MODELING AND CONTROL OF V-GROOVE

ROTARY IMPACT DRIVER

LEONG CHI HOE

UNIVERSITI SAINS MALAYSIA

2020

MODELING AND CONTROL OF V-GROOVE ROTARY IMPACT DRIVER

by

LEONG CHI HOE

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

April 2020

ACKNOWLEDGEMENT

This project would not have been possible without the support of many people. Many thanks to my adviser, Assoc. Prof. Ir. Dr. Rosmiwati Mohd. Mokhtar, who read my numerous revisions and helped to improve it to what it is. Also, thanks to my project leader and research members, Dr. Leow Cheah Wei, Dr. Nur Syazreen Ahmad, and Prof Ir. Dr. Mohd Rizal Arshad, whom they have offered me guidance and support. Thanks to the Universiti Sains Malaysia, to Collaboration Research in Engineering Science and Technology (CREST) and to Bosch Power Tool Engineering Sdn. Bhd. for providing me with the financial, the lab facilities, the software and the material means to complete this project. And finally, thanks to my wife and son, parents, and numerous friends who endured this long process with me, always offering support and love.

TABLE OF CONTENTS

ACKNO	OWLEDGEMENT	i
TABLE	OF CONTENTS	iii
LIST O	F TABLES	vii
LIST O	F FIGURES	ix
LIST O	F ABBREVIATIONS	xviii
LIST O	F SYMBOLS	xix
ABSTR	AK	xxiii
ABSTR	ACT	xxiv
СНАРТ	TER ONE: INTRODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	7
1.3	Objectives	11
1.4	Research Scope	11
1.5	Thesis Outline	13
СНАРТ	TER TWO: LITERATURE REVIEW	14
2.1	Introduction	14
2.2	Impact Driver Review	14
2.3	Impact Driver Application	15
2.4	Software Advancement in Impact Rotary Tool	17
2.5	Impact Driver Model	
2.6	Drill Driver Model	40

2.7	Cor	ntact and Friction Model	42
	2.7.1	Friction Torque on External Load Model	45
2.8	Тур	be of Motor and Controller Used in Power Tool	47
2.9	Tes	t Methods for Impact Driver	53
	2.9.1	Disc Spring Setup Method	54
	2.9.2	Bolt Threaded Fasteners Setup Method	58
	2.9.3	Influence of Mechanical Coupler and Inertia	60
2.10) Cha	apter Summary	65
СН	APTER	THREE: METHODOLOGY	67
3.1	Intr	oduction	67
3.2	Ove	erall Research Implementation	67
3.3	Loa	ad Characterization	70
	3.3.1	Mechanical Coupler Setup	70
	3.3.2	Static Load – Hard Joint	73
	3.3.3	Dynamic Load – Soft Joint	74
3.4	Imp	pact Driver Model Development	79
	3.4.1	World Frame Subsystem	80
	3.4.2	Impact Mechanism Subsystem	80
	3.4.3	Load Case Subsystem	91
	3.4.4	Drive Subsystem	95
	3.4.5	Impact Driver Control System	99
3.5	Sof	tware in the Loop Simulation	111
3.6	Rea	al Time Simulation	112

	3.6	6.1 Model Preparation for Benchmark	
	3.6	6.2 Real Time Model Preparation	115
3.7		Hardware-in-The-Loop Simulation	117
3.8		On-Target Rapid Control Prototype	118
3.9		Chapter Summary	124
CHA	АРТ	TER FOUR: RESULTS AND DISCUSSIONS	125
4.1		Introduction	125
4.2		Load Characterization Observation	125
	4.2	2.1 Mechanical Coupler Measurement and Result	125
	4.2	2.2 Static Load Measurement and Result	131
	4.2	2.3 Dynamic Load Measurement and Results	142
4.3		Impact Driver Model	146
	4.3	3.1 Results from Physical Modelling of Impact Mechanism	146
	4.3	3.2 Results from Physical Modelling of Motor Drive System	147
	4.3	3.3 Results from Model-in-the-loop Simulation	148
4.4		Results of System Synchronized Control	150
4.5		Results of Precise Screwing Control	151
4.6		Results of Low Vibration Control	157
4.7		Results of Torque Control	157
4.8		Software in the Loop Simulation Results	161
4.9		Hardware in the Loop Simulation Results	163
4.10		Results of Drill Driver Model	
4.11		Deployment to Real-time Target	

