CARBON DIOXIDE SEPARATION FROM BINARY GAS MIXTURE CONTAINING HIGH CARBON DIOXIDE CONTENT BY PRESSURE SWING ADSORPTION UTILIZING ORGANIC AND INORGANIC ADSORBENTS

AMAN ABDULLAH

UNIVERSITI SAINS MALAYSIA

CARBON DIOXIDE SEPARATION FROM BINARY GAS MIXTURE CONTAINING HIGH CARBON DIOXIDE CONTENT BY PRESSURE SWING ADSORPTION UTILIZING ORGANIC AND INORGANIC ADSORBENTS

by

AMAN ABDULLAH

Thesis submitted in fulfillment of the requirements for the degree of

Master of Science

ACKNOWLEDGEMENT

I would gladly like to convey my gratitude to my main supervisor, Prof. Dr.

Mohd Roslee Othman and Dr. Iylia Binti Idris for their assistance and proper

guidance for this research project.

Millions of thanks to my family for their love and support throughout this

research especially to my spouse, Dr. Nur Hidayah Binti Abdull Jabbar to motivate

me to further my research studies and to have strong believe in my academic passion.

I would like to thank the university staffs, lab assistants and library assistants

for resources and guidance and provides necessary software and materials for my

research project.

Also, I would like to express my gratitude to my colleagues especially to Ili

Khairunnisa Binti Shamsudin for helping me out in research discussions and being

supportive all the time.

I am gratefully acknowledging the support from the Universiti Sains Malaysia

(USM) through the Bridging (304.PJKIMIA.6316102) and Research University

(1001.PJKIMIA.8014115) grants. I acknowledge the support from the Fundamental

Research Grant Scheme (FRGS) for Geran Sanjungan Penyelidikan (GSP), Ministry

of Higher Education (MOHE), Malaysia.

Aman Abdullah

June 2019

ii

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	X
LIST OF SYMBOLS	xi
ABSTRAK	xii
ABSTRACT	xiv
CHAPTER ONE: INTRODUCTION	1
1.1 Research Background	1
1.2 Problem Statement	4
1.3 Objectives of Research Work	6
1.4 Scope of Study	6
CHAPTER TWO: LITERATURE REVIEW	7
2.1 Adsorption	9
2.2 Pressure Swing Adsorption	10
2.3 Adsorbent	12
2.3.1 Activated Carbon	13
2.3.2 Zeolite	14
2.3.3 Zirconium-Benzene Dicarboxylate (UiO-66) Adsorbent	16
2.3.4 Palm Kernel Shell (PKS)	17
2.3.5 Kenaf	18

2.4	Breakt	through Study	18
2.5	Effect	of Adsorption Time and Blowdown Time in PSA	19
СН	APTE	R THREE: MATERIALS AND METHODOLOGY	21
3.1	Resear	rch Methodology	21
3.2	Materi	als and Chemicals Required	23
3.3	Prepar	ration of Synthetic Natural Gas with High CO ₂ Content	23
3.4	Equip	ment Required	24
3.5	Adsor	bent Preparation	24
	3.5.1	Zeolite 5A	25
	3.5.2	Zirconium-Benzene dicarboxylate (UiO-66)	25
	3.5.3	Activated Carbon (Kenaf)	25
	3.5.4	Activated Carbon (Palm Kernel Shell)	26
3.6	Physic	ochemical Characterization	26
	3.6.1	Crystallinity and Atomic Spacing Analysis	27
	3.6.2	Surface properties and Pore Size Analysis	27
	3.6.3	Structural Surface and Pore Arrangement Analysis	28
	3.6.4	Energy Dispersive X-Ray (EDX) Analysis	28
	3.6.5	Particle Size Analysis	28
3.7	Breakt	through Study	29
	3.7.1	Procedure of Breakthrough Studies	29
		3.7.1 (a) Start-up Procedure	29
		3.7.1 (b) Experiment Process	31
3.8	Pressu	re Swing Adsorption Study	31
	3.8.1	Process procedures / Steps	32
		3.8.1 (a) Step 1: Pressurization/Blowdown	32
		3.8.1 (b) Step 2: Adsorption/Blowdown	33

