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SATU KAJIAN  KOMPREHENSIF   TERHADAP PEMBANGUNAN MODEL 

RANGKAIAN NEURAL UNTUK MERAMAL DOS BAHAN PENGGUMPAL  DAN 

KUALITI AIR TERAWAT DALAM LOJI PERAWATAN AIR  

ABSTRAK 

Penentuan dos bahan penggumpal optimum untuk rawatan air secara tradisinya 

dijalankan menggunakan ujian balang yang merupakan prosedur memakan masa dan tidak 

berupaya untuk bertindak balas terhadap perubahan mendadak dalam kualiti air. Oleh itu, 

teknik pemodelan didorong data seperti rangkaian neural digunakan untuk membangunkan 

model ramalan untuk proses penggumpalan. Dalam kerja ini, tiga rangkaian rangkaian neural 

yang berbeza iaitu rangkaian neural regresi umum (GRNN), rangkaian neural lapisan tunggal 

suap depan dengan mesin pembelajaran melampau (ELM-SLFN) dan rangkaian neural asas 

jejarian dengan mesin pembelajaran melampau (ELM-RBF) telah dibangunkan untuk 

meramalkan dos bahan penggumpal dan prestasi mereka dibandingkan dengan rangkaian 

neural perseptron berbilang lapis (MLP) yang biasa digunakan. Ia menunjukkan bahawa 

model ELM dan GRNN menggunakan usaha dan masa yang lebih rendah untuk latihan 

berbanding dengan MLP. ELM-RBF menunjukkan keseimbangan terbaik antara ketepatan 

ramalan dan keperluan pengiraan. Oleh itu, ELM-RBF telah digunakan untuk 

membangunkan model untuk meramalkan dos bahan penggumpal, kekeruhan air terawat 

(TW) dan sisa aluminium dengan nilai R masing-masing 0.9752, 0.8239 dan 0.9019. 

Parameter input yang diperlukan untuk membangunkan setiap model ditentukan dengan 

menggunakan algoritma carian menyeluruh global kerana ia telah ditunjukkan bahawa pekali 

korelasi Pearson dan analisis komponen utama merupakan teknik yang tidak sesuai untuk 

memilih parameter input untuk bagi kajian ini. Oleh itu, input yang digunakan untuk 

meramalkan dos bahan penggumpal ialah kekeruhan air mentah (RW), warna RW dan alum 



xv 
 

(t-1). Keberkesanan dos bahan penggumpal dan model kualiti TW telah dipertingkatkan 

dengan menggunakan model imputasi dan algoritma genetik. Model imputasi telah 

dibangunkan menggunakan kaedah K-kelompok dengan ketepatan imputasi yang serupa 

dengan peta swaorganisasi, untuk menangani kegagalan perkakasan sensor yang 

menyebabkan masa henti dalam loji rawatan air automatik dan untuk memastikan 

penggunaan model dos bahan penggumpal yang berterusan. Nilai yang hilang dari kekeruhan 

RW dan warna RW dibina semula menggunakan model imputasi dengan nilai R masing-

masing 0.9075 dan 0.8250. Selepas itu, kekeruhan RW dan warna RW yang dibina semula 

digunakan untuk meramalkan dos bahan penggumpal dengan nilai R 0.9742 dan 0.9809 

adalah sangat memuaskan. Manakala GA menaikkan nilai R daripada model kekeruhan TW 

kepada 0.8294. GA meningkatkan keupayaan ELM-RBF untuk mengenal pasti tindak balas 

yang diperlukan dari kekeruhan TW terhadap dos alum. 
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A COMPREHENSIVE STUDY ON DEVELOPING NEURAL NETWORK MODELS 

FOR PREDICTING THE COAGULANT DOSAGE AND TREATED WATER 

QULAITIES FOR A WATER TREATMENT PLANT 

ABSTRACT 

 

Determination of the optimum coagulant dosage for water treatment is traditionally 

carried out using the jar test, which is a time consuming procedure incapable of responding to 

sudden changes in water qualities. Therefore, data driven modeling techniques such as neural 

networks are used for developing predictive models for the coagulation process. In this work, 

three different neural network models, namely, the general regression neural network 