4.12	Hard	ware-in-the-Loop Results	209
	4.12.1	Prototype on Precision Screwing Control Model	210
	4.12.2	Prototype on Torque Control Model	211
4.13	Chap	oter Summary	212
CHA	APTER F	IVE: CONCLUSION AND FUTURE WORKS	215
5.1	Conc	lusion	215
5.2	Reco	ommendation for Future Works	217
REF	ERENCE	ES	219
LIST	Г OF PUE	BLICATION	
APP	ENDICE	S	

LIST OF TABLES

Page
Table 1.1: Features with enhanced usability based on customization
Table 1.2: Features that reduced risk of damage or injury
Table 1.3: Features that increased user awareness and convenient
Table 2.1: Patents on improve fastening with feature of automatic stop
Table 2.2: Patents on improve fastening with features to avoid damage of fastener
Table 2.3: Patents on improve fastening with feature to ease fastening
Table 2.4: Patents on protection of user with feature to reduce reaction force 33
Table 2.5: Patents on protection of tool to reduce heat generation on motor
Table 2.6: Patents on protection of tool with feature to reduce impact force
Table 2.7: Patents on protection of tool with feature to suppress inrush current
Table 2.8: Patents on communication with power tools and its devices. 37
Table 2.9: H-bridge operation quadrant
Table 3.1: Spring washer dimension
Table 3.2: Material properties, joints and constraints for each component
Table 3.3: Contact parameter (Davidson and Thielecke, 2011)
Table 3.4: List of sensors used in electrical and mechanical system
Table 3.5: External condition that influence system behaviors
Table 3.6: Range of physical damping limit (Estimated base on simulation model
behavior)115
Table 3.7: External condition that influence system behaviors
Table 3.8: Control setting for drill driver
Table 3.9: Step 1 parameter setting. 116
Table 3.10: Step 2 parameter setting
Table 3.11: Step 3 parameter setting
Table 4.1: Spring washer setup for M6X100 mm load case 142
Table 4.2: Simulation time for floating point (double) versus fixed point

LIST OF FIGURES

Page
Figure 1.1: Sales Revenues of Major Power Tool Companies
Figure 1.2: Rotary Impact Screw Driver (Robert Bosch Power Tool GmbH, 2013)2
Figure 1.3: Wear off on main components in impact mechanism
Figure 1.4: Damaged screw head (Popular Mechanics, 2014; Vyger, 2018)9
Figure 1.5: Rusted bolts are very difficult to untighten10
Figure 1.6: White Finger Syndrome (Thompsons Solicitors Scotland, 2019)10
Figure 2.1: Sample of famous brands of impact driver. (Oz Tool Talk, 2016)15
Figure 2.2: Wide range and robust application of impact driver (Bosch 25618-02,
2018)
Figure 2.3: Software patents by categories from year 2000 to 2016
Figure 2.4: Percentage distribution of assignee related to software
Figure 2.5: Number of software patent categories for each assignee
Figure 2.6: Impact Driver (left) and Drill Driver (right) (Bosch 25618-02, 2018;
Bosch DDS182WC-102, 2018)
Figure 2.7: V-profiled control system of rotary impact mechanism (Schweizer, 2013)
Figure 2.8: Reference of moving direction of rotary impact weight-striker to the motor
rotation (Iwata et al, 2007)
Figure 2.9: Example of Hand-held Drill Driver Power Tool (Bosch DDS182WC-102,
2018)
Figure 2.10: Explode view of Drill Driver's main assembly components (Bosch
DDS181-02, 2019)
Figure 2.11: Contact force law model (Miller, 2015)
Figure 2.12: Contact friction law (Miller, 2015)
Figure 2.13: Frictional torque due to relative rotation of the two contacting parts
(Davidson and Thielecke, 2011)

