NEURAL NETWORK BASED INFERENTIAL MODEL FOR ETHANE STEAM CRACKING FURNACE

by

MOHD NAZARUDIN BIN ROSLI

Thesis submitted in fulfilment of

the requirements for the degree of

Master of Science

JANUARY 2019

ACKNOWLEDGEMENT

This dissertation is the result of my research activities at School of Chemical Engineering, Universiti Sains Malaysia. Throughout my journey in furthering my study in postgraduate level, my parents have been very supportive and understanding in all aspects. Without their moral supports, I would not be where I am right now.

I also would like to express my heartiest gratitude to my supervisor Associate Professor Dr Norashid bin Aziz for his support in all phases of this work. Special thanks as well to my research colleagues, Dinie Bin Muhammad, Ashraf Bin Azmi, and Fakhrony Sholahudin Rohman (Pak Fathurahman), for sharing with me their knowledge and technical skills in empirical process modelling through discussion and suggestions.

For three years, I met a lot of great companions from inside and outside of the campus. My friends in Engineering Campus, especially, have made my life here more colourful and enjoyable. They are always be with me through thick and thin. I am so glad to meet them.

Mohd Nazarudin Bin Rosli

15 January 2019

TABLE OF CONTENTS

ACKN	OWLEDGEMENT	ii
TABLE OF CONTENTS		iii
LIST OF TABLES		vi
LIST OF FIGURES		viii
LIST OF ABBREVIATIONS ABSTRAK		xiii
		XV
ABST	RACT	xvii
СНАР	TER ONE: INTRODUCTION	1
1.1	Research background	1
	1.1.1 Steam cracking process	1
	1.1.2 The need of soft sensor	4
1.2 Problem Statement		
1.3	.3 Research objectives	
1.4	Scope of study	
1.5	Thesis organization	
СНАР	TER TWO: LITERATURE REVIEW	9
2.1	Steam cracking process severity	9
2.2	Process measurement in ethane steam cracking	11
	2.2.1 Alternative measurement using soft sensor	11
	2.2.2 Nonlinearity in steam cracking process	13
	2.2.3 Significant process variables for steam cracking	16

- 2.3 Modelling steam cracking process using artificial neural network 14 (ANN)
 2.3.1 Exploration of neural network methods in steam cracking 26
 - modelling
 - 2.3.2 Computational time aspect of neural network modelling 25

	structure determination	
CHAI	PTER THREE: METHODOLOGY	32
3.1	Process description	32
3.2	Steady state model development	37
	3.2.1 ASPEN Plus model development	37
	3.2.2 Determination of overall heat transfer coefficient, U	40
	3.2.3 Process sensitivity study	47
3.3	Dynamic model development	48
3.4	Input variables selection	49
	3.4.1 Factorial design methods	51
	3.4.2 Variable ranking using ANOVA	52
3.5	Nonlinearity analysis	53
	3.5.1 Test for symmetrical response	54
	3.5.2 Test for harmonics response	55
	3.5.3 Multiple steady states	55
3.6	ANN model development	56
	3.6.1 Data generation	56
	3.6.2 Data division for ANN	57
	3.6.3 Feed Forward Neural Network (FFNN) model development	58
	3.6.4 Generalized Regression Neural Network (GRNN) model	58
	development	
	3.6.5 Extreme Learning Machine (ELM-NN) model	61
	development	
	3.6.6 Model performance analysis	63
CHAI	PTER FOUR: RESULTS AND DISCUSSION	65
4.1	Steady state model and dynamic model	65
	4.1.1 ASPEN Plus model validation	65
	4.1.2 Process sensitivity study	68
4.2	Input variable selections	77
4.3	Nonlinearity assessment	79

2.3.3 Alternative to trial-and-error approach for network 29

	4.3.1 Steady states multiplicity	79
	4.3.2 Asymmetrical analysis	83
	4.3.3 Harmonics analysis	87
4.4	Data generation for ANN development	90
	4.4.1 Generated data profile of each input variables	90
	4.4.2 Analysis of simulated data generation	94
	4.4.3 Data division for the development of Neural Network	100
	model	
4.5	Development of Feed Forward Neural Network (FFNN) model	100
	4.5.1 Hidden nodes optimization	100
4.6	Development of Generalized Regression Neural Network model	104
	4.6.1 Smoothing parameter optimization	105
4.7	Training of Feed Forward Neural Networks using Extreme	108
	Learning Machine (ELM)	
	4.7.1 Hidden nodes optimization	110
4.8	Model performance analysis	117
	4.8.1 Computational time	117
	4.8.2 Analysis of model goodness-of-fit	119
СНАР	TER FIVE: CONCLUSIONS AND RECOMMENDATIONS	123
5.1	Conclusion	123
5.2	Recommendations	125
REFERENCES 12		127

