FABRICATION OF IRON OXIDE NANOPARTICLES/3AMINOPROPYLTRIETHOXYSILANE MODIFIED ELECTRODE FOR Cd (II) IONS AND Pb (II) IONS DETECTION

SARASIJAH A/P ARIVALAKAN

UNIVERSITI SAINS MALAYSIA

2019

FABRICATION OF IRON OXIDE NANOPARTICLES/3AMINOPROPYLTRIETHOXYSILANE MODIFIED ELECTRODE FOR Cd (II) IONS AND Pb (II) IONS DETECTION

by

SARASIJAH A/P ARIVALAKAN

Supervisor: Prof. Dr. Khairunisak Abdul Razak

Dissertation submitted in fulfilment of the requirements for the degree of Master of Science (Material Engineering)
Universiti Sains Malaysia

AUGUST 2019

DECLARATION

I hereby declare that, I have conducted, completed the research work and

written the dissertation entitled "Fabrication of Iron Oxide Nanoparticles/3-

Aminopropyltriethoxysilane Modified Electrode for Cd (II) Ions and Pb (II)

ions". I also declare that it has not been previously submitted for an award of any

degree or diploma or other similar title of this for any other examining body or

university.

Name of student: Sarasijah A/P Arivalakan

Signature:

Date:

Witnessed by,

Supervisor: Prof. Dr. Khairunisak Abdul Razak

Signature:

Date:

i

ACKNOWLEDGEMENT

First and foremost, I would like to extend my sincere gratitude to my supervisor Prof. Dr. Khairunisak Abdul Razak for the continuous support for my MSc study in Materials Engineering. Her patience, motivation, enthusiasm and immense knowledge have helped me complete this research project. Her dedicated involvement and guidance helped me accomplished my research and thesis writing within the duration provided. Thanks to School of Materials and Mineral Resources Engineering and Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia for allowing me to utilize their laboratories and providing necessary apparatus, chemicals and services required to accomplish my research project successfully. A special thanks to the research officer at INFORMM, Ms Nor Dyana Zakaria for her technical assistance with laboratory works done at INFORMM. Besides that, I would like to thank Mr Mohammad Azrul and Mr Mohd Azam for their technical support for work performed at Chemical Laboratory and Electronic Laboratory at School of Materials and Mineral Resource Engineering, Universiti Sains Malaysia. In addition, I would like to express my sincere thanks also to Ms Noorhashimah, Ms Nur Syafinaz, Ms Haslinda and Ms Nurul Nadia for their valuable time and assistance in completing my research project. Last but not least, a big thanks to my beloved family and friends, especially my parents for their constant support in terms of financial and morally that motivate me to complete my research project successfully.

TABLE OF CONTENTS

DEC	LARATIO	ON	i
ACK	NOWLE	DGEMENT	ii
TABI	LE OF CO	ONTENTS	iii
LIST	OF TAB	LES	vii
LIST	OF FIGU	URES	viii
LIST	OF SYM	BOLS	xii
LIST	OF ABB	REVIATIONS	xiii
ABST	ΓRAK		xvii
ABST	ΓRACT		xix
СНА	PTER 1	INTRODUCTION	1
1.1	Introduc	etion	1
1.2	Problem	statement	5
1.3	Objectiv	/es	8
1.4	Scope of	f research	9
1.5	Thesis o	outline	9
СНА	PTER 2	LITERATURE REVIEW	11
2.1	Introduc	etion	11
2.2	Heavy n	netal pollution	11
2.3	Heavy n	netal ions detection technique	15
	2.3.1	Optical detection technique	15
	2.3.2	Spectroscopy detection techniques	16
2.4	Electroc	hemical technique	17
	2.4.1	Potentiometry	19
	2.4.2	Amperometry	19
	2.4.3	Voltammetry	20