Figure 2.14: Friction torque - relative velocity (Armstrong and de Wit, 1995)
Figure 2.15: DC motor with permanent magnet (Schweizer, 2013)
Figure 2.16: DC motor equivalent circuit model (Bolton, 2015)
Figure 2.17: Torque – Speed characteristic (Bolton, 2015)
Figure 2.18: H-Bridge circuit (Marsden, 2010)
Figure 2.19: Example of PWM waveforms (Tantos, 2011)
Figure 2.20: Q1 and Q4 is turned on to run forward direction (Marsden, 2010)
Figure 2.21: Q2 and Q3 is turned on to run reverse direction (Marsden, 2010)
Figure 2.22: Belleville springs (Eberhard and Wolfgang, 2003)
Figure 2.23: Stack of springs under applied load (Eberhard and Wolfgang, 2003)55
Figure 2.24: Single spring, cross-section and position of reference points (Eberhard
and Wolfgang, 2003)55
Figure 2.25: Spring characteristic curve with respect to h_0/t_s and s/h_0 (DIN,2006)
Figure 2.26: Hysteresis effect (Eberhard and Wolfgang, 2003)57
Figure 2.27: Relationship between preload scatter and tightening factor (VDI, 2015)
Figure 2.28: Schematic diagram of torsional vibration of a disc (Rao, 2017)
Figure 2.29: Motion of the mass with Coulomb damping (Rao, 2017)63
Figure 2.30: Impulse torque diagram (Rao, 2017)
Figure 3.1: Research methodology flowchart
Figure 3.2: Rotational torque sensor
Figure 3.3: Rotational coupler71
Figure 3.4: Test setup with couplers72
Figure 3.5: Test setup without coupler72
Figure 3.6: Test setup of actual application without coupler73
Figure 3.7: Measurement setup for bolting size M16 class 12.9 [Torque range: 161 to
240 Nm according to ISO 4014, (ISO, 2011)]73
Figure 3.8: Flow diagram for dynamic load validation process75
Figure 3.9: Equipment and measurement setup75

righte 5.10. Schemate representation of characteristic lines possibilities (Eberhard
and Wolfgang, 2003)78
Figure 3.11: Assembly length of spring washer at unloaded state
Figure 3.12: Assembly length of spring washer is reduced at load
Figure 3.13: Top level sub-systems block diagram
Figure 3.14: World frame of the simulation model
Figure 3.15: System layout of physical model
Figure 3.16: 3D visualization of the system
Figure 3.17: Sub-system of multi body model of V-profiled rotary impact mechanism
Figure 3.18: Kinematic constraint using point to curve on V-shaped groove
Figure 3.19: Schematic diagram of V-Shape Groove
Figure 3.20: Force vector at the steel ball contact with the V-shape profile
Figure 3.21: Test setup diagram
Figure 3.22:Torque vs angle M6x100 lag screw softwood
Figure 3.23: Visualization of wood and screw in the simulation model
Figure 3.24: Load case sub-system
Figure 3.25: Impact driver system model
Figure 3.26: Subsystem for drive system
Figure 3.27: Subsystem of Driver system
Figure 3.28: Stateflow for control and signal processing
Figure 3.29: Flow chart 1 with motor speed as control input for synchronization
control
Figure 3.30: Flow chart 2 with motor current as control input for synchronization
control
Figure 3.31: Control State flow for synchronization control
Figure 3.32: Control flowchart for screwing control
Figure 3.33: Control state flow screwing control105

Figure 3.10: Schematic representation of characteristic lines possibilities (Eberhard

Figure 3.34: Motor speed measurement profile with corresponding duty cycle and
impact torque107
Figure 3.35: Flow chart of Method 1 using motor speed as control input for vibration
control
Figure 3.36: Flow chart of Method 2 using motor current as control input for vibration
control
Figure 3.37: Control state flow for vibration control
Figure 3.38: Control flow chart for torque control
Figure 3.39: Control state flow for torque control
Figure 3.40: Model layout after implementing fixed-type data type
Figure 3.41: Multi-physic model of drill driver under Simulink and Simscape
environment114
Figure 3.42: Automated download of auto generated of execution C-code from the
simulation laptop into a real-time hardware118
Figure 3.43: Power supply connection
Figure 3.44: Schematic for Arduino power supply
Figure 3.45: Schematic for switch from the power tool
Figure 3.46: Schematic for Arduino connection for trigger switch
Figure 3.47: Schematic for Hall sensor
Figure 3.48: Schematic for current sensor
Figure 3.49: Pin layout for RS232 connector
Figure 4.1: Full plot for torque measurement versus time
Figure 4.2: Full plot of rotation angle versus time
Figure 4.3: Rotation and axial displacement of impact element
Figure 4.4: Rotation and axial displacement of impact element
Figure 4.5: Rotation and axial displacement of impact element (No Coupler)129
Figure 4.6: Performance measurement at different duty cycle
Figure 4.7: Average torque peak of every 0.2 sec