(GRNN), extreme learning machine single layer feed forward neural network (ELM-SLFN) 

and the extreme learning machine radial basis function neural network (ELM-RBF) were 

developed to predict the coagulant dosage, and their performances were compared with the 

commonly used multilayer perceptron neural network (MLP). It was shown that the ELM and 

the GRNN models consumed significantly lesser effort and time for training compared to the 

MLP.  The ELM-RBF demonstrated the best tradeoff between prediction accuracy and 

computational requirement. Therefore, the ELM-RBF was used to develop models for 

predicting the coagulant dosage, treated water (TW) turbidity and residual aluminum with R 

values of 0.9752, 0.8239 and 0.9019 respectively. The input parameters required to develop 

each model was determined using a global exhaustive search algorithm as it was shown that 

the Pearson correlation coefficient and the principal component analysis were not suitable 

techniques for selecting input parameters for this study. Thus, inputs used for predicting the 

coagulant dosage were raw water (RW) turbidity, RW color and alum (t-1).  The 

effectiveness of the coagulant dosage and the TW quality models were improved using an 

imputation model and a genetic algorithm. The imputation model was developed using K-
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means clustering with an imputation accuracy similar to a self-organizing map, to cope with 

failures in hardware sensors causing downtime in fully automated water treatment plants and 

ensure the continual use of the coagulant dosage model. The imputation model reconstructed 

missing values of RW turbidity and RW color with R values of 0.9075 and 0.8250 

respectively. Subsequently, the reconstructed RW turbidity and RW color were used to 

predict the coagulant dosage with R values of 0.9742 and 0.9809 respectively, which are 

highly satisfactory. Meanwhile, the GA improved the R value of the TW turbidity model to 

0.8294. The GA significantly improved the ability of the ELM-RBF to identify the required 

response of TW turbidity to the alum dosage.          
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Project background 

 

Water treatment is carried out by physical separation of solid pollutants and addition 

of measured dosages of chemicals. Maintenance of a water treatment plant requires regular 

determination of operational variables such as flow rates, temperatures, aeration rate and 

required concentration of chemicals. Optimal values for such operational variables, 

depending upon the raw water parameters, are determined via routine experiments, which 

cost chemicals, time and capital. 

 

The coagulation process is a vital stage of water treatment, where minute particulate 

substances, which are responsible for the turbidity and color of raw water, are accumulated to 

form larger removable agglomerates. This is accomplished by the addition of coagulant, the 

dosage of which should be precisely measured in a regular basis to ensure the efficient 

removal of the aforementioned substances. The optimal amount of coagulant is determined 

by the jar test (Joo et al., 2000; Yu et al., 2000; Maier et al., 2004), which is a reactive 

response to changes in treated water qualities. It is carried out by observing critical treated 

water parameters of a series of jars containing equal volumes of raw/waste water, which are 

treated with different concentrations of coagulant. Thus, jar tests regularly consume 

additional costly chemicals. Parameters such as coagulant types, mixing rate and aeration 

level/time can be optimized using the jar tests. Due to time consumed by the experiments, jar 
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tests are incapable of responding to sudden changes of water qualities (Valentin and 

Denoeux, 1999).  

 

Similarly, the Segama water treatment plant treating water from the Segama River 

flowing through the Lahad Datu district, Sabah, in a 24 hour basis, uses jar tests to measure 

the optimal coagulant dosage, and records raw water, process and treated water parameters. 

The primary intention of this study is to develop a model/framework that facilitates 

predicting optimal coagulant dosage for the Segama water treatment plant. 

 

Linear regression, multi parameter regression, non-parametric regression and non-

linear data driven techniques have been utilized to develop predictive models. As coagulation 

is a complex phenomenon that involves several coagulation mechanisms and factors 

influencing the chemistry of the process, it has been pointed out in literature that nonlinear 

data driven models perform better than regression models in predicting the coagulant dosage 

(Yu et al., 2000; Towler et al., 2009; Dharman et al., 2012).  

