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SINTESIS DAN PENCIRIAN SERBUK KACA BIOAKTIF BERASASKAN 

SISTEM SiO2-CaO-Na2O-P2O5  

 

ABSTRAK 

 

Serbuk kaca bioaktif (BG) telah digunakan sebagai pengisi dalam kecacatan 

tulang kerana keupayaan untuk berhubung dengan tisu tulang melalui pembentukan 

ikatan dengan lapisan apatit. Walau bagaimanapun, suhu lebur yang lebih tinggi 

(1450 °C-1570 °C) atau masa lebur yang lebih lama (3 jam) diperlukan untuk 

menghasilkan serbuk BG melalui kaedah lebur kaca konvensional. Dalam 

penyelidikan ini, komposisi baru (50S8P, Nc = 2.69), (54S4P, Nc = 2.60) dan (46S0P, Nc 

= 1.62) serbuk kaca bioaktif  telah dibangunkan daripada sistem SiO2-CaO-Na2O-

P2O5 untuk mendapatkan sifat-sifat  pemprosesan dan  biologi yang baik. 

Penghasilan BG termasuk pengelompokan, pencampuran, peleburan pada suhu yang 

berbeza, lindap kejut air, pengisaran dan pengayakkan. BG dengan komposisi 45S5 

digunakan sebagai kawalan. Pembelaun sinar-X (XRD) memperlihatkan struktur 

kaca amorfus sepenuhnya diperolehi untuk semua komposisi BG dengan puncak 

lebar antara 30-35°. Kaca berasaskan rangkaian silika juga disahkan melalui 

transformasi Fourier spektroskopi inframerah (FTIR) dengan kumpulan berfungsi Si-

O-Si (tetrahedral) dikenalpasti dalam spektrum. Analisis haba membuktikan bahawa 

semua komposisi BG boleh dileburkan pada suhu lebih rendah iaitu 45S5 pada 1377 

°C, 50S8P dan 54S4P pada 1348 °C dengan 46S0P pada 1347 °C. Oleh itu, kesan 

suhu dan masa lebur yang berlainan (1.5, 1 dan 0.5 jam) juga dikaji. Berdasarkan 

XRD, struktur amorfus masih kekal walaupun serbuk BG dihasilkan pada suhu lebur 

yang lebih rendah pada 0.5 jam untuk semua komposisi BG. Bioaktiviti BG dinilai 

dengan pengeraman serbuk BG dengan larutan penimbal Tris (pH 8) selama 7, 14 

dan 21 hari. Ujian in vitro mengesahkan pembentukan hidrosilapatit (HA) pada 

permukaan BG dengan kemunculan puncak berhablur dalam XRD dan ciri-ciri 

kumpulan berfungsi karbonat (C-O) dan fosfat (P-O) yang kelihatan dalam FTIR 

dengan keamatan puncak yang lebih tinggi telah diperhatikan pada 45S5 dan 50S8P 

BG berbanding dengan 54S4P dan 46S0P BG. Tindak balas biologi yang lebih baik 

diperhatikan pada BG yang dibuat pada suhu 1400 °C setelah pengeraman dan 

seterusnya diuji dengan in vitro simulasi cecair badan (SBF), pH 7.3 dan media sel. 

Namun, ciri-ciri pengamatan HA yang kurang telah diperhatikan pada XRD dan 

FTIR pada permukaan BG setelah direndam dalam SBF berbanding dengan larutan 

penimbal Tris. Kebolehserasian yang baik diperhatikan apabila sel stem pulpa gigi 

(DPSC) didedahkan kepada semua komposisi BG. Kesimpulannya, komposisi baru 

serbuk BG telah berjaya dibangunkan pada suhu dan masa lebur yang rendah dengan 

sifat biologi yang baik walaupun mempunyai sambungan rangkaian yang tinggi. 
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SYNTHESIZE AND CHARACTERIZATION OF BIOACTIVE GLASS 

POWDER BASED ON SiO2-CaO-Na2O-P2O5 SYSTEM 

 

ABSTRACT 

 

Bioactive glass (BG) powder have been used as a filler in bone defects due to 

the ability to connect with bone tissue through bonding formation with apatite layer. 

However, higher melting temperature (1450 °C-1570 °C) or longer soaking time (3 

hours) is required to produce BG powder via conventional glass melting route. In this 

research work, new composition (50S8P, Nc =2.69), (54S4P, Nc =2.60) and (46S0P, 

Nc =1.62) of bioactive glass powder was developed from SiO2-CaO-Na2O-P2O5 

system to obtain good processing and biological properties. The BG preparations 

included batching, mixing, melting at different temperature, water quench, milling 

and sieving. BG with 45S5 composition was used as a control. X-ray diffraction 

(XRD) revealed that fully amorphous glass structure was obtained for all BG 

composition with broad peaks between 30-35°. Silica network based glass was also 

confirmed through Fourier transform infrared spectroscopy (FTIR) with Si-O-Si 

(tetrahedral) functional group was observed in the spectrum. Thermal analysis 

proved that all BG composition can be melted at lower temperature where 45S5 at 

1377 °C, 50S8P and 54S4P at 1348 °C with 46S0P at 1347 °C. Hence, the effect of 

different melting temperature and time (1.5, 1 and 0.5 hour) were also studied. 