		3.8.1 (c) Step 3: Depressurization/Equalization	33
		3.8.1 (d) Step 4: Blowdown/Pressurization and Adsorption	33
		3.8.1 (e) Step 5: Equalization/Depressurization	33
3.9	Data C	Collection and Validation Method	34
СН	APTE	R FOUR: DISCUSSION OF RESULTS AND ANALYSIS	36
4.1	Charac	cterization of Adsorbents	36
	4.1.1	Crystallinity and Atomic Spacing Analysis	36
	4.1.2	Brunauer–Emmett–Teller (BET) Analysis	39
	4.1.3	Particle Size Distribution (PSD) Analysis	43
	4.1.4	Scanning Electron Microscope (SEM) Analysis	46
4.2	Breakt	through Study	51
	4.2.1	Adsorbents Breakthrough Analysis	51
		4.2.1 (a) UiO-66 Breakthrough Analysis (1-3 Bar)	51
		4.2.2 (b) Zeolite 5Å Breakthrough Analysis	55
		4.2.2 (c) Kenaf Breakthrough Analysis	55
		4.2.2 (d) Palm-Kernel Shell Breakthrough Analysis	56
4.3	Pressu	re Swing Adsorption Analysis	57
	4.3.1	UiO-66 Adsorbent	57
	4.3.2	Zeolite 5A Adsorbent	59
	4.3.3	Kenaf Adsorbent	60
	4.3.4	Palm Kernel Shell (PKS) Adsorbent	62
4.4	PSA R	Result Summary	63
СН	APTE	R FIVE: CONCLUSION AND RECOMMENDATIONS	66
5.1	Conclu	usion	66
5.2	Recon	nmendations	67

REFERENCES 68

APPENDICES

Appendix A: Calibration Curve

Appendix B: Equipment and Apparatus

Appendix C: Experiment Results Summary

LIST OF PUBLICATIONS

LIST OF TABLES

	Page
Table 1.1 List of high CO ₂ content gas fields in Malaysia (Darman & Harun, 2006)	2
Table 2.1 Result of comparison of the selection criteria necessary for CO ₂ capture	15
Table 3.1 List of materials and chemicals	23
Table 3.2 List of equipment required and their applications	24
Table 3.3 List of equipment used in breakthrough study	29
Table 3.4 List of GC setup settings	30
Table 3.5 Adsorption bed configuration parameters	31
Table 4.1 Physical properties of adsorbents	39
Table 4.2 Summary results of particle size distribution analysis	46
Table 4.3 Overall summary of average and highest purity and recovery of	
CH ₄ and CO ₂ for their corresponding pressurization time. Feed	
mixture contained 30% CH ₄ and 70% CO ₂ .	64

LIST OF FIGURES

	Page
Figure 2.1 Adsorption system consisting of a two component adsorptive gas, adsorbate and the adsorbent. (Keller & Staudt, 2005)	10
Figure 2.2 Schematic design of the first two-column pressure swing adsorption—unit and valve sequencing for different steps in the cycle. (Grande, 2012)	12
Figure 2.3 Schematic diagram of pore structure of adsorbent. (Suresh Kumar <i>et al.</i> , 2017)	13
Figure 2.4 Schematic diagram of Zeolites structures	14
Figure 2.5 Cluster structure of UiO-66 adsorbent with its linker 1,4-benzene-dicarboxylate (Cavka <i>et al.</i> , 2008)	16
Figure 2.6 Solid concentration profile at different times (Dutta, 2007)	19
Figure 3.1 General Research Flow Diagram	22
Figure 3.2 Pressure swing adsorption flow integrated design (FID)	30
Figure 3.3 Overall Pressure Swing Adsorption cycle with equalization steps	32
Figure 4.1 XRD Analysis results of Zeolite 5A	37
Figure 4.2 XRD Analysis results of Kenaf	37
Figure 4.3 XRD Analysis results of UiO-66	38
Figure 4.4 XRD Analysis results of PKS	38
Figure 4.5 Nitrogen sorption isotherms for Kenaf	40
Figure 4.6 Nitrogen sorption isotherms for UiO-66	41
Figure 4.7 Nitrogen sorption isotherms for PKS	41
Figure 4.8 Nitrogen sorption isotherms for Zeolite 5A	42
Figure 4.9 Particle size distribution analysis results of Kenaf	43
Figure 4.10 Particle size distribution analysis results of UiO-66	44
Figure 4.11 Particle size distribution analysis results of PKS	45
Figure 4.12 Particle size distribution analysis results of Zeolite 5A	45
Figure 4.13 SEM of Kenaf at different magnifications of (A) 2000x, (B) 5000x and (C) 10000x	47