2.5	Materia	ls used as heavy metal sensor	24
	2.5.1	Conventional (bulk or film) materials	24
	2.5.2	Nanomaterials	28
		2.5.2(a) Metal nanomaterials	28
		2.5.2(b) Carbon based nanomaterials	29
		2.5.2(c)Metal oxide nanoparticles	30
2.6	Modific	ation of substrate electrode	34
	2.6.1	Substrate electrodes	34
	2.6.2	Fabrication of sensing material on working electrode	36
		2.6.2(a) 3-Mercaptopropyltrimethoxysilane (MPTMS)	40
		2.6.2(b) 3-Aminopropyltriethoxysilane (APTES)	41
2.7	Summa	ry	43
СНА	PTER 3	METHODOLOGY	. 4 4
3.1	Introduc	ction	44
3.2	Raw ma	terials and chemicals	45
3.3	Stage 1:	Synthesis and characterization of IONPs and BiP	47
	3.3.1	Synthesis and functionalization of IONPs	47
	3.3.2	Synthesis of BiP	49
3.4	Stage 2:	(A) Preparation of IONPs modified ITO electrode	51
	3.4.1	Cleaning of ITO electrode	51
	3.4.2	Fabrication of modified ITO electrode	51
3.5	Stage 2:	(B) Electrochemical behavior of the modified electrode	51
	3.5.1	Apparatus	51
	3.5.2	Cyclic voltammetry	52
3.6	Stage 3:	(A) Sensitivity and selectivity of the modified electrode	53
	3.6.1	Square wave anodic stripping voltammetry (SWASV)	53
	3.6.2	Selectivity of the modified electrode	53

3.7	Stage 3:	(B) Application to real water sample	54
3.8	Characte	erization of IONPs and Bi particles	54
	3.8.1	X-ray diffraction (XRD)	54
	3.8.2	Transmission electron microscopy (TEM)	54
	3.8.3	UV-Visible Near-infrared spectrophotometer (UV-Vis NIR)	55
	3.8.4	Field Emission Scanning electron microscopy (FESEM)	55
CHA	PTER 4	RESULT & DISCUSSION	56
4.1	Introduc	tion	56
4.2	Propertie	es of synthesized IONPs and BiP	57
	4.2.1	Properties of IONPs	57
	4.2.2	Properties of produced BiP	60
4.3	Propertie	es of IONPs/APTES/ITO modified electrode	63
	4.3.1	Water Contact Angle	63
	4.3.2	Distribution of IONPs on APTES functionalised ITO electro	de . 64
4.4	Optimiz	ation of IONPs/APTES/ITO electrode modification	68
	4.4.1	Effect of scan rate on IONPs/APTES/ITO electrode	68
	4.4.2	Effect of soaking time of IONPs	69
4.5	SWASV	for detection of Cd (II) and Pb (II)	75
	4.5.1	Individual detection of Cd (II) and Pb (II) (SWASV analysis) 76
	4.5.2	Simultaneous detection of Cd and Pb (SWASV)	81
4.6		detection of Cd (II) and Pb (II) with addition of BiP during stri	
4.7	Interfere	nce study	92
4.8	Applicat	ion in seawater sample	94
4.9	Summar	у	96
СНА	PTER 5	CONCLUSION AND SUGGESTION FOR FUTURE WO	
5.1	Conclus	ion	99

5.2	Recommendations for future works	100
REFE	RENCES	101

LIST OF TABLES

Page
Table 1.1: Heavy metals and its effect to human health (Singh et al., 2011)2
Table 1.2: Guideline value for heavy metals in drinking water (Aragay et al.,
2011b)2
Table 2.1: Sources of different heavy metals by anthropogenic activity (Paul, 2017)
Table 2.2: Health effects of heavy metal toxicity (Gautham et al., 2015)
Table 2.3: Applications of bulk materials or films as heavy metal sensor in real samples
Table 2.4: Application of different types of nanomaterials for heavy metal sensor.
Table 2.5: Source of bismuth, concentration ratio of heavy metal ions to bismuth for <i>in-situ</i> plating of Bi films on substrate electrode
Table 3.1: Materials and chemicals used in this study
Table 4.1: Potential difference and ratio of anodic peak current to cathodic peak current of IONPs/APTES/ITO with varying soaking time of IONPs
Table 4.2: Calculated effective surface area of the modified electrode74
Table 4.3: Previous work and current work individual detection comparison on linear range, sensitivity and LOD for Cd (II) and Pb (II)81
Table 4.4: Comparison of previous work and current work on simultaneous detection of Cd (II) and Pb (II)
Table 4.5: Comparison of sensitivity, linear range and LOD for individual and simultaneous detection
Table 4.6: Concentration of 23 types of metal ions