 

Artificial neural networks (ANNs) are one of nonlinear data driven techniques that 

has been used to develop predictive models for the coagulation process in multiple instances 

(Maier et al., 2004; Wu and Lo, 2008 and 2010; Griffith et al., 2011; Dharman et al., 2012; 

Zangooei et al., 2016, Santos et al., 2017). Development of an ANN involves a series of 

stages that affects the performance and effectiveness of the ultimate model such as data 

preprocessing, input parameter selection and model development. It has been shown by Joo et 

al. (2000) that data preprocessing improves model performance by improving the learning 
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rate and the terminal error in the procedure of neural network training. It had also improved 

the prediction accuracy of the test data set. Data preprocessing is carried out by outlier 

removal and data transformation which is commonly done through data normalization and 

standardization (Maier et al., 2004; Robenson et al., 2009; Dharman et al., 2012; Deng and 

Lin, 2016). The subsequent stage of model development is input parameter selection which 

could be carried out using techniques such as Pearson correlation coefficient, principal 

component analysis, cross correlation and forward regression. 

 

ANNs can be categorized based on the model architecture such as radial basis 

function neural networks (RBF), general regression neural networks (GRNN) and multilayer 

perceptron neural networks (MLP). MLPs are the more commonly used ANN for developing 

predictive models for the coagulation process. However, the best type of neural network for 

this study is yet to be determined based on the tradeoff between prediction accuracy and 

computational requirement.   

  

1.2 Problem statement 

 

An artificial neural network (ANN) model predicting the coagulant dosage is 

developed as an effective replacement to the jar test, which is a time consuming procedure 

incapable of responding to sudden changes in water qualities (Maier et al., 2004; Robenson et 

al., 2009; Santos et al., 2017). The most commonly used type of neural network is the 

multilayer perceptron neural network (MLP). Development of an MLP requires optimizing 

several model parameters such as the number hidden layers, number of hidden neurons in 

each layer, activation functions of each layer, the learning rate and momentum term. Due to 

the iterative learning algorithms used in the MLP, the training process alone consumes a long 
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time. As optimizing each of the above mentioned parameters requires training the model with 

every modification on each model parameter, the long training time is multiplied by a large 

factor. Therefore, a large effort has to be incurred in developing an MLP. Researchers have 

implemented genetic algorithms on the MLP to train the model such that it produces solutions 

at the global optimum (Bagheri et al., 2015; Wibowo et al., 2018; Abdollahi et al., 2019), 

where the MLP still has to be iteratively trained several times to reach the minimum error 

solution. Therefore, implementing additional model improvement measures for the MLP 

requires a significant additional effort due to the time consumed by the iterative training 

procedure of MLPs. 

  

The general regression neural network (GRNN) is an alternative ANN that can be 

used for addressing the shortcomings of the MLP (Kennedy et al., 2015; Kim and 

Parnichkun, 2016). However, there have been instances where the prediction accuracy of 

GRNN was less than the MLP (Kim and Parnichkun, 2016). Studies carried out on 

developing predictive models for the coagulation process have simply used the training data 

set as radial basis centers and determined the smoothing parameter in a subjective manner 

(Heddam et al., 2011; Kennedy et al., 2015; Kim and Parnichkun, 2016), which may have 

affected the performance of the GRNN. Although it has been generally stated that using K-

means clustering improves the GRNN, no study has demonstrated how effectively clustering 

techniques could improve the GRNN in coagulation applications. Additionally, center 

selection techniques such as the orthogonal least squares algorithm have not been 

implemented on the GRNN. Techniques for determining the smoothing parameter such as the 

Gaussian reference rule are yet to be implemented on GRNNs developed for aiding the 

coagulation process. Therefore, it is difficult to select the most suitable center selection 
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technique and smoothing parameter determination technique for coagulation modeling from 

literature.   

 

The extreme learning machine (ELM) neural networks were introduced recently by 

Huang et al. (2004). ELM single layer feed forward neural network (SLFN) was used for 

predicting the coagulant dosage by Deng and Lin (2017), where they demonstrated that the 

ELM-SLFN is a better alternative to the MLP, due to the less computational effort required. 