Figure 4.14 SEM of UiO-66 at different magnifications of (A) 5000x, (B) 10000x and (C) 20000x	48
Figure 4.15 SEM of PKS at different magnifications of (A) 1000x, (B) 3000x and (C) 5000x	49
Figure 4.16 SEM of Zeolite 5A at different magnifications of (A) 1000x, (B) 5000x and (C) 10000x	50
Figure 4.17 Breakthrough Analysis of UiO-66 at 1 Bar	52
Figure 4.18 Breakthrough Analysis of UiO-66 at 2 bars	53
Figure 4.19 Breakthrough Analysis of UiO-66 at 3 bars	53
Figure 4.20 Breakthrough Profile of UiO-66 at 3 Bar	54
Figure 4.21 Breakthrough Profile for Zeolite 5A at 3 Bar	55
Figure 4.22 Breakthrough Profile for Kenaf 250µm at 3 bars	56
Figure 4.23 Breakthrough profile for PKS at 3 Bar	57
Figure 4.24 CH ₄ recovery and purity at adsorption line (UiO-66) at 3 bars	58
Figure 4.25 CO ₂ recovery and purity at blowdown line (UiO-66) at 3 bars	58
Figure 4.26 CH ₄ recovery and purity at adsorption line (Zeolite 5A) at 3 bars	59
Figure 4.27 CO ₂ recovery and purity at Blowdown Line (Zeolite 5A) at 3 bars	60
Figure 4.28 CH ₄ recovery and purity at adsorption line (Kenaf) at 3 bars	61
Figure 4.29 CO ₂ recovery and purity at blowdown line (Kenaf) at 3 bars	61
Figure 4.30 CH ₄ recovery and purity at adsorption line (PKS) at 3 bars	62
Figure 4.31 CO ₂ recovery and purity at blowdown line (PKS) at 3 bars	63
Figure 4.32 CH ₄ recovery and purity comparison	65
Figure 4.33 CO ₂ recovery and purity comparison	65

LIST OF ABBREVIATIONS

NBP National Balancing Point

LNG Liquefied Natural Gas

BABIU Bottom Ash Upgrading

AwR Alkaline with Regeneration

HPWS High Pressure Water Scrubbing

As Chemical Scrubbing

Cry Cryogenic Separation

OPS Organic Physical Scrubbing

MS Membrane Separation

UiO66 Zirconium 1,4-dicarboxybenzene MOF

BDC 1,4-benzenedicarboxylic acid

PSA Pressure Swing Adsorption

TSA Temperature Swing Adsorption

VPSA Vacuum Pressure Swing Adsorption

ppm Parts Per Million

MOF Metal organic framework

CCD Central Composite Design

RSM Response Surface Methodology

ANOVA Analysis of variance

BET Brunauer–Emmett–Teller

EDX Energy dispersive x-ray

SCCM Standard cubic centimeter per minutes

SEM Scanning electron microscope

XRD X-ray diffractometer

GC Gas Chromatograph

IUPAC International Union of Pure and Applied Chemistry

LIST OF SYMBOLS

Å Interatomic distance

 $SA_{BET} \hspace{1cm} Specific \ surface \ area \ (Brunauer-Emmett-Teller)$

tb Breakthrough time

ts Saturation time

 Θ Scattering angle

V Voltage

PEMISAHAN KARBON DIOKSIDA DARIPADA GAS CAMPURAN BINARI YANG MEMPUNYAI KANDUNGAN KARBON DIOKSIDA YANG TINGGI MELALUI KAEDAH PENJERAPAN AYUNAN TEKANAN MENGGUNAKAN PENJERAP YANG ORGANIK DAN BUKAN ORGANIK