LIST OF FIGURES

Page
Figure 2.1: Colour change of the aggregates in the presence of various representative metal ions of $1\mu M$ each upon heating from room temperature to 47 °C (Lee et al., 2007)
Figure 2.2: Typical electrochemical cell setup
Figure 2.3: Cyclic voltammetric analysis of bare Au electrode and modified Au electrodes (Gumpu et al., 2017)
Figure 2.4: Principle of ASV technique (March et al., 2015)22
Figure 2.5: (a) Staircase potential sweep for SWV ($t_{\rm m}$: current measured only for a few milliseconds, 1: end of forward scan and 2: end of reverse scan) and (b) principal response curve of difference in current versus applied potential
Figure 2.6: Stripping voltammograms of Zn, Cd and Pb at (A) GCE and (B) CFME with (a) bismuth and (b) mercury films (Wang et al., 2000)27
Figure 2.7: SWASV stripping peak for individual detection of (A) Pb (II) and (B) Cd (II) under concentration range of 5.0-600 nM and 20-590 nM in Acetate buffer solution (pH 5.0) respectively. Insets, are the corresponding plots of stripping peak currents versus concentration of metal ion (Song et al., 2013)
Figure 2.8: DPV curve of varying concentration of Cu (II) (A → L: 0 − 11 ppm) with bare ITO
Figure 2.9: Self-polymerization process of MPTMS (a) Extreme self-polymerization (Volume of MPTMS : Volume of ethanol = 1:2) (b) Less self-polymerization (Volume of MPTMS : Volume of ethanol = 1:10) (Matcheswala, 2010)
Figure 2.10: Functional groups at both ends of APTES (Watté, 2017)42

functionalized substrate electrode (Jing et al., 2007)
Figure 2.12: Self-assembly of AuNP with the aid of APTES (Matcheswala, 2010
Figure 3.1: Overview of research flow for heavy metal ions detection using BiP/IONPs modified ITO electrode
Figure 3.2: Flowchart of IONPs synthesis and surface functionalization49
Figure 3.3: Flowchart of BiP synthesis
Figure 3.4: Schematic diagram of electrochemical cell setup
Figure 4.1: The XRD pattern of IONPs functionalized with 0.25 g/ml citric acid 58
Figure 4.2: TEM image of IONPs functionalized with 0.25 g/ml of citric acid59
Figure 4.3: Particle size distribution of IONPs functionalized with 0.25 g/ml o citric acid
Figure 4.4: UV-Vis absorbance for IONPs functionalized with 0.25 g/ml of citric acid
Figure 4.5: The XRD pattern of synthesized BiP
Figure 4.6: (a) SEM image of BiP and (b) chemical elements mapping of the area (intensity of bismuth increases from black to red) (c) EDX spectrum of BiP
Figure 4.7: Particle size distribution of synthesized BiP
Figure 4.8: Water contact angle measurement
Figure 4.9: (a) APTES functionalization on ITO, (b) APTES functionalized ITO electrode and Citric acid functionalized IONPs and (c) SAM o IONPs on ITO electrode
Figure 4.10: Distribution of IONPs on 5% APTES functionalised ITO electrode: (a Bare ITO (b) 30 min soaked IONPs (c) 60 min soaked IONPs (d) 90 min soaked IONPs(e) 120 min soaked IONPs (f) 150 min soaked IONPs (g) IONPs/ITO (inset: water contact angle)
Figure 4.11: EDX area scan on IONPs/APTES/ITO electrode 68

Figure 4.12: Effect of scan rate of the IONPs/APTES/ITO6
Figure 4.13: Cyclic voltammograms of IONPs/APTES/ITO with varying soakin time of IONPs in 5 mM of $K_3Fe(CN)_6$ at 50 mV/s scan rate7
Figure 4.14: Effect of different soaking time of IONPs on electrical conductivity of 5% APTES functionalized ITO electrode in 5 mM of K ₃ Fe(CN) ₆ a 50 mV/s scan rate
Figure 4.15: Redox reaction of Cd (II) and Pb (II)
Figure 4.16: (a) Stripping peak of Cd (II) for 100 ppb, (b) stripping response of varying concentration of Cd (II) and (c) linear calibration plot for C (II) with concentration ranging from 1 ppb to 10 ppb
Figure 4.17: (a) Stripping peak of Pb (II) for 100 ppb, (b) linear calibration plot for Pb (II) with concentration ranging from 40 ppb to 80 ppb Pb and (c) Stripping response of varying concentration of Pb (II)
Figure 4.18: Stripping peak of simultaneous detection of 100 ppb of Cd (II) and 10 ppb of Pb (II), (b) Stripping peak current obtained for Cd (II) and P (II) simultaneous detection (30 ppb to 100 ppb), and (c) Linea calibration plot for detection of Cd (II) in electrolyte containing bot Cd (II) and Pb (II) ions
Figure 4.19: (a) SWASV stripping peak response of 100 ppb of Cd (II) with an without the addition of BiP and (b) Bar chart of I _p response for C (II)
Figure 4.20: (a) SWASV stripping peak response of 100 ppb of Pb (II) with an without the addition of BiP and (b) Bar chart of I_p response for P (II)9
Figure 4.21: (a) SWASV stripping peak response of 100 ppb of Cd (II) and Pb (II) with and without the addition of BiP and (b) Bar chart of I_p respons for Cd (II) and Pb (II)
Figure 4.22: Stripping peak of Cd (II) in ICP multi-element solution9
Figure 4.23: SWASV stripping response of seawater sample collected near Seagat industrial area without and with Cd (II) spiked