APPENDICES

A: MATLAB script for FFNN hidden nodes optimization

B: MATLAB script for GRNN smoothing parameter search

C: MATLAB script for ELM-NN

LIST OF PUBLICATIONS

LIST OF TABLES

Page

Table 2.1	Neural network modelling works in steam cracking furnace	27
Table 3.1	Operating parameters and geometry specification for steam cracking reactor (Froment et al., 1976)	33
Table 3.2	Reactor outlet composition analysis and outlet temperature (Froment et al., 1976)	34
Table 3.3	Molecular reaction network for ethane cracking (Froment et al., 1976)	34
Table 3.4	Furnace geometry specification and process parameters (Plehiers and Froment, 2007)	42
Table 3.5	Range of process sensitivity study	48
Table 3.6	List of input variables for screening	52
Table 3.7	Degree of nonlinearity based on response (Pearson 2006)	54
Table 4.1	Relative error (RE) of steady state model	67
Table 4.2	Summary of combined main effect and interaction effect of each variable. ME – Main effect, IE – Interaction effect, NE – minimal/no effect	79
Table 4.3	Minimum and maximum range of input variables	96
Table 4.4	Minimum and maximum range of responses	97
Table 4.5	FFNN hidden nodes optimization profile	102
Table 4.6	R2 analysis and evaluation time for FFNN with 2 hidden nodes	102

Table 4.7	R2 evaluation of validation and testing profile for GRNN	106
Table 4.8	R2 analysis and evaluation time for GRNN with combination of 0.0109 and 0.0713 smoothing parameter	107
Table 4.9	Sigmoid ELM-NN hidden nodes optimization profile	111
Table 4.10	R2 analysis of Sigmoid ELM-NN on validation and testing profile	111
Table 4.11	R2 analysis and evaluation time for 6 hidden nodes Sigmoid ELM-NN	111
Table 4.12	Sine ELM-NN hidden nodes optimization profile	115
Table 4.13	R2 analysis of Sine ELM-NN on validation and testing profile	115
Table 4.14	R2 analysis and evaluation time for Sine ELM-NN with 5 hidden nodes	115
Table 4.15	Summary of training time and evaluation time of each model	118
Table 4.16	Summary of R2 analysis of validation profile and SIM1 testing profile of each model	120

LIST OF FIGURES

Page

Figure 1.1	Process schematic of ethylene production plant (Samad and Annaswamy, 2011)	2
Figure 3.1	Schematics of ethane steam cracking furnace	32
Figure 3.2	Flowchart of ANN model development	36
Figure 3.3	Flowchart of ASPEN Plus model development	39
Figure 3.4	Simplified sketch of steam cracking tubular reactor and combustion section	40
Figure 3.5	Reduced viscosity chart (Bird et al., 2007)	45
Figure 3.6	Set of input and output for input variable selection	49
Figure 3.7	Flowchart of input variable selection	50
Figure 3.8	Flowchart of nonlinearity assessment	54
Figure 3.9	GRNN schematics diagram	60
Figure 4.1	Schematics of ASPEN Plus ethane cracking furnace	65
Figure 4.2	Cracking reactor temperature profile	66
Figure 4.3	Schematics of ethane cracking furnace in ASPEN Plus Dynamics	68
Figure 4.4	Schematics of ASPEN Plus ethane cracking furnace using TRANSFER block for sensitivity study	69
Figure 4.5	Effect of varying air-fuel ratio on coil outlet temperature	70
Figure 4.6	Effect of varying hydrogen-methane ratio on coil outlet temperature	70