Figure 4.8: Average impact rate over time (Numbers of hitting in a minute)
Figure 4.9: Torque and current profile at 1.5 sec
Figure 4.10: Torque and current profile at 2 sec
Figure 4.11: Torque and current profile at 2.5 sec
Figure 4.12: Striker motion full plot
Figure 4.13: Striker motion at 0.5 sec at 50% motor speed
Figure 4.14: Striker motion at 1.5 sec at 100% motor speed
Figure 4.15: Striker motion at 2.5 sec at 50% motor speed
Figure 4.16: Comparison of Torque versus Rotation Angle between M6, M8 and M10
lag screw drilled into Pine wood144
Figure 4.17: M6x100 mm load profile and calculation data on spring washer (Type
2 n4i42)
Figure 4.18: Spring washer measurement vs. calculation for M6x100 mm load case 145
Figure 4.19: Comparison between measurement and simulation of striker axial
displacements
Figure 4.20: Comparison between measurement and simulation of output shaft
rotation and speed147
Figure 4.21: Comparison between measurement and simulation of motor current and
speed
Figure 4.22: Wave forms of control parameters and responses
Figure 4.23: Comparison between simulation and measurement data of system
response under screw load150
Figure 4.24: Comparison of motor speed with and without control
Figure 4.25: Comparison of hammer (striker) displacement with and without control
Figure 4.26: Screwing process at normal mode (Control Off)154
Figure 4.27: Screwing process at screw mode (Control On)

Figure 4.28: Comparison between control on and control off for screw mode on
impact torque and screw turning progress156
Figure 4.29: Motor torque
Figure 4.30: Work progress of screwing turns
Figure 4.31: Measurement of torque control function
Figure 4.32: Comparison of screw turning (work rate) difference for tightening
process with and without torque control160
Figure 4.33: Plot for motor's current showing the different between Double and
sfix16_En9 data types161
Figure 4.34: Plot for motor's speed showing the different between Double and
sfix16_En1 data types162
Figure 4.35: Influence of power supply voltage
Figure 4.36: Overall capture of variable time step solver
Figure 4.37: Linearly increase of motor voltage at initial stage
Figure 4.38: Solver step size based on linearly increased motor voltage
Figure 4.39: Slover step size at stable impact time from 0.215 sec to 0.255 sec
Figure 4.40: Striker position at time 0.2268 sec171
Figure 4.41: Striker position at time 0.2317 sec
Figure 4.42: Different causal and effects to solver recovery time at time between
0.2309 sec and 0.2317 sec
Figure 4.43: Striker position at time 0.2309 sec
Figure 4.44: Striker position at time 0.2317 sec
Figure 4.45: Slover step size at 0.2343 sec to 0.2359 sec
Figure 4.46: Striker position at time 0.2343 sec
Figure 4.47: Striker position at condition surrounding pre and post 0.2359 sec
Figure 4.48: At 0.2366 sec to 0.2398 sec
Figure 4.49: Striker position at time 0.2366 sec onwards
Figure 4.50: Striker position at time 0.2374 sec

