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PENGUBAHSUAIAN PERMUKAAN KIMIA GRAPHENE 

NANOPLATELETS MELALUI PROSES KARBOKSILASI UNTUK 

MENINGKATKAN KAPASITI PENJERAPAN 

ABSTRAK 

Tujuan tesis ini adalah untuk mengkaji pengubahsuaian permukaan karbon 

melalui pengikatan kimia atau fizikal melalui proses karboksilasi untuk aplikasi 

pemulihan alam sekitar seperti penyingkiran pewarna dari air kumbahan. 

Pemfungsian graphene nanoplatelet (fGNP) diperlukan dalam banyak aplikasi alam 

sekitar dan fungsian yang tepat adalah merupakam pendekatan yang efisien untuk 

meningkatkan keupayaan penjerapan graphene. fGNP adalah antara bahan yang 

menjanjikan untuk penyingkiran pewarna kerana semua karbon nanomaterial ini 

mempunyai luas permukaan spesifik yang tinggi dan mempunyai keupayaan untuk 

mewujudkan interaksi elektrostatik yang kuat dengan pelbagai kumpulan fungsi 

yang mengandungi oksigen dan sistem π-elektron. Kesan fGNP belum dikaji secara 

meluas, dan banyak kumpulan penyelidikan di seluruh dunia hanya memberi 

tumpuan kepada permukaan CNT, graphene, GO dan rGO. Dalam tesis ini, 

pendekatan mudah untuk pengubahsuaian permukaan dan perfungsian nanoplatelet 

graphene dikaji. Pendekatan ini melibatkan fungsian penyebaran serpihan grafena 

dengan jenis asid dan isipadu nisbah volumetrik untuk membuktikan keadaan 

terbaik untuk penyebaran yang lebih besar. Dua jenis asid yang digunakan dalam 

pendekatan ini iaitu asid sulfurik dan asid nitrik. Pengubahsuaian kimia yang 

mudah dengan pengoksidaan asid mendorong penyebaran mudah dalam air dan 

kapasiti penyerapan tinggi metilena biru. Ciri-ciri morfologi, struktur dan bahan 

kimia fGNP dikaji oleh satu set teknik pencirian pelengkap seperti Fourier 
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transformed infrared spectroscopy (FTIR), mikroskop elektron scanning (SEM), 

mikroskop elektron penghantaran resolusi tinggi (HRTEM), analisis 

thermogravimetric (TGA), Spectroscopy Raman dan pengukuran potensi Zeta . 

Kawasan permukaan BET nanoplatelet graphene (GNP) dan fGNP adalah dalam 

lingkungan 115-150 m2 / g. Kesan suhu (30-60 ° C), masa hubungan (5 hingga 55 

minit), dan kepekatan pewarna awal (25-200 mg / L) terhadap prestasi penjerapan 

penyerap telah disiasat. Kapasiti penjerapan maksimum fGNP meningkat daripada 

112 mg / g kepada 151 mg / g pada pH 4 dan 60 ° C. Ini boleh dikaitkan secara 

langsung dengan peningkatan kumpulan berfungsi seperti hidroksil dan karboksil 

pada permukaan adsorben diubah suai yang menghasilkan prestasi penjerapan yang 

lebih tinggi daripada GNP yang diubahsuai. Data keseimbangan yang diperolehi 

dinilai menggunakan isotem, model penjerapan kinetik dan kajian termodinamik. 

Untuk penyerap fGNP1, data isotherm dijelaskan dengan ketara oleh model 

Langmuir. Kajian kinetik mendedahkan bahawa model kadar pseudo-first order 

adalah yang lebih baik dengan data eksperimen. Nilai parameter termodinamik, 

termasuk ΔG0 (9.39,9.21 dan 9.45 untuk suhu 30 ° C, 45 ° C, dan 60 ° C), ΔH0 (8.85 

kJ / mol) dan ΔS0 (-1.57 kJ / mol) . Dari keputusan experiment, fGNP menunjukkan 

bahawa penjerapan MB adalah proses spontan dan endotemik. 
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CHEMICAL SURFACE MODIFICATION OF GRAPHENE 

NANOPLATELETS BY CARBOXYLATION PROCESS FOR ENHANCED 

THE SORPTION CAPACITIES 

ABSTRACT 

The aim of this thesis is to investigate the surface modification of carbon 

through chemical or physical attachment via carboxylation process for 

environmental remediation applications such as dye removal from wastewater. 