Figure 4.7	Effect of varying steam-hydrocarbon ratio on coil outlet temperature	71
Figure 4.8	Product composition under varying SHC ratio (a) ethane profile, (b) ethylene profile, (c) EER profile	72
Figure 4.9	Product composition under varying reactor pressure (a) ethane profile, (b) ethylene profile, (c) EER profile	74
Figure 4.10	Product composition under varying reactor temperature (a) ethane profile, (b) ethylene profile, (c) EER profile	75
Figure 4.11	Product composition under varying inlet temperature	76
Figure 4.12	Product composition under varying hydrogen-methane ratio	77
Figure 4.13	Reduced model after input variable selection process	79
Figure 4.14	Output multiplicity assessment for SHC ratio (a) ethane profile, (b) ethylene profile	81
Figure 4.15	Output multiplicity assessment for reactor pressure (a) ethane profile, (b) ethylene profile	82
Figure 4.16	Output multiplicity assessment for reactor temperature (a) ethane profile, (b) ethylene profile	83
Figure 4.17	Response of ethane yield and ethylene yield after SHC step input (a) ethane profile, (b) ethylene profile	84
Figure 4.18	Response of ethane yield and ethylene yield after temperature step input (a) ethane profile, (b) ethylene profile	85
Figure 4.19	Response of ethane yield and ethylene yield after pressure step input (a) ethane profile, (b) ethylene profile	86

Figure 4.20	Harmonics response from sinusoidal input of SHC (a) ethane profile, (b) ethylene profile	87
Figure 4.21	Harmonics response from sinusoidal input of reactor temperature (a) ethane profile, (b) ethylene profile	88
Figure 4.22	Harmonics response from sinusoidal input of reactor pressure (a) ethane profile, (b) ethylene profile	88
Figure 4.23	Harmonics response from sinusoidal input of feed composition (a) ethane profile, (b) ethylene profile	89
Figure 4.24	Harmonics response from sinusoidal input of fuel composition (a) ethane profile, (b) ethylene profile	89
Figure 4.25	SHC1 excitation profile (a) SHC excitation profile, (b) ethane and ethylene profile	91
Figure 4.26	COT2 excitation profile (a) COT excitation profile, (b) ethane and ethylene profile	91
Figure 4.27	FeedCompo3 excitation profile (a) Feed ethane excitation profile, (b) ethane and ethylene profile	92
Figure 4.28	FuelCompo4 excitation profile (a) H/M excitation profile, (b) ethane and ethylene profile	92
Figure 4.29	SIM1 excitation profile (a) SHC excitation profile, (b) COT excitation profile, (c) H/M excitation profile, (d) ethane and ethylene profile	93
Figure 4.30	Distribution of ethane, ethylene, and EER response under sequential excitation (a) ethane, (b) ethylene, (c) EER	98
Figure 4.31	Distribution of ethane, ethylene, and EER response under simultaneous excitation (a) ethane, (b) ethylene, (c) EER	99

- Figure 4.32 Assessment of FFNN with 2 hidden nodes on validation 103 profile (a) SHC1 profile, (b) COT2 profile, (c) FuelCompo4 profile
- Figure 4.33Assessment of FFNN with 2 hidden nodes on SIM1104profile (a) ethane and ethylene profile, b) EER profile
- Figure 4.34 Smoothing parameter search profile for GRNN 105
- Figure 4.35 Assessment of GRNN with combination of 0.0109 and 108 0.0713 smoothing parameter on Test 1 profile (a) SHC1 profile, (b) COT2 profile, (c) FuelCompo4 profile
- Figure 4.36 Assessment of GRNN with combination of 0.0109 and 109 0.0713 smoothing parameter on SIM1 Test 2 profile (a) ethane and ethylene profile, (b) EER profile
- Figure 4.37 Assessment of Sigmoid ELM-NN with 6 hidden nodes on 112 Test 1 profile (a) SHC1 profile, (b) COT2 profile, (c) FuelCompo4 profile
- Figure 4.38 Assessment of Sigmoid ELM-NN with 6 hidden nodes on 113 SIM1 Test 2 profile (a) ethane and ethylene profile, (b) EER profile
- Figure 4.39 Assessment of Sine ELM-NN with 5 hidden nodes on Test 116 1 profile (a) SHC1 profile, (b) COT2 profile, (c) FuelCompo4 profile
- Figure 4.40 Assessment of Sine ELM-NN with 5 hidden nodes on 117 SIM1 Test 2 profile (a) ethane and ethylene profile, (b) EER profile
- Figure 4.41 Assessment of FFNN, GRNN, Sigmoid ELM-NN, and 121 Sine ELM-NN on SIM1 EER profile

Figure 4.42 Regions in SIM1 EER profile predicted with low accuracy 122 by all models (a) EER range 3.0 - 4.0, (b) EER range 4.0 - 4.5, (c) EER 5.0