Figure 4.51: Striker position at time 0.2387sec
Figure 4.52: Striker position at time 0.2398 sec
Figure 4.53: At 0.241 sec to 0.246 sec
Figure 4.54: Striker position at time 0.2412 sec
Figure 4.55: Striker position at proximity time of 0.2426 sec
Figure 4.56: Striker position at proximity time of 0.2456 sec
Figure 4.57: Striker position at proximity time of 0.246 sec
Figure 4.58: Plot of simulation results for Normal mode at Step 1
Figure 4.59: Plot of simulation results for Pulsing mode at Step 1
Figure 4.60: Plot of solver step size for Normal mode at Step 1
Figure 4.61: Plot of solver step size for Pulsing mode at Step 1
Figure 4.62: Plot of simulation results for Normal mode at Step 2
Figure 4.63: Plot of simulation results for Pulsing mode at Step 2
Figure 4.64: Plot of solver step size and simulation results at time 0 sec to 4 sec for
rigure 4.04. That of solver step size and simulation results at time of see to 4 see for
Normal mode at Step 2
Normal mode at Step 2 Figure 4.65: Plot of solver step size and simulation results at time 0 sec to 4 sec for
Normal mode at Step 2 190 Figure 4.65: Plot of solver step size and simulation results at time 0 sec to 4 sec for Pulsing mode at Step 2 191
Figure 4.64. Flot of solver step size and simulation results at time 0 sec to 4 sec for Normal mode at Step 2 Figure 4.65: Plot of solver step size and simulation results at time 0 sec to 4 sec for Pulsing mode at Step 2 Figure 4.66: Plot of solver step size at time 0 sec to 1 sec for Normal mode at Step 2 192
Figure 4.64. Flot of solver step size and simulation results at time 0 sec to 4 sec for Normal mode at Step 2 Figure 4.65: Plot of solver step size and simulation results at time 0 sec to 4 sec for Pulsing mode at Step 2 Pulsing mode at Step 2 Pigure 4.66: Plot of solver step size at time 0 sec to 1 sec for Normal mode at Step 2 Pigure 4.66: Plot of solver step size at time 0 sec to 1 sec for Pulsing mode at Step 2 Pigure 4.67: Plot of solver step size at time 0 sec to 1 sec for Pulsing mode at Step 2
 Figure 4.64. Flot of solver step size and simulation results at time 0 sec to 4 sec for Figure 4.65: Plot of solver step size and simulation results at time 0 sec to 4 sec for Pulsing mode at Step 2
 Figure 4.64. Flot of solver step size and simulation results at time 0 sec to 4 sec for Plot of solver step size and simulation results at time 0 sec to 4 sec for Pulsing mode at Step 2
Figure 4.64: Plot of solver step size and simulation results at time 0 sec to 4 sec for Pulsing mode at Step 2 Pulsing mode
Figure 4.64: Flot of solver step size and simulation results at time 0 sec to 4 sec for Pulsing mode at Step 2
Figure 4.64. Flot of solver step size and simulation results at time 0 sec to 4 sec for Pulsing mode at Step 2 Pulsing mode
Figure 4.64. Flot of solver step size and simulation results at time 0 sec to 4 sec for Pulsing mode at Step 2 Pulsolver Step Size at time 2.98 sec to 3.04 sec at the end of load f
Figure 4.64: Flot of solver step size and simulation results at time 0 sec to 4 sec for Pulsing mode at Step 2 Pigure 4.66: Plot of solver step size at time 0 sec to 1 sec for Normal mode at Step 2 Pigure 4.67: Plot of solver step size at time 0 sec to 1 sec for Pulsing mode at Step 2 Pigure 4.68: Plot of solver step size at time 1.98 sec to 2.04 sec at start of load for Normal mode at Step 2 Pigure 4.69: Plot of solver step size at time 1.98 sec to 2.04 sec at start of load for Pulsing mode at Step 2 Pulsing mode at Step 2 Pulsing mode at Step 2 Plot of solver step size at time 1.98 sec to 3.04 sec at the end of Pulsing mode at Step 2 Plot Solver Step Size at time 2.98 sec to 3.04 sec at the end of Plot Solver Step Size at time 2.98 sec to 3.04 sec at the end of
Figure 4.64: Flot of solver step size and simulation results at time 0 sec to 4 sec for Pulsing mode at Step 2 Pulsing mode at Step 2 Pulsing mode at Step 2 Pigure 4.66: Plot of solver step size at time 0 sec to 1 sec for Normal mode at Step 2 Pigure 4.67: Plot of solver step size at time 0 sec to 1 sec for Pulsing mode at Step 2 Pigure 4.68: Plot of solver step size at time 0 sec to 1 sec for Pulsing mode at Step 2 Pigure 4.68: Plot of solver step size at time 1.98 sec to 2.04 sec at start of load for Normal mode at Step 2 Pigure 4.69: Plot of solver step size at time 1.98 sec to 2.04 sec at start of load for Pulsing mode at Step 2 Pigure 4.69: Plot of solver step size at time 1.98 sec to 3.04 sec at the end of Pulsing mode at Step 2 Pigure 4.70: Step 2 - Plot Solver Step Size at time 2.98 sec to 3.04 sec at the end of Pigure 4.71: Plot Solver Step Size at time 2.98 sec to 3.04 sec at the end of Pilsing mode at Step 2 Pilsing mode at Step 2