ABSTRAK

Proses penkayaan dan pemisahan gas karbon dioksida telah dikaji selama beberapa dekad dan pelbagai kaedah sedang digunakan dalam industri untuk mengurangkan dan menahan gas CO₂ akibat ciri-ciri pengakisan dan kesan-kesannya negatif terhadap alam sekitar. Gas rumah hijau seperti metana (CH₄) dan CO₂ adalah gas yang paling banyak dihasilkan dari telaga gas asli yang mempunyai kesan negatif yang signifikan terhadap pemanasan global. Dalam kajian ini, kaedah penjerapan ayunan tekanan digunakan sebagai mekanisme untuk menawan dan mengembalikan gas binari melalui proses pemisahan gas oleh penjerap. Penjerap yang digunakan dalam kajian ini ialah Zeolite 5A, Zirconium-benzene dicarboxylate (UiO-66) dan karbon teraktifk daripada Kenaf dan Kulit isirong sawit (PKS) menggunakan tahap tekanan sehingga 3 Bar. Penjerap telah disedia dan dicirikan menggunakan analisa Pembelauan Sinar-X (XRD), analisa Brunauer-Emmett-Teller (BET), analisa Mikroskopi Elektron Imbasan (SEM), analisa X-Ray Tenaga Sebaran (EDX) dan analisa saiz partikel. Pemilihan penjerap dan keupayaannya diuji melalui gas campuran binari sebanyak 70% CO₂ dan 30% CH₄ melalui kajian terobosan menggunakan cara volumetrik. Maklumat experimen telah dikumpulkan dengan memanipulasi julat masa penyerapan dan pelepasan sehingga 4 minit. Hasil kajian menunjukkan bahawa gas CO₂ mempunyai tarikan tinggi berbanding dengan CH₄ untuk penjerap-penjerap ini. Masa tepu penjerap merosot apabila peningkatan tekanan berlaku dan sebaliknya. Maklumat eksperimen menggambarkan bahawa karbon teraktifk yang dihasilkan daripada PKS menghasilkan ketulenan dan pemulihan gas CH₄ dan CO₂ yang terbaik. Kadar ketulenan CH₄ dan CO₂ berjaya mencapai sekitar 85% dan 94% manakala pemulihan CH₄ dan CO₂ adalah hampir 94% dan 89%. Sebaliknya, penjerap yang lain mencapai masa tepu dalam waktu yang sangat singkat dan kurang berkesan untuk pemisahan kandungan karbon dioksida yang tinggi.

CARBON DIOXIDE SEPARATION FROM BINARY GAS MIXTURE CONTAINING HIGH CARBON DIOXIDE CONTENT BY PRESSURE SWING ADSORPTION UTILIZING ORGANIC AND INORGANIC ADSORBENTS

ABSTRACT

Carbon dioxide (CO₂) gas enrichment and separation process have been researched for decades and various methods are being applied in industries to reduce and resist CO₂ gas due to its corrosive characteristics and negative effects on environment. Greenhouse gases such as methane (CH₄) and CO₂ are the most abundant in natural gas wells. They contribute significant negative effects to global warming. In this research, Pressure swing adsorption method was utilized as a mechanism to capture and recover binary gas via gas separation process by adsorbents. The adsorbents used in this study were Zeolite 5A, Zirconium-benzene dicarboxylate (UiO-66) and activated carbons made from Kenaf and palm kernel shell (PKS) within the pressure differences of up to 3 bars. The adsorbents were prepared and characterized using X-Ray Diffraction (XRD) analysis, Brunauer-Emmett-Teller (BET) analysis, Scanning Electron Microscope (SEM) analysis, Energy Dispersive X-Ray (EDX) analysis and particle size distribution analysis. Adsorbents selection and their capability were tested using binary mixture gas of 70% CO₂ and 30% CH₄ via breakthrough studies using volumetric method. The experimental data were collected by manipulating the adsorption and desorption time ranging up to 4 minutes. The results show that CO₂ gas had higher affinity than CH₄ for these adsorbents. Adsorbent saturation period declined towards increasing pressure and vice versa. Experimental data showed that activated carbon made from palm kernel shell yielded the optimum purity and recovery of CH_4 and CO_2 gases. Purity of CH_4 and CO_2 of 85% and 94% respectively were successfully achieved at recovery of CH_4 and CO_2 of 94% and 89% respectively. The other adsorbents were saturated quickly and less effective for high carbon dioxide content separation.

