of volume of draw solution	L
$\Delta \pi$	Osmotic pressure difference	bar
δ_D	HSP for dispersion interaction	(MPa) ^{0.5}
δ_{Di}	HSP for dispersion interaction of component <i>i</i>	(MPa) ^{0.5}
δ_{Dj}	HSP for dispersion interaction of component j	(MPa) ^{0.5}
δ_H	HSP for hydrogen bonding interaction	(MPa) ^{0.5}
δ_{Hi}	HSP for hydrogen bonding interaction of component i	(MPa) ^{0.5}
δ_{Hj}	HSP for hydrogen bonding interaction of component j	(MPa) ^{0.5}

δ_P	HSP for polar interaction	(MPa) ^{0.5}
δ_{Pi}	HSP for polar interaction of component <i>i</i>	(MPa) ^{0.5}
δ_{Pj}	HSP for polar interaction of component j	(MPa) ^{0.5}
θ_{CB}	Apparent contact angle	0
θ_Y	Young contact angle	0
π	Osmotic pressure	bar
$\pi_{D,b}$	Osmotic pressure of bulk draw solution	bar
$\pi_{F,m}$	Osmotic pressure of feed solution at the membrane surface	bar
$ ho_F$	Density of feed solution	g/L
σ	Supersaturation	-
ϕ_i	Volume fraction of component <i>i</i>	-
ϕ_j	Volume fraction of component <i>j</i>	-
Xi,j	Flory-Huggins interaction parameter between component <i>i</i> and <i>j</i>	-
Ω	Atomic volume	m ³

MEMBRAN NANOKOMPOSIT FILEM TIPIS POLIAMIDA/KERANGKA IMIDAZOLAT ZEOLITIK-8/POLISULFON UNTUK RAWATAN AIR TERHASIL MELALUI OSMOSIS HADAPAN

ABSTRAK

Penggunaan membran osmosis hadapan (FO) untuk rawatan air terhasil telah menghadapi cabaran seperti isipadu air sisa yang tinggi dan kestabilan kimia membran yang rendah terhadap air terhasil. Oleh itu, membran nanokomposit filem tipis (TFN) poliamida/kerangka imidazolat zeolitik-8 (ZIF-8) yang mempunyai kebolehtelapan air dan kestabilan kimia yang lebih baik dibangunkan dalam kajian ini. Partikel ZIF-8 bersaiz nano dan mempunyai taburan saiz unimodal berjaya disintesiskan pada suhu tindak balas yang rendah (5 °C) dengan menggunakan kepekatan ion zink (0.20 M) dan 2-metilimidazol (1.60 M) yang tinggi. Ia didapati bahawa salutan poli(natrium 4stirenasulfonat) (PSS) menstabilkan partikel ZIF-8 daripada pelarutan dalam air dan seterusnya membolehkan pemuatannya melalui fasa berair semasa pempolimeran antaramuka. Pada masa yang sama, membran komposit filem tipis (TFC) yang mempunyai kememilihan NaCl yang tinggi disintesiskan dengan membentukkan filem poliamida di atas membran sokongan polisulfon (PSf) melalui pempolimeran antaramuka. Filem poliamida yang disediakan dengan menggunakan kepekatan mfenilendiamina setinggi 3 w/v%, kepekatan trimesoil klorida setinggi 0.10 w/v% dan tempoh tindak balas sepanjang 60 s adalah nipis dan padat. Ia dicirikan melalui ujian penurasan osmosis berbalik dan mencapai kememilihan NaCl setinggi 0.673 bar⁻¹. Membran TFC ini selanjutnya disempurnakan secara pengubahan nisbah PSf/ polivinilpirolidon (PVP) dan penggunaan pelarut bersama semasa penyediaan dop

polimer untuk menambah baik kebolehbasahan permukaan membran sokongan dan pembentukkan filem poliamida di atasnya. Membran sokongan yang disediakan dengan menggunakan nisbah PSf/PVP setinggi 0.941 tanpa pelarut bersama mempunyai permukaan yang mempunyai kebolehbasahan yang baik, saiz liang yang seragam dan kekasaran yang sederhana (52.9 nm). Ia menambah baik kememilihan NaCl membran TFC ke 0.691 bar⁻¹ berbanding dengan membran TFC yang disediakan di atas membran sokongan PSf tanpa pengubahsuaian dop polimer. Keadaan membran sokongan dan keadaan tindak balas membran TFC ini digabungkan dengan partikel ZIF-8 bersalut PSS untuk membangunkan membran TFN. Kebolehtelapan air tulen membran TFN yang disintesiskan dengan menggunakan trietilamina (TEA) (2.506 L/m²·h·bar) nyata sekali bertambah baik berbanding dengan kebolehtelapan air tulen membran TFC (1.110 L/m²·h·bar) dan membran TFN yang disintesiskan tanpa TEA (1.159 L/m²·h·bar). Peningkatan pengangkutan air membran TFN turut dipamerkan oleh fluks air yang lebih tinggi bagi membran TFN berbanding dengan membran TFC dalam penurasan air terhasil sintetik dan sebenar yang mempunyai kepekatan minyak setinggi 500 dan 377.8 ppm masing-masing melalui proses FO. Tambahan pula, membran TFN menunjukkan ketahanan pengampulan dan kestabilan kimia yang lebih baik terhadap air terhasil berbanding dengan membran TFC disebabkan partikel ZIF-8 yang stabil terhadap bahan kimia seperti hidrokarbon. Kesimpulannya, kajian ini berjaya membangunkan membran TFN poliamida/ZIF-8 yang mempunyai kebolehtelapan air yang tinggi, kestabilan kimia yang baik terhadap air terhasil serta penyingkiran minyak setinggi 99 % untuk rawatan air terhasil melalui proses FO.

POLYAMIDE/ZEOLITIC IMIDAZOLATE FRAMEWORK-8/ POLYSULFONE THIN FILM NANOCOMPOSITE MEMBRANE FOR THE TREATMENT OF PRODUCED WATER VIA FORWARD OSMOSIS

ABSTRACT

Produced water treatment using forward osmosis (FO) membrane has faced challenges such as high volume of wastewater and poor membrane chemical stability against produced water. Hence, a polyamide/zeolitic imidazolate framework-8 (ZIF-8) thin film nanocomposite (TFN) membrane with improved water permeability and chemical stability was developed in this work. Nanosized ZIF-8 particles with unimodal size distribution were successfully synthesized at low reaction temperature (5 °C) by using high zinc ion (0.20 M) and 2-methylimidazole (1.60 M) concentrations. Poly(sodium 4-styrenesulfonate) (PSS) coating was found to stabilize the ZIF-8 particles against dissolution in water, which enabled them to be dosed in via aqueous phase during interfacial polymerization. Concurrently, a thin film composite (TFC) membrane with high NaCl selectivity was synthesized by forming polyamide film above a polysulfone (PSf) support membrane via interfacial polymerization. The polyamide film prepared at 3 w/v% m-phenylenediamine concentration, 0.10 w/v% trimesoyl chloride concentration and 60 s reaction duration was thin and dense. It achieved high NaCl selectivity of 0.673 bar⁻¹ as characterized via reverse osmosis filtration test. This TFC membrane was further refined by adjusting PSf/ polyvinylpyrrolidone (PVP) ratio and using co-solvent in preparing the polymer dope to improve support membrane surface wettability and polyamide film formation above it. The support membrane prepared at PSf/PVP ratio of 0.941 without co-solvent had