Figure 4.73: Plot of simulation results for Pulsing mode at Step 3
Figure 4.74: Plot Solver Step Size for Normal mode at Step 3 at time 2 sec
Figure 4.75: Plot Solver Step Size for Pulse mode at Step 3 at time 2 sec
Figure 4.76: Plot Solver Step Size for Normal mode at Step 3 at time 3 sec
Figure 4.77: Plot Solver Step Size for Pulse mode at Step 3 at time 3 sec
Figure 4.78: Comparison of Solver Step Size between Step 1 and Step 3 for normal
mode
Figure 4.79: Comparison of Solver Step Size between Step 1 and Step 3 for pulse
mode
Figure 4.80: Reference of gearbox speed for pulse mode using variable time step
solver
Figure 4.81: Detail view 1 of gearbox rising speed for pulse mode
Figure 4.82: Detail view 2 of gearbox falling speed for pulse mode
Figure 4.83: Comparison of solver step size between variable and fixed time step
Figure 4.84: Comparison 1 of Fixed-time step at $Ts = 0.07$ sec versus the reference
results from variable time steps
Figure 4.85: Comparison 2 of Fixed-time step at $Ts = 0.07$ sec versus the reference
results from variable time steps
Figure 4.86: Comparison 1 of Fixed-time step at $Ts = 0.07$ sec and 0.04 sec versus
the reference results from variable time steps
Figure 4.87: Comparison 2 of Fixed-time step at $Ts = 0.07$ sec and 0.04 sec versus
the reference results from variable time steps
Figure 4.88: Comparison 1 of Fixed-time step at $Ts = 0.035$ sec, 0.07 sec and 0.04 sec
versus the reference results from variable time steps
Figure 4.89: Comparison 2 of Fixed-time step at $Ts = 0.035$ sec, 0.07 sec and 0.04 sec
versus the reference results from variable time steps
Figure 4.90: Data log from real-time target hardware (Speedgoat)

Figure 4.92: On-target rapid control prototype	211
Figure 4.93: Data log from prototype	212
Figure A.1: MATLAB Code for 3D spline curve	227
Figure A.2: Block model of Striker driving torque by V -profiled groove (based on	
equation 3.20)	228
Figure A.3: Block model of Striker axial displacement govern by V-profiled groove	
(Based on equation 3.14)	229
Figure A.4: Load equation model (Top = Block model; Bottom = Stateflow model)	232

LIST OF ABBREVIATIONS

DC	Direct Current
e.m.f	electromagnetic force
FET	Field Effect Transistor
HAV	Hand Arm Vibration
HIL	Hardware-in-the-Loop
HiL	Human-in-the-Loop
LED	Light Emitting Diode
MBD	Model Based Design
MCU	Micro Controller Unit
MIL	Model-in-the-Loop
PCBA	Printed Circuit Board Assembly
PMDC	Permanent Magnet Direct Current
PWM	Pulse Width Modulation
RPM	Rotation per minute
RTM	Real-Time Target Machine
SIL	Software-in-the-Loop