CHAPTER ONE

INTRODUCTION

Chapter one introduces the overview of this research and how pressure swing adsorption (PSA) is significant for the capture of carbon dioxide (CO₂) gas for biogas upgrading. In general, this chapter outlines the research background of raising price of natural gas, environment problems and pressure swing adsorption for biogas upgrading, the problem statement and objectives of this study.

1.1 Research Background

Development of high CO₂ offshore gas fields reportedly significant challenges for all exploration and production (E&P) companies worldwide. PETRONAS reported that Malaysia has offshore gas field with high CO₂ content (Darman & Harun, 2006). High CO₂ content gas reservoirs make most of the gas field development uneconomical and it has remained undeveloped. As a developing country, Malaysia's resources must be developed timely to sustain supply to meet the increasing gas demand. In addition, the development of these high CO₂ gas fields requires prudent management of CO₂ capture, transportation, and storage and utilization to enable commercialization of these gas field.

Table 1.1 shows the list of high CO₂ content gas fields which range between 28 to 87 percentage of CO₂ content. The highest CO₂ content recorded as 87 percentage in J5 field from Sarawak. These high CO₂ content fields are not developed due to technology and facilities restrictions to deal with very high flow rate. In addition, capital expenses are astronomical to develop such large footprints and massive CO₂ separation requires sustainable production methods. Because, high CO₂ fields requires high power and compression ratio with available current technology which would add more cost for gas separation and transportation.

Table 1.1: List of high CO₂ content gas fields in Malaysia (Darman & Harun, 2006)

		Peninsular	Malaysia		
Holder	Field	Total EUR (TSCF)	EUR Net of CO ₂ (TSCF)	CO ₂ Content	CO ₂ Volume (TSCF)
PETRONAS	Bujang	1.47	0.5	66%	0.97
PETRONAS	Sepat	1.20	0.48	60%	0.72
PETRONAS	Noring	0.58	0.23	60%	0.35
PETRONAS	Inas	1.04	0.42	60%	0.62
PETRONAS	Tangga Barat	0.33	0.22	32%	0.11
PCSB	Ular	0.14	0.07	50%	0.07
PCSB	Gajah	0.12	0.06	50%	0.06
PCSB	Bergading	1.36	0.82	40%	0.54
PCSB	Beranang	0.08	0.06	28%	0.02
ЕМЕРМІ	Palas NAG	0.38	0.2	46%	0.18
TOTAL		6.70	3.06		3.64
		Saraw	/ak		
Holder	Field	Total EUR (TSCF)	EUR Net of CO ₂ (TSCF)	CO ₂ Content	CO ₂ Volume (TSCF)
PETRONAS	K5	25.65	7.70	70%	17.95
PETRONAS	J5	5.37	0.70	87%	4.67
PETRONAS	J1	1.43	0.59	59%	0.84
PETRONAS	T3	1.04	0.39	62%	0.65
PETRONAS	Tenggiri Mrn.	0.33	0.18	47%	0.15
TOTAL		33.82	9.56		24.26

CO₂ is one of the major greenhouse gases, which contributes to global warming effect. The CO₂ emission to the atmosphere has been recognized to contribute to global warming (Zangeneh *et al.*, 2011). Carbon dioxide are released from natural and human sources. Carbon dioxide release from natural source is almost 20 times greater than the sources due to human activity; however, by years natural sources are overtaken by anthropogenic sources (Thiruvenkatachari *et al.*, 2009). The CO₂ released by human source is through the combustion of fossil fuels such as coal, natural gas or petroleum, and industrial processes such as power plants, oil refining and the production of cement, iron, and steel (Dantas, et al., 2011). Carbon dioxide has already been used in petrochemical industries for production of limited chemicals such as urea (Zangeneh *et al.*, 2011). Since the beginning of the

industrial age in ca. 1800, the CO₂ concentration in atmosphere has increased from 280 to 390 ppm in 2010. Carbon capture and storage (CCS) will play a crucial role to attain the required greenhouse gas (GHG) emissions reduction (Riboldi & Bolland, 2016).