Chemical functionalization of graphene is required in many environmental 

applications and proper functionalization is an efficient approach to improve the 

adsorption capacity of graphene. Functionalized graphene nanoplatelet (fGNP)  is 

a promising material for dye removal as this all-carbon nanomaterial possesses high 

specific surface area and has the ability to create a strong electrostatic interaction 

with a variety of oxygen-containing functional groups and π-electron systems. The 

effect of fGNP has not been widely explored, and many research groups worldwide 

have been focusing only on CNT, graphene, GO and rGO surfaces. In this thesis, a 

facile approach for the surface modification and fGNP were investigated. The 

approach involves fGNP with different type of acid and volumetric ratio acid to 

prove the best condition for greater dispersibility. Two type of acid used in this 

approach which are sulphuric acid and nitric acid. Their facile chemically 

modification by acid oxidation induces both facile dispersion in water and high 

adsorption capacity of methylene blue. Morphological, structural and chemical 

properties of the fGNP are deeply investigated by a set of complementary 

characterization techniques such as Fourier transformed infrared spectroscopy 

(FTIR), Scanning electron microscopy (SEM), High-resolution transmission 
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electron microscopy (HRTEM), Thermogravimetric analysis (TGA) , Raman 

Spectroscopy and Zeta potential measurement. The BET surface areas raw GNP 

and functionalize GNP were in the range of 115-150 m2/g. Effects of temperature 

(30-60 °C), contact time (5 to 55 min), and initial dye concentration (25-200 mg/L) 

on adsorption performance of adsorbents were investigated. The maximum 

adsorption capacity of fGNPs increased from 112 mg/g to 151 mg/g at pH 4 and 60 

°C. This can be directly linked to the increased of functional groups such as 

hydroxyl and carboxyl on the surface of modified adsorbents resulting in higher 

adsorption performance of fGNP. The equilibrium data gained were evaluated using 

isotherms, kinetic adsorption models and thermodynamic studies. For fGNP1 

adsorbents, the isotherm data were significantly described by Langmuir model. The 

kinetic study revealed that the pseudo-first-order rate model was in better agreement 

with the experimental data. The values of the thermodynamic parameters, including 

ΔG0 (9.39,9.21 and 9.45 for temperature 30°C., 45°C, and 60 °C respectively), ΔH0 

(8.85 kJ/mol) and ΔS0 (−1.57 kJ/mol). From the results, fGNP showed that MB 

adsorption is a spontaneous and endothermic process.  
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CHAPTER 1 

INTRODUCTION 

This chapter presents the background of the current research works which 

covers topics such as graphene, graphene nanoplate (GNPs) and modification of 

GNP via functionalization and application for dye removal. Separate sections are 

assigned for each of these topics. Then, the impulses of the current work are 

expressed after recognizing the issues faced. A set of objectives are outlined, and the 

contributions of the existing study is described. Finally, the organization of chapters 

in this thesis is given. 

1.1 Graphene and Graphene Nanoplates (GNPs) 

In 2009, Geim and Novoselov, physicists from Manchester University, won 

the Nobel Prize in Physics for pioneering new scientific experiments in the discovery 

of the two dimensional material called graphene (Geim, 2009). Then, many studies 

have been carried out on this almost completely transparent material and researchers 

have tried to understand its unique properties. Graphene is known as a carbon family 

member consisting of sp2-bonded carbon atoms arranged in a two-dimensional 

honeycomb grid (Spyrou and Rudolf, 2014) (Figure 1.1), which is stronger than steel 

and can be a better conductor than any other material. Graphene, with its atomic 

thickness, is the lightest material in the world  (Fuchs and Goerbig, 2008). Graphene 

has excellent mechanical and electrical properties with Young’s modulus of 1.0 TPa 

and a stiffness of 130 GPa (Lee et al., 2008), optical transmittance of 97.7% 

(absorbing 2.3% of white light) (Nair et al., 2008), superior thermal conductivity 

about 3000 - 5000 W.m-1.K-1 (Chhowalla et al., 2013) and good flexibility. Besides, 

it also has an extreme specific surface area of 2600 m2.g-1 (Stoller et al., 2008) and 
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high porosity, making them ideal for adsorption. Besides, the famous forms of 