- TET Task Execution Time
- TTI Techtronic Industries

LIST OF SYMBOLS

Δs_{JB}	Axial displacement of jackshaft referring to steel ball, (mm)
Δs_{SB}	Axial displacement of striker referring to steel ball, (mm)
Δs_{SO}	Axial displacement of striker, (mm)
$lpha_A$	Assembly uncertainty factor
α_{SJ}	Relative rotational acceleration of striker to jackshaft, (Rad/s ²)
δ	Diameter ratio
γs	V-profiled angle of striker, (rad)
γ _J	V-profiled angle of jackshaft, (rad)
λ	Motor damping, (N*m/(rad/s))
μ	Coefficient of friction
μ	Poisson's ratio
$\mu_{dynamic}$	Dynamic coefficient of friction
μ_K	Coefficient of friction in the head bearing area of bolt
μ_G	Coefficient of friction in the thread of bolt
μ_G μ_{static}	Static coefficient of friction
μ_G μ_{static} $oldsymbol{\pi}$	Static coefficient of friction Pi = 3.142
μ_G μ_{static} $oldsymbol{\pi}$ $ heta$	Coefficient of friction in the thread of bolt Static coefficient of friction Pi = 3.142 Angle of rotation or shaft's angle of twist, (rad)
μ _G μ _{static} π θ φ	Coefficient of friction in the thread of bolt Static coefficient of friction Pi = 3.142 Angle of rotation or shaft's angle of twist, (rad) Speed of rotation or shaft's speed of twist, (rad)
μ_G μ_{static} π $ heta$ $ heta$ $ heta$	Coefficient of friction in the thread of bolt Static coefficient of friction Pi = 3.142 Angle of rotation or shaft's angle of twist, (rad) Speed of rotation or shaft's speed of twist, (rad) Acceleration of rotation or shaft's acceleration of twist, (rad)
μ_{G} μ_{static} π θ $\dot{\theta}$ $\dot{\theta}$ $\ddot{\theta}$ θ_{SB}	Coefficient of friction in the thread of bolt Static coefficient of friction Pi = 3.142 Angle of rotation or shaft's angle of twist, (rad) Speed of rotation or shaft's speed of twist, (rad) Acceleration of rotation or shaft's acceleration of twist, (rad) Relative rotational angle of striker to steel ball, (rad)
μ_{G} μ_{static} π θ $\dot{\theta}$ $\dot{\theta}$ $\dot{\theta}$ θ_{SB} θ_{JB}	Coefficient of friction in the thread of bolt Static coefficient of friction Pi = 3.142 Angle of rotation or shaft's angle of twist, (rad) Speed of rotation or shaft's speed of twist, (rad) Acceleration of rotation or shaft's acceleration of twist, (rad) Relative rotational angle of striker to steel ball, (rad) Relative rotational angle of jackshaft to steel ball, (rad)
μ_{G} μ_{static} π θ $\dot{\theta}$ $\dot{\theta}$ $\dot{\theta}$ θ_{SB} θ_{JB} θ_{SJ}	Coefficient of friction in the thread of bolt Static coefficient of friction Pi = 3.142 Angle of rotation or shaft's angle of twist, (rad) Speed of rotation or shaft's speed of twist, (rad) Acceleration of rotation or shaft's acceleration of twist, (rad) Relative rotational angle of striker to steel ball, (rad) Relative rotational angle of striker to jackshaft, (rad)

ω_n	Frequency of vibration (Hz)
ωο	Motor no-load rotational velocity, (rad/s)
ω _{SJ}	Relative rotational velocity of striker to jackshaft, (rad/s)
ω_{th}	Linear region rotational velocity threshold (rad/s)
<i>aso</i>	Axial acceleration of striker, (mm/s)
b	Damping constant (Ns/mm)
c _v	Transition approximate coefficient, (rad/s)
d	Diameter of shaft, (mm)
d ₂	Pitch diameter of the bolt thread (mm)
d_W	Outside diameter of the plane head bearing surface of the bolt (mm)
f	Load joint damping (Viscous friction coefficient) (Nm/(rad/s))
h_0	Cone height of an unloaded single spring (mm)
i	Number of springs in serial
i _o	No-load current, (A)
i _{rotor}	Rotor current, (A)
<i>i</i> _s	Rotor start current, (A)
k	Spring stiffness (N/mm)
lo	Height of unloaded single spring washer (mm)
k _t	Motor torque constant, (Nmm/A)
k_v	Motor back e.m.f. constant, (Vs/rad)
l	Length of shaft, (mm)
n	Number of springs in parallel
r_{S}	Radius of V-profiled on striker, (mm)
r _J	Radius of V-profiled on jackshaft, (mm)
S	Deflection of single spring (mm)
t	Time, (s)
ts	Thickness of individual spring washer (mm)