CCS can be defined as the separation and capture of CO₂ produced at stationary sources, followed by transport and storage in geological reservoirs or the ocean (Hauchhum & Mahanta, 2014). There are three major approaches for CCS: post-combustion capture, pre-combustion capture and oxyfuel process. In pre-combustion, the fossil fuel is reacted with air or oxygen and is partially oxidized to form CO and H₂ (syngas). Then in a gasification reactor, it is reacted with steam to produce a mixture of CO₂ and more H₂. CO₂ is then separated and resulting in a hydrogen-rich fuel which can be used in many applications. Oxy-combustion is when oxygen is used for combustion instead of air, which results in a flue gas that consists mainly of pure CO₂ and is potentially suitable for storage. The post combustion capture is based on removing CO₂ from flue gas after combustion. Instead of being discharged directly to the atmosphere, flue gas is passed through equipment which separates/captures most of the CO₂ (Dantas et al., 2011).

Post-combustion capture offers some advantages as existing combustion technologies can still be used without radically change them. This makes post-combustion capture easier to implement as a retrofit option (to existing power plants) compared to the other two approaches. Therefore, post combustion capture is probably the first technology that will be deployed in massive scales (Wang *et al.*, 2011).

Among the various separation technologies such as absorption, adsorption, cryogenic, membrane and micro algal bio-fixation, adsorption is considered as a competitive solution. Its major advantage is the ease of the adsorbent regeneration by

thermal or pressure modulation (Thiruvenkatachari *et al.*, 2009). Flue gases of current power plants are a mixture of N₂, O₂, CO₂, SO₂, NO₂ and water plus other minor contaminants. The concentration of CO₂ in the flue gas is typically only 10 to 15% (around 12%) depending on the fuel used. Flue gases are normally at atmospheric pressure, but the temperatures might be between 320 K and 400 K, depending on the extent and type of contaminant removal. The flue gas conditions have created many problems for CO₂ capture (Álvarez-Gutiérrez *et al.*, 2017).

In addition to cryogenic process, absorption and membrane technology, adsorption is a separation technology that has the potential to reduce the cost and energy of post-combustion capture compared to other technologies. Adsorption processes for gas separation via selective adsorption on solid media are also well-known, and it can produce high purity streams with low energy consumption (Yang, 1997).

Several adsorption processes are used commercially for adsorbent process, including pressure swing adsorption (PSA), vacuum pressure swing adsorption (VPSA), and thermal or temperature swing adsorption (TSA). Some research works have been done using these processes on different types of adsorbent materials. Latest developments have proven that PSA is a promising option for CO₂ separation due to its ease of applicability over a relatively wide range of temperature and pressure conditions, its low energy requirements, and its low capital investment cost (Agarwal *et al.*, 2010)

1.2 **Problem Statement**

Almost 85% of the total world demand for energy is supplied by thermal power plants powered by fossil fuels, including coal, oil and gas. These fossil fuels account for about 40% of total CO₂ emissions (Metz et al., 2005).

The oil and gas industries are conducting many researches addressing the CO₂ concern as a threat of corrosion since 1940s via studies of carbon-methane (Unruh & Katz, 1949). An increase of pressure and temperature significantly increases the rate of corrosion and they could damage pipelines especially steel. Carbon dioxide have several reactions in the oil and gas field such as forming carbonic acid (H₂CO₃) while reacts with water and it also can reacts with minerals from reservoir. In carbonate reservoir, the reactions are relatively rapid whereas in silicate reservoirs its reactions are much slower and sometimes the CO₂ been trapped and being mineralized under high pressure (Overview of Greenhouse Gases, 2018).

Natural gas field also contains other compounds such as Sulphur dioxide (SO₂), water vapor (H₂O) and carbon compounds. Therefore, the most unwanted gas compounds which are corrosive and hazardous need to be controlled and removed from the early stage of gas processing system to avoid any major issues. In this case, CO₂ must be removed or reduced to optimum level from the overall amount of production via effective methods. Currently, Monoethanolamine (MEA) absorption method has been used by oil and gas to restrict the CO₂ from causing the problems.

The industries captured CO₂ is then used for enhanced oil recovery by injecting the gas into the reservoir for gas uplifting and reservoir pressure stabilization. Even though it is economical to reuse the produced gas such as CO₂ as injection gas, the purification using the current MEA absorption process for CO₂ gas is costly and complex. Therefore, separation method by adsorption should be effective and reliable for purifying, collecting and capture of CO₂ gas. Pressure swing adsorption method would be an effective way to capture and purify natural gases by selecting the appropriate adsorbents. This research is performed to study the effectiveness of PSA for CO₂ separation from high CO₂ content natural gas.