LIST OF ABBREVIATIONS

AFR	Air-fuel ratio
ANN	Artificial neural network
ANOVA	Analysis of variance
APRBS	Variable amplitude pseudo-random binary signal
ART	Adaptive resonance theory
BANN	Bootstrap aggregated neural network
BP	Back propagation
BR	Bayesian regularization
CIP	Coil inlet pressure
СОР	Coil outlet pressure
СОТ	Coil outlet temperature
DV	Disturbance variable
EER	Ethylene-ethane ratio
ELM	Extreme learning machine
FCC	Fluid catalytic cracking
FFNN	Feedforward neural network
FIS	Fuzzy inference system
FPM	First principle model
GA	Genetic algorithm
GRNN	General regression neural network
ITNN	Input-training neural network
KSF	Kinetic severity factor
LM	Levernberg-Marquardt

MIMO	Multiple Input Multiple Output
MISO	Multiple Input Single Output
MLP	Multilayer Perceptron
MPC	Model predictive control
MTM	Maximum tube metal temperature
MV	Manipulated variable
PCA	Principle component analysis
PDF	Probability density function
PER	Propylene-ethylene ratio
PRBS	Pseudo-random binary signal
PSO	Particle swarm optimization
RBF	Radial basis function
RMSE	Root mean squared error
TMT	Tube metal temperature
SCG	Scale conjugate gradient
SHC	Steam-hydrocarbon ratio
SOM	Self-organizing map
SS_ethane	Steady state/nominal ethane flow rate
SS_ethylene	Steady state/nominal ethylene flow rate

MODEL PENGANGGARAN BERDASARKAN RANGKAIAN NEURAL BAGI RELAU PEMECAHAN STIM UNTUK ETHANA

ABSTRAK

Taburan hasil produk dari pemecahan ethana ditentukan melalui persampelan makmal dan alat penganalisis unsur untuk mengukur tahap pemecahan. Disebabkan alat penganalisis unsur mengambil masa untuk menghasilkan keputusan, hanya bergantung kepada alat penganalisis dan analisis makmal untuk menentukan hasil produk utama akan melambatkan tindakan kawalan segera kepada proses. Untuk menyelesaikan masalah ini, penderia penganggaran diperlukan. Dalam kajian ini, model penganggaran berdasarkan rangkaian neural telah dibangunkan

Proses pemecahan steam etana telah dimodelkan menggunakan ASPEN Plus dan disahkan dengan data industri yang diambil dari kepustakaan. Ralat relatif untuk keluaran model tersebut adalah kurang dari 10%. Model ASPEN Plus tersebut digunakan untuk pemilihan input, penilaian tidak-linear, dan penjanaan data untuk permodelan rangkaian neural. Pemilihan input menunjukkan yang lima pembolehubah memberi kesan yang penting kepada pengeluaran ethana dan etilina. Lima pembolehubah tersebut adalah tekanan reaktor, suhu keluaran reaktor, nisbah wap dan hidrokarbon, komposisi bahan masuk, dan komposisi bahan bakar. Penilaian ciri-ciri tidak linear proses tersebut menunjukkan yang proses itu mempunyai tidak balas yang tidak simetri dan mempunyai ciri-ciri kepelbagaian input. Oleh itu, proses ini boleh dikategorikan sebagai proses yang tidak linear.

Data yang dijana dari model ASPEN Plus digunakan untuk latihan, pengesahan, dan ujian. Dua kaedah telah digunakan untuk menghasilkan data tersebut iaitu secara berturutan dan secara serentak. Empat pembolehubah diuji secara berturutan dan digabungkan menjadi profil berturutan. Data itu dibahagikan kepada bahagian untuk latihan dan pengesahan, dan data yang dihasilkan serentak digunakan untuk ujian.

Tiga model rangkaian neural, iaitu Rangkaian Neural Suap-depan (FFNN), Rangkaian Neural Regresi Teritlak (GRNN), dan Rangkaian Neural Mesin Pembelajaran Ekstrim (ELM-NN), telah dibangunkan dan dinilai melalui ketepatan ramalan dan masa pengiraan. Keputusan penilaian menunjukkan yang ketepatan ramalan ELM-NN adalah lebih tinggi dari FFNN dan GRNN. Untuk latihan pula, model terbaik untuk ELM-NN, GRNN, dan FFNN memerlukan masa 0.0068 saat, 0.35 saat, dan 12 saat setiap satu. Dari segi masa pengiraan untuk sampel data yang terbaru, ketiga-tiga model memerlukan kurang dari 0.05 saat untuk mengira satu sampel data. Walaupun begitu, masa pengiraan untuk model GRNN yang telah dilatih meningkat secara eksponen dengan peningkatan jumlah sampel data manakala model FFNN dan model ELM-NN yang dilatih tidak menunjukkan peningkatan masa pengiraan yang ketara,

Dari tiga model ini, ELM-NN memberi prestasi terbaik dari segi ketepatan ramalan dan masa pengiraan. Nilai R² untuk model ELM-NN adalah 91.3% dan 82.6% untuk ethana dan etilina setiap satu. Model tersebut memerlukan 0.0068 saat untuk latihan dan juga 0.0001 saat untuk mengira hasil ethana dan etilina dari data input yang baru. Ini membuatkan model tersebut sesuai untuk digunakan dalam aplikasi system kawalan penganggaran masa nyata.