The only model parameter that requires adjusting is the number of hidden neurons. However, 

the extension of the ELM for the radial basis function (RBF) case has not been implemented 

for predicting the coagulant dosage. It was shown by Huang and Siew (2004) that the ELM-

RBF has high generalization ability and it only needs adjusting the number of radial basis 

centers. Liu and Wan (2015) also proved that the ELM-RBF had a great potential of 

producing universally consistent solutions. Therefore, the ELM-RBF could be offering the 

best tradeoff between prediction accuracy and computational requirement for predicting the 

coagulant dosage. It is also worthy to note that a comparison between GRNN and ELM 

models have not been carried out for predicting the coagulant dosage. Thus, the most suitable 

model for this study is yet to be determined.   

   

In addition to developing models for predicting the coagulant dosage, ANNs could 

also be developed for predicting treated water (TW) qualities to replace expensive hardware 

sensors, avoid lengthy procedures for measuring certain water qualities and for implementing 

an early warning system for critical water qualities that require strict control (Leardi, 2003; 

Maier et al., 2004). However, TW quality models should only be developed for selected 

parameters, in order to avoid incurring additional effort in training unnecessary models. 
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  The selection of an appropriate technique for determining input parameters is an 

important aspect of model development. Most studies on coagulation modeling have 

employed linear techniques such as the Pearson correlation coefficient and the principal 

component analysis for input parameter selection (Lamrini et al., 2005; Wu and Lo, 2008 and 

2010; Zangooie et al, 2016) which are incapable of capturing nonlinear forms of relationships 

occurring in the coagulation process between input variables and output variables (Bowden et 

al., 2005; May et al., 2011). However, nonlinear input parameter selection techniques are 

computationally intensive and are not as simple as linear techniques to be executed. Thus, the 

most effective input parameter selection technique needs to be determined.   

 

When neural network models are developed for aiding the coagulation process, 

additional measures could be orchestrated to cope with foreseeable issues during the 

implementation of the model and to further improve performance if needed. One of the 

foreseeable issues for a fully automated coagulation process is the failure of a hardware 

sensor, which may cause downtime (Newhart et al., 2019) and reduce the effectiveness of the 

coagulant dosage model. Studies have been carried out to develop ‘imputation models’ to 

approximate the missing input from the failed sensor using self-organizing maps (Valentin 

and Denoeux, 2002; Latif and Mercier, 2010; Lamrini et al., 2011; Juntunen et al., 2013). 

However, training the self-organizing map (SOM) with sufficient number of map units 

consumes time. Meanwhile, the genetic algorithm (GA) is a common technique used for 

improving models that are difficult to train (Whitley et al., 1990; Bowden et al., 2004; 

Bagheri et al., 2015). They are mostly implemented on MLPs for achieving the global 

optimum solution. Although GAs have been used to successfully improve the performance of 

models, GAs are considered to be time consuming due to its slow rate of convergence and the 

generally long training time required by MLPs. Implementing GAs on other types of ANNs 
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such as the GRNN and ELM-ANNs (Qinfeng, 2016) are bound to consume less time as their 

training processes are not iterative. However, the use of genetic operators that unnecessarily 

cause the algorithm to converge slowly may reduce the advantage of using GRNNs/ELM 

ANNs. Thus, the aforementioned additional measures which are developed for increasing the 

effectiveness of the models may end up reducing the effectiveness of the models due to their 

time consuming nature.    

 

1.3 Research objectives 

 

The objectives of this work are as follows.   

1. To test the reliability of commonly used linear input parameter selection techniques in 

developing predictive models for the Segama water treatment plant.  

2. To determine the best neural network model among the MLP, GRNN, ELM-SLFN 

and ELM-RBF in predicting the coagulant dosage, TW turbidity and residual 

aluminum. 

3. To improve the effectiveness of the neural network models developed using an 

imputation model and a genetic algorithm with minimal effort.  
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