Figure 4.24: SWASV	stripping	response o	of seawater	sample	collected	at Pantai
Jerejak	without ar	nd with Cd	(II) spiked.			96

LIST OF SYMBOLS

A Ampere

C Celcius

g Gram

Hz Hertz

L Liter

M Molarity

m Milli

s Second

V Volt

Δ Delta

O Theta

μ Micro

LIST OF ABBREVIATIONS

 $[Fe(CN)_6]^{3-}$ Ferricyanide

AAS Atomic Absorption Spectroscopy

A_e Effective Surface Area

Ag Silver

Ag/AgCl Silver/Silver chloride

Al Aluminium

APTES 3-Aminopropyltriethoxysilane

As Arsenic

ASV Anodic Stripping Voltammetry

Au Gold

AuNPs Gold Nanoparticles

B Boron
Ba Barium
Bi Bismuth

Bi(NO₃)•5H₂O Bismuth Nitrate Pentahydrate

Bi₂O₃ Bismuth Oxide

BiFE Bismuth Film Electrode

BiP Bismuth Particle

C Carbon
Ca Calcium
Cd Cadmium

CFME Carbon-Fibre Microelectrode

CNP Carbon Nanoparticles

CNT Carbon Nanotube

Co Cobalt
Cr Chromium
CT Chitosan
Cu Copper

CV Cyclic Voltammetry
CVG Cold Vapor Generation

D Diffusion Coefficient

DME Dropping Mercury Electrode

DPASV Differential Pulse Anodic Stripping Voltammetry

DPV Differential Pulse Voltammetry
EBP Emeraldine Base Polyaniline
EDX Energy Dispersive X-Ray

EPA Environmental Protection Agency

Fe Iron

 γ -Fe₂O₃ Iron Oxide (Maghemite) Fe₃O₄ Iron Oxide (Magnetite)

FeCl₂·4H₂O Iron (II) Chloride Tetrahydrate FeCl₃·6H₂O Iron (III) Chloride Hexahydrate

FePc Iron Phthalocyanines

FESEM Field Emission Scanning Electron Microscope

Ga Gallium

GCE Glassy Carbon Electrode

HCl Hydrogen Chloride

Hg Mercury

HMDE Hanging Mercury Dropping Electrode

HNO₃ Nitric Acid

IC Ion Chromatography

ICP-MS Inductively Coupled Plasma - Mass Spectroscopy
ICP-OES Inductively Coupled Plasma - Optical Emission

Spectroscopy

In Indium

IONPs Iron Oxide Nanoparticles

I_p Current Peak

ISE Ion-Selective Electrode

ITO Indium Tin Oxide

K Potassium

K₄Fe(CN)₆ Potassium Ferrocyanide

KCl Potassium Chloride

Li Lithium

LIBS Laser Induced Breakdown Spectroscopy

LOD Limit of Detection

LSV Linear Sweep Voltammetry

Mg Magnesium

MMA (III) Monomethylarsonic Acid

Mn Manganese

MPTMS 3-Mercaptopropyl Trimethoxysilane

MWCNT Multiwalled Carbon Nanotube

n Number of Electron Transfer

NA Nafion

NaCl Sodium Chloride NaOH Sodium Hydroxide

Ni Nickel

NMC Nitrogen Doped Microporous Carbon

O Oxygen Pb Lead

ppb Parts Per Billion
ppm Parts Per Million

PSS Polysodium 4-Styrene-Sulfonate

Pt Platinum

PVG Photochemical Vapor Generation
RCA Radio Corporation of America
SAM Self-Assemble Monolayer