NEURAL NETWORK BASED INFERENTIAL MODEL FOR ETHANE STEAM CRACKING FURNACE

ABSTRACT

The product yield distribution of ethane steam cracking is typically obtained using analysers and lab sampling. Since both methods take time to produce results, primarily depending on them to determine main product yield will hinder immediate control action on the process. In order to resolve this issue, an inferential sensor is required. In this study, a neural network based inferential model is developed.

The ethane steam cracking process has been modelled using ASPEN Plus and validated with industrial data taken from literature. The relative error (RE) of the model outputs obtained are less than 10%. The ASPEN Plus model is used for input variable selection, nonlinearity assessment, and data generation for neural network modelling. The input variable selection study found that five variables are significantly influential to the ethane and ethylene yields, namely reactor pressure, coil outlet temperature, steam-hydrocarbon ratio, feed composition, and fuel composition. Nonlinearity assessment of the process shows that the process exhibit asymmetrical response and input multiplicities characteristics, and thus, can be classified as a nonlinear process.

Data generated from the ASPEN Plus model is used for training, validation, and testing. Two methods have been used to generate the data which are sequential excitation and simultaneous excitation. Four variables are individually excited and combined to make a sequential excitation profile. Data from sequential excitation is divided into training and validation while data from simultaneous excitation is used solely for testing.

Three neural network model, namely the Feedforward Neural Network (FFNN), the Generalized Regression Neural Network (GRNN), and the Extreme Learning Machine Neural Network (ELM-NN) are developed and they are evaluated in terms of prediction accuracy and computational time. The evaluation results show that ELM-NN prediction accuracy is higher than FFNN and GRNN. To train, the best model for ELM-NN, GRNN, and FFNN models require 0.0068 seconds, 0.35 seconds, and 12 seconds respectively. In terms of computation time of new set of input data sample, all three models require less than 0.05 seconds to compute one sample of data. However, computation time of the trained GRNN model increases exponentially with the increasing amount of data samples in a batch while for trained FFNN and trained ELM-NN model, the increment is not significant.

Out of the three models, the ELM-NN gives the best performance in terms of prediction accuracy and computational time. The R^2 of the ELM-NN model is 91.3% and 82.6% for ethane and ethylene yield respectively. The model requires 0.0068 seconds to train and 0.0001 seconds to compute ethane yield and ethylene yields from a new set of input data. This makes the model suitable for applications in real time inferential control system.

CHAPTER ONE INTRODUCTION

1.1 Research background

Olefin is one of the most valuable products of the petrochemical industry. It is used as a feedstock in many petrochemical processes and serves as the building block for other value added products. The two most sought olefins are ethylene and propylene, with ethylene being in larger demand of the two. Among the derivatives of ethylene are polyethylene and ethylene oxide (Liu et al., 2010). Olefin is produced through a process called cracking, which in principle, converts long chains of hydrocarbons into lighter components.

1.1.1 Steam cracking process

Cracking is a very important process as it has the ability to convert low value heavies such as heavy vacuum gas oil and atmospheric gas oil into high value ethylene and propylene. There are various commercial cracking processes, namely steam cracking, hydrocracking, and catalytic cracking. For ethane feedstock, steam cracking is the prominent process to convert ethane into higher value ethylene. A typical ethylene plant process schematic is shown in Figure 1.1. Fresh ethane is mixed with superheated steam, preheated upon entering the furnace before being supplied with extreme heat in the furnace to initiate the cracking reaction. The reaction is endothermic, and will continue in the cracking coil as long as it receives heat input along the furnace. Monitoring the reaction temperature is done at the coil outlet, which is called the Coil Outlet Temperature (COT). Upon exiting the radiant section, the mixture will undergo rapid quenching in the transfer line exchanger (TLE) to stop the cracking reaction by reducing the temperature. Then, the cracked gas composition is analysed at the TLE outlet by an online analyser and a laboratory test. This is the end of the section called the Hot Section. The main products are recovered