Amorphous structure was still retained based on XRD although BG powder was 

synthesized with lower melting temperature at shorter melting time, 0.5 hour for all 

BG composition. The BG bioactivity was evaluated by incubating the BG powder 

with Tris buffer solution (pH 8) for 7, 14 and 21 days. In vitro test confirmed on the 

hydroxylapatite (HA) formation on the BG surface with emerging of crystalline 

peaks in XRD. Characteristic of carbonate (C-O) and phosphate (P-O) functional 

group noticed in FTIR with more intense peaks was observed on 45S5 and 50S8P 

BG compared to 54S4P and 46S0P BG. Better biological responds was observed on 

BG synthesized at 1400 °C upon incubation and was further evaluated by in vitro test 

in simulated body fluid (SBF), pH 7.3 and cell culture. However, less intense HA 

characteristic was observed in XRD and FTIR on the BG surface upon immersion in 

SBF compared to Tris buffer solution. Good compatibility was observed when dental 

pulp stem cell (DPSC) was exposed to all BG composition. In conclusion, new 

composition of BG powder was successfully developed at lower melting temperature 

and soaking time with good biological properties although possess high network 

connectivity. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Biomaterials 

 

           A material that is able to interact with biological system by providing 

treatment, tissue or organ replacement and function of body is known as biomaterial. 

Initially, the first generation of biomaterial was focused on the mechanical 

performances of implant material and the material selection was limited to those that 

exhibit inert characteristics (Crovace et al., 2016). Inert material such as steels, 

carbon materials, silicones, and poly (methyl methacrylate) were examples of 

biomaterials. These materials exhibit biocompatibility characteristic yet suffer on 

non-degradation properties which limit their usage in clinical applications (Wang, 

2016). These provided the basis for the invention of second and third generation of 

biomaterials (Crovace et al., 2016).  

 Development of biomaterials for clinical applications require some 

additional excellent important characteristic such as the ability of the biomaterial to 

be harmonized with micro-environment of defective tissue, ability to support the 

mechanical stability of defective tissue during tissue repair and possess the adaptable 

biodegradability characteristic which matches the new tissue formation (Wang, 

2016). The second generation of biomaterials demonstrate such characteristic as the 

ability to induce reaction in the physiological environment. Meanwhile, the growth 

of third generation of biomaterials received great  attention due to the capability of 

the biomaterials to stimulate specific cellular responses at the molecular stage and 

able to activate genes responsible for living tissue regeneration. Bioactive glass and 

glass ceramic are examples of third generation of biomaterials (Crovace et al., 2016).  
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 Biomaterials is widely used in clinical applications such as in repairing bone 

defects. Several reasons that induced bone defects are infection, trauma, tumor and 

congenital deformity. The autogenous bone transplantation is optimum alternative 

for the treatment. However this procedure has drawbacks such as limited source, 

might induce damage at the site of transplantation. The other option is to introduce 

biomaterials that have potential restorative effects in bone defects. Biomaterial such 

as bioactive glass (BG) is widely used to repair bone defect due to the ability to bond 

and integrate with bone in living body through rapid formation of apatite layer on the 

material surface upon exposure to biological environment (Mosbahi et al., 2016). 

Biomaterials also being implemented in dental treatment applications. The use of 

bioactive glass in dental treatment enables the induction of remineralization and 

assist against local irritation. In addition, the possibility to use BG in periodontal 

disease treatment is also recognized. It was reported that the combination of BG and 

clodronate enhanced ion exchange resulting in apatite formation in dental application 

to treat periodontitis during maintenance phase (Rosenqvist et al., 2014). Tooth 

sensitivity can also be treated using biomaterial such bioactive glass where the BG is 

added in tooth paste for the treatment (Fernando et al., 2017). The use of biomaterial 

in wound healing treatment (Lv et al., 2017) and bone fracture (Arcos et al., 2014) 

due to osteoporosis also has been widely explored and studied. 

1.1.1 Bioactive glass 

  A glass is a material which is obtained by heating a solid mixture material 

until it reaches a viscous state and quickly cooled to prevent the formation of 

crystalline structure. Upon quenching, the atom remains in the disordered state 

characteristic of liquids (Salinas, 2014). The glass structure exhibit random array of 

atoms and  are linked by directional bonding and glass network which contains no 
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regular pattern to the spacing among neighbour, and thus are often called 

‘amorphous’ or without form (Kelly and Benetti, 2011; Wright, 2014). The open 

structure of amorphous glass facilitates the inclusion of network modifiers inducing 

the discontinuity of the glass network. The disordered structure leads to the high 

reactivity of glass in aqueous environments. The high surface reactivity of glass is 

the prime advantages of their application in bone repair and replacement (El-

Kheshen et al., 2008).  