SERS Surface-Enhanced Raman Scattering

-SH Sulfhydryl Group

Sn Tin

SnO₂ Tin Oxide

SPCE Screen Printed Carbon Electrode

SPE Screen Printed Electrode

SPGE Screen Printed Gold Electrode
SPR Surface Plasmon Resonance

Sr Strontium

SWASV Square Wave Anodic Stripping Voltammetry

SWV Square Wave Voltammetry

TA Terephthalic Acid

TEM Transmission Electron Microscopy

Tl Thallium

TMFE Thin Mercury Film Electrode

UV/Vis spectrometry Ultraviolet Visible Spectrometry

UV-Vis NIR Ultraviolet-Visible Near Infrared Spectrophotometer

WHO World Health Organization

XRD X-Ray Diffraction

Zn Zinc

E_p Peak Potential

FABRIKASI DAN PENGUBAHSUAIAN ELEKTROD

MENGGUNAKAN NANOPARTIKEL BESI OKSIDA/3-

"AMINOPROPYLTRIETHOXYSILANE" SEBAGAI PENGESAN UNTUK Cd (II) ION DAN Pb (II) ION

ABSTRAK

Pencemaran logam berat telah menjadi kebimbangan besar pada masa kini kerana ia menyebabkan pelbagai masalah kesihatan. Kebanyakan analisa telah dijalankan di makmal menggunakan "Inductively Coupled Plasma Spectrometry" dan "Atomic Absorption Spectrometry" yang mahal, memerlukan kakitangan yang terlatih dan tidak sesuai untuk analisa di tapak. Pengesan elektrokimia mengatasi kelemahan ini, tetapi elektrod untuk pengesan ini perlu diubahsuai untuk meningkatkan kepekaan dan pemilihan itu. Dalam kajian ini, nanopartikel besi oksida (IONPs) telah disintesis menggunakan kaedah "co-precipitation". Bismut partikel (BIP) telah disintesis dengan menggunakan kaedah hidroterma. IONPs telah dipasang sendiri di atas oksida indium timah (ITO) elektrod dengan bantuan 3-"aminopropyltriethoxysilane" (APTES). Kesan masa rendaman APTES/ITO di dalam IONPs (30, 60, 90, 120 dan 150 min) telah dikaji. Sifat elektrokimia IONPs/APTES/ITO telah dikaji dengan menggunakan analisa voltammetri berkitar (CV) dan gelombang anodik persegi - pelucutan voltammetri (SWASV). 90 min IONPs/APTES/ITO elektrod dipilih sebagai optimum kerana ia memberikan kekonduksian yang tinggi dan luas permukaan berkesan, A_e. Julat linear untuk Cd (II) dalam pengesanan individu adalah 1 - 10 ppb dengan kepekaan 110.59 μA ppb⁻¹ dan had pengesanan (LOD) 2.5 ppb. Kepekaan untuk Pb (II) adalah 7.01 μA ppb⁻¹ dalam julat linear 50-70 ppb dengan LOD 2.09 ppb. Untuk pengesanan serentak, julat linear untuk Cd (II) adalah 30 ppb - 70 ppb dengan kepekaan 5.69 μA ppb-1 dan LOD 9.15 ppb. Manakala bagi Pb (II) puncak itu hanya diperhatikan untuk kepekatan 80 dan 100 ppb. Puncak yang jelas telah dihasilkan dalam kajian ganguan, menandakan elektrod yang diubah suai itu sangat sensitif dan selektif terhadap pengesanan Cd (II). Akhir sekali, IONPs/APTES/ITO telah digunakan untuk sampel air laut, Cd (II) dikesan dengan kepekatan 14.13 ppb dan 26.84 ppb untuk sampel dari pantai Seagate dan Pantai Jerejak masing-masing. Hasil kajian menunjukkan bahawa elektrod IONPs/APTES/ITO boleh digunakan sebagai sensor logam yang berat.