v_b	Electromagnetic force induction voltage (V)
v_{pen}	Rate of distance change with time between two contact points is the penetration distance, (mm/s)
v_{poc}	Velocity at point of contact, (mm/s)
<i>v</i> ₅₀	Axial velocity of striker, (mm/s)
v_{th}	Threshold velocity, (mm/s)
x _{pen} or r _{pen}	Distance between two contact points is the penetration distance, (mm)
x_{pen}^{\cdot} or r_{pen}^{\cdot}	Rate of distance change with time between two contact points is the penetration distance, (mm/s)
D	V-profiled force variable (based on V-profiled angle γ)
D_{ε}	Spring washer outside diameter (mm)
D _i	Spring washer inside diameter (mm)
D_{Ki}	Inside diameter of the plane head bearing area of bolt (mm)
D_{Km}	Effective diameter for the friction moment at the bolt head (mm)
Ε	Young's modulus (N/mm ²)
F	Spring force of a single spring (N)
F _f	Friction force, (N)
F _H	Horizontal force acting on steel ball, (N)
F _M	Assembly preload (N)
F _M min	Minimum required assembly preload (N)
F _M max	Maximum assembly preload (N)
F_N	Normal force, (N)
F_V	Vertical force acting on steel ball, (N)
F _S	Compression force from spring, (N)
F _T	Combine springs force (N)
G	Modulus of rigidity for material or shear modulus (MPa)
J	Moment of inertia (kgm ² or Nm/(Rad/s ²))

<i>K</i> ₁	Constant for spring force calculation in equation (2.11)
K _t	Torsional spring constant
L	V-profiled motion variable (based on V-profiled angle γ)
L _{rotor}	Rotor winding inductance, (H)
L_0	Initial assembly height of set springs (mm)
M _A	Tightening torque (mNm)
Р	Pitch of the bolt thread (mm)
R _{rotor}	Rotor/rotor winding resistant, (Ohm)
Τ	Torque or Damping torque, (Nm)
T _{brk}	Breakaway friction torque, (Nm)
T _c	Coulomb friction torque, (Nm)
T _E	Motor torque, (Nm)
T_V	Viscous friction torque (Nm)
T_W	Motor disturbance load torque (Nm)
T_S	Motor starting torque (Nm)
V	DC Voltage source to motor, (V)

PEMODELAN DAN KAWALAN UNTUK PEMACU IMPAK BERPUTAR ALUR-V

ABSTRAK

Pemacu skru impak berputar yang dikategorikan sebagai alat kuasa tanpa kabel pegangan tangan memberikan peluang penggunaan dalam banyak aplikasi. Walau bagaimanapun, terdapat beberapa kekurangan dalam alat jenis ini seperti mekanisma impak yang tidak disegerakkan, kuasa yang terlalu banyak diperlukan untuk pekerjaan yang lebih tepat dan ia menghasilkan banyak getaran. Objektif kajian ini adalah untuk memodelkan sistem fizikal pemacu impak berputar alur-v dan aplikasi bebannya. Algoritma kawalan aliran keadaan dibangunkan terhadap model bagi menambahbaik kekurangan yang dinyatakan sebelum ini. Kelajuan dioptimumkan dengan menggunakan algoritma aliran keadaan dengan jenis data titik tetap yang mana ia dapat mengurangkan keperluan pengiraan perkakasan dengan ketepatan yang boleh diterima. Tinjauan kajian telah dilakukan bagi menilai kerumitan simulasi secara maya di antara model pemacu impak dan pemacu gerudi dalam melakukan penentusahan perkakasan masa nyata dalam simulasi maya. Tujuan ia dilakukan bagi menentusahkan algoritma yang dibangunkan supaya ia tidak terdedah kepada risiko melampau ketika penyudah tetap langkah masa ditetapkan. Akhir sekali, prototaip dibina berpandukan model perisian simulasi bagi ujian sebenar manusia dan pengesahan. Daripada keputusan, penambahbaikan sebanyak 10% terhadap segerakkan sistem, pengurangan impak laju sebanyak 33% bagi pengskruan kecil dan lembut, dan pengurangan sebanyak 19% dalam getaran hasil tork motor terhadap lengan pengguna dicapai. Pemahaman bernilai diperolehi daripada ujikaji dan pengoptimuman melalui simulasi.