 The use of bioactive glass (BG) has received a great attention for bone and 

dental treatment since its first invention by Hench in the 1970s. The primary 

characteristic of BG which includes the ability to integrate with living tissue has 

induced rapid development of BG in biomedical applications (Rahaman et al., 2011). 

Formerly, implant material exhibit only bioinert character and tends to evoke 

undesirable fibrous encapsulation around the material upon implantation. However, 

BG demonstrates a positive response upon implantation by developing a stable bond 

and interface with living tissue without formation of contact between fibrous tissue 

and the living tissue. The bond between BG and tissue is formed through apatite 

layer formation (Miguez-Pacheco et al., 2015).  

 The important characteristics of BG such as high bioactivity which has the 

ability to develop hydroxyapatite layer on the glass surface, osteoconduction and 

osteostimulation make them suitable to be used for bone and tooth repair 

regeneration (Miguez-Pacheco et al., 2015).  The bioactivity depends on the ability 

to develop a bone-like mineral on the glass surface when in contact with 

physiological fluids (Orgaz et al., 2016). BG also shows excellent osteogenic 

characteristic due to ion released during glass dissolution which has the ability to 

stimulate expression of numerous genes that promote osteoblastic cell proliferation 
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and differentiation (Xynos et al., 2001; Hench, 2009). The classic application of BG 

includes bone filling materials, bioactive coating on orthopedic implant, dental 

applications and small bone implant (Jones, 2015).  

1.1.2 45S5 Bioglass 

  The first bioactive glass was synthesized based on SiO2-CaO-Na2O-P2O5 

system. The classical bioactive glass is generally referred as 45S5 Bioglass® and 

originally developed by Hench. The glass is characterized in nominal composition of   

45% silicon dioxide (SiO2), 24.5% calcium oxide (CaO), 24.5% sodium oxide 

(Na2O) and 6% phosphorus pentoxide (P2O5) (in weight percent) (Desogus et al., 

2015). The unique glass composition was reported as 45S5 to indicate the weight 

percentage of silica (SiO2) used as the network former and a 5-fold ratio of Ca/P 

(Hench, 2013). The lower content of network former silicon dioxide (SiO2) and 

higher content of glass network modifier, sodium oxide (Na2O) and calcium oxide 

(CaO) is the key feature that contributes in the bioactivity of 45S5 glass (Rahaman et 

al., 2011). P2O5 was added in the glass composition in order to stimulate the Ca/P 

component of hydroxyapatite (HA), the inorganic mineral of bone (Hench, 2013). 

 The oxide composition of 45S5 allows it to bond with both hard and soft 

tissues (Faure et al., 2015). In vitro experiment using 45S5 glass, heterogeneous 

nucleation of the HA layers on the glass surface was observed indicating the process 

of mimicking bone mineralization during bone repair. This finding indicated the 

possibility to develop HA layer on the implant glass which later will provide 

interfacial bonding with living bone. During, in vivo experiment in mid shaft femur 

of rats, evidence of development of polycrystalline HA layer on the implant 45S5 

glass was observed to form bonding between collagen fiber (Hench, 2016). 45S5 

bioactive glass has been widely used since mid 1980s in clinical treatments in  



 

5 

 

powder form as regenerative bone filler with product names such as Perioglas® and 

Novabone® (Novabone Corporation, Alachua Florida) (Jones et al., 2007). It has 

been use clinically in medical and dental application since then (Hench et al., 2014). 

45S5 bioactive glass powder was first synthesized via conventional melt 

derived route. Melt derived route is a simple method and able to produce BG in 

massive production (Ma et al., 2010). Bioactive glass produced via melt derived is 

fully amorphous without existence of other crystalline phase. The amorphous phase 

is obtained due to the sudden cooling effect after quenched (Aguilar-Reyes et al., 

2017). The bioactive glass produced via melt derived also exists in more disordered 

three-dimensional glass structure. The fully amorphous glass structure induced 

higher ability in formation of apatite layer compared to crystalline phase due to lower 

solubility that might be due to strong bonding between atoms in crystal lattice 

(Dziadek et al., 2016). This route requires mixing stoichiometric amounts of oxides 

which is high purity silica (SiO2), calcium carbonate (CaCO3), sodium carbonate 

(Na2CO3) and phosphorus pentoxide (P2O5). The mixture will then be melted at high 

temperature 1450 °C (Hench et al., 1971). Available literature also indicate range of 

melting temperature to synthesize 45S5 bioactive glass from above oxides, melted at 

1400 °C for four hours (Lefebvre et al., 2008; Yang et al., 2013) and 1380 °C for 

two hours (Zarifah et al., 2015).  The molten glass was then subsequently quenched 

in graphite (Yang et al., 2013) or stainless steel (Aguilar-Reyes et al., 2017) mold to 

obtain glass block or in water to obtain glass frit (Zarifah et al., 2015). In order to 

obtain glass powder, the glass frit or even glass block was crush and ground via 

mortar or milling process (Yang et al., 2013; Araújo et al., 2015). Synthesize of BG 

powder through melt derived is an alternative method to obtain glass without 

destructing the amorphous network structure. The mixture of reactants will be 
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