graphene-based material are graphene layer, turbostratic carbon, bilayer graphene, 

trilayer graphene, multi-layer graphene (MLG), few-layer graphene (FLG), 

exfoliated graphite (EG), graphene oxide (GO), reduced GO (rGO), and GNPs. This 

combination of excellence features has made graphene-based material as a promising 

material for a broad range of applications including biological engineering 

(Edirisinghe, 2018), drug delivery (Liu et al., 2018b), biosensor(Afsahi et al., 2018), 

biological agents (Nayak et al., 2018), tissue engineering (Bai et al., 2018), 

contaminant sensing (Ullah et al., 2018), energy production (Zhou et al., 2018), and 

composite materials (Chan et al., 2018). 

GNPs in one of the graphene derivatives consisted of single to few layers of 

sp2-bonded carbon atoms that interface to form two-dimensional particles with 

nanometer scale . Today, GNPs are among the outstanding materials as they can be 

produced at low cost and meet the necessity of a large specific surface area due to 

the direct exfoliation of inexpensive graphite flakes, e.g. by ultrasonics in acid baths, 

followed by chemical oxidation and reduction of graphite oxide nanoplatelets (Geng 

et al., 2009). GNPs has also recently gained strong attention as a new and ideal 

materials for the detection of environmental pollution involving water treatment 

(Anshuman et al., 2018; Kumar et al., 2019; Kumar et al., 2017), heavy metal ion  

detection (Zhang et al., 2018) and green technology (Li et al., 2018).  
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Figure 1.1 Mother of graphene (Geim and Novoselov, 2010) 

1.2 Modification of graphene 

Graphene exists in various forms (different number of layers, different 

structural groups, functional group and etc.) and graphenic material is employed as 

a general term to design a material within this family of carbon-based 2D materials. 

Graphene or carbon nanotubes (CNTs) can be described as nanoscale and stable 

carbon materials with no functional groups on their surface (Fu and Yang, 2013). 

This gives to both its high hydrophobic character and its inert nature which is 

unfavourable to facile graphene processing required for some applications. Many 

studies on CNTs for environmental applications have been reported during the past 

years. Ibrahim and the co-worker reported that functionalized multi walled CNTs 

(MWCNTs) showed good dispersibility in water and were efficient for adsorption of 

organic pollutants (Ibrahim et al., 2014). Arami and co-workers revealed that the 

adsorption capacity of modified CNTs with cationic surfactants was more significant 
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compared to pristine CNTs. (Arami et al., 2014). In comparison with CNTs, the 

graphene and GNPs have an appropriate high-specific surface area and more 

accessible surface that could facilitate wide environmental remediation 

opportunities. However, it is difficult to integrate graphene or GNPs into materials 

because usually they must be dispersed at a certain stage during the material 

designing. This is the reason why chemical modification of graphene based material 

is an intensive research field. Moreover, according to De Sanctis and the co-workers, 

graphene itself has a weak absorption of light, making it deficient for collecting solar 

light efficiently. Thus, they modified the charge carrier dynamics of graphene by 

functionalizing it as in return it could lead to enhanced photo response and the 

hybridization with nanoparticles; increasing that way, efficiency of photodetection 

(De Sanctis et al., 2018). Graphene has zero band gap and its inertness weakens 

graphene's competitive strength in semiconductor and sensor fields. It is useful for 

functional nanoelectronic devices to open graphene through doping, intercalation 

and striping (Namvari and Namazi, 2015; Zhong et al., 2018; Tománek, 2018). 

Besides, the graphene based material is intensively studied as efficient adsorbent for 

metal ions and dyes, as it has high surface area, high stability and electron rich 

structure. However, they cannot be directly used in environmental medium as it is 

hydrophobic and impermeable to water. Thus, vital steps are acquired to change and 

enhance the sorption ability. To improve the interaction of graphene-based material 

with foreign molecules, it is necessary to modify its surface either by covalent or 

non-covalent functionalization methods (Dong et al., 2013; Boretti et al., 2018; 

Homaeigohar and Elbahri, 2017; Ussia et al., 2018). Covalent functionalization is a 

process for adding new functional groups to the carbon surface, which can usually 

be divided into two main categories. First, carboxyl, hydroxyl and epoxy reactions 
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