1.3 Objectives of Research Work

- 1. To analyze the organic and inorganic adsorbents for their physical characteristics.
- To determine the breakthrough analysis of the adsorbents behaviour towards high CO₂ content natural gas.
- 3. To evaluate the effectiveness of the adsorbents for gas separation from high CO₂ content natural gas through PSA application.

1.4 Scope of Study

In this research, the focused area was pointed in using high content of CO₂ for binary gas separation. Previous findings show that PSA capability were not efficient if the CO₂ composition exceeds more than 50% and it would be causing troublesome to equipment. However, high CO₂ content separation performance can be achieved effectively by selecting suitable adsorbents and efficient methods. There are some limitations available in this research due to availability of equipment and technology. The maximum pressure used in this research were below 5 bar due to capability of equipment and prevent them from gas leaking. Maximum mixed gas flowrate controlled at 500 SCCM for testing binary gas. The sample used in this research weighed about 2 to 4 grams for each column. However, all the calculations were corrected for amount per gram for comparison purposes. Besides that, Gas Chromatography has its delaying period to synthesize results where the results only tend to be projected to that period frame and not able to test at any time randomly. All these limitations were considered while preparing results and calculations to avoid errors.

CHAPTER TWO

LITERATURE REVIEW

Chapter two briefly presents the preceding findings and reviews available from credible scientific records and references that are related to this research topic. In general, this chapter outlines the overview of natural gas, adsorption and its significance, pressure swing adsorption (PSA) and adsorbents. Then, a review on breakthrough studies involving organic and inorganic adsorbents were presented to signify the importance of uses in this research. In addition, an extensive review of significance and PSA were presented covering optimization and effects of the selected adsorption process variables.

The extraction of oil production from the reservoir is not an easy process due to various factors including reservoir pressure changes, multi-phase flow production, petrophysical properties and well behavior. At one stage, the production recovery for mature wells declined significantly and may cause the well to be idle or restrict the oil from flowing to the surface. Therefore, recovery system plays an important role to extract optimum amount of resources from the reservoir by altering the flow assurance and improve the reservoir properties. This phase is called as tertiary phase. The tertiary phase is also known as Enhanced Oil Recovery (EOR) phase (Olarjire, 2014).

EOR is a collection of methods that allow for more effective oil extraction when the primary and secondary phases are not sufficient. It is also useful in wells that contain heavier oil that is evidently more difficult to extract. Typical EOR methods can yield up to three times more oil than primary or secondary phase methods. The most popular EOR methods available in industry are thermal recovery,

chemical injection, and gas injection. Chemical injection has various methods which includes the uses of CO₂, polymer and surfactants (Zerpa *et al.*, 2005).

The utilization of CO₂ by means of CO₂ injection after water-flooding is an EOR method that is of great potential in reducing residual oil saturation in oil reservoirs. It has been approximated that CO₂ flooding would produce an additional 7 to 15% of the initial oil in place (Matthiasen, 2003). CO₂ has been used for decades in EOR to liberate residual oil, including water-alternating-gas (WAG) operations (Sohrabi et al., 2004). However, there is still a need for improved practices in EOR because significant amount of oil is still left behind, even after EOR attempts (Maugeri, 2004).

CO₂ has built a reputation as being one of the main concerns worldwide in the recent years due to the increasing amount of greenhouse gases in the atmosphere as well as issues related to global warming which poses harmful effects to the environment. The utilization of CO₂ for a good cause such as in this proposed research for oil recovery would hopefully be of some help in battling the issues caused by CO₂. Carbon capture and storage (CCS), as means of storing the CO₂ for useful purposes such as for use in water aquifers, has also been researched with great effort in recent years (Ntiamoah *et al.*, 2015).

CO₂ is a corrosive gas which affects many facilities while producing oil through EOR especially pipelines and trunk lines. Well producing CO₂ needs corrosive inhibitors to suppress the negative effects. However, nowadays application of CO₂ in EOR to enhance the production is more ideal for wells which has a pressure greater than minimum miscibility pressure (MMP) and its typically about deeper than 2500ft. Meanwhile, EOR application using CO₂ from natural gas reduces the burning of unwanted gas which is considered environmentally friendly in some