FABRICATION OF IRON OXIDE NANOPARTICLES/3-

AMINOPROPYLTRIETHOXYSILANE MODIFIED ELECTRODE FOR Cd (II) IONS AND Pb (II) IONS DETECTION

ABSTRACT

Heavy metal pollution has become the biggest concern nowadays as it causes various health issues. Most analysis have been carried out in laboratory using Inductively Coupled Plasma Spectrometry and Atomic Absorption Spectrometry that are expensive, requires trained personnel and not suitable for on site analysis. Electrochemical sensors overcome these drawbacks, but the working electrode needs to be modified to enhance its sensitivity and selectivity. In this work, iron oxide nanoparticles (IONPs) was synthesized using co-precipitation method and bismuth particles (BiP) was synthesized by using hydrothermal method. The IONPs was selfassembled on indium tin oxide (ITO) electrode with the aid of 3aminopropyltriethoxysilane (APTES). The effect of soaking time of APTES/ITO in IONPs (30, 60, 90, 120 and 150 min) was investigated. Electrochemical properties of IONPs/APTES/ITO were studied using cyclic voltammetry (CV) and square wave anodic stripping voltammetry (SWASV) analysis. The 90 min IONPs/APTES/ITO electrode was chosen as the optimum as it showed high conductivity and effective surface area, A_e. The linear range for Cd (II) in individual detection was 1 – 10 ppb with sensitivity of 110.59 µA ppb⁻¹ and limit of detection (LOD) of 2.5 ppb. The sensitivity for Pb (II) was $7.01 \,\mu\text{A}$ ppb⁻¹ in the linear range of 50 - 70 ppb with LOD of 2.09 ppb. For simultaneous detection, the linear range for Cd (II) was 30 ppb – 70 ppb with sensitivity of 5.69 µA ppb⁻¹ and LOD of 9.15 ppb. While for Pb (II) the peak was only observed for 80 and 100 ppb. A well-defined peak was produced from interference study, signifying the modified electrode was highly sensitive and selective towards detection of Cd (II). Finally, the IONPs/APTES/ITO electrode was applied for seawater samples, where by Cd (II) was detected with concentration 14.13 ppb and 26.84 ppb for samples from Seagate beach and Pantai Jerejak, respectively. The findings revealed that the IONPs/APTES/ITO electrode can be used as a heavy metal sensor.

CHAPTER 1

INTRODUCTION

1.1 Introduction

The term heavy metal is defined as chemical elements with atomic weight in between 63.5 to 200.6 and metal density greater than 5 g/cm³ (Srivastava and Majumder, 2008). Usually, heavy metal enters the environment by natural (volcanic activity) or anthropogenic (manmade) means. The discharge of waste from vast industrial activity, mining and agriculture contains a certain amount of heavy metals as well, if the waste was not managed before discharging to the environment. The most commonly found heavy metals in waste water effluents are arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), silver (Ag) and zinc (Zn) (Akpor, 2014). Studies performed in Penang reported the presence of Cd, Cr, Cu, Fe and Pb in surface water of major rivers in Penang namely, Sungai Muda, Sungai Jarak, Sungai Kerian, and Sungai Kongsi (Alsaffar et al., 2016).

Frequent exposure of this heavy metals, either directly (workplace) or indirectly (ingestion of contaminated food and water) can cause severe health issues. Singh et al. (2011) have summarized the effect of heavy metals to human's health as in Table 1.1. These heavy metals exhibit high toxicity even in trace amount. Thus, it is important for us to monitor the concentration of heavy metal in surface water to avoid contamination in living organisms. Aragay et al. (2011b) have summarized the permissible limit guideline for heavy metal contamination in drinking water as tabulated in Table 1.2 according to World Health Organization (WHO) and Environmental Protection Agency (EPA).

Table 1.1: Heavy metals and its effect to human health (Singh et al., 2011).

Heavy Metals	Sources	Health issues
Arsenic	Pesticides, Fungicides, Metal smelters	Bronchitis, Dermatitis, Poisoning
Cadmium	Welding, Electroplating, Pesticides, Fertilizers, Cd & Ni batteries, Nuclear fission plant	Renal dysfunction, Lung disease, Lung cancer, bone defects, gastrointestinal disorder, kidney damage
Chromium	Mines, Mineral sources	Nervous system damage, fatigue, irritability
Copper	Mining, pesticides production, chemical industry, metal piping	Anaemia, liver and kidney damage, stomach and intestinal irritation
Lead	Paint, pesticides, smoking, automobile emission, mining, burning of coal	Mental retardation in children, developmental delay, fatal infant encephalopathy, congenital paralysis, nervous system damage, liver, kidney, gastrointestinal damage
Manganese	Welding, fuel addition, ferromanganese production	Inhalation or contact causes damage to central nervous system
Mercury	Pesticides, batteries, paper industry	Tremors, gingivitis, minor psychological changes, nervous system damage, protoplasm poisoning
Zinc	Refineries, brass manufacture, metal plating, plumbing	Zinc fumes have corrosive effect on skin, nervous system damage

Table 1.2: Guideline value for heavy metals in drinking water (Aragay et al., 2011b).

Heavy metal	Provisional Guideline value (ppb)			
	WHO	EPA		
Arsenic, As	10	10		
Cadmium, Cd	3	5		
Copper, Cu	2000	1300		
Lead, Pb	10	15		
Mercury, Hg	1	2		
Nickel, Ni	70	40		
Zn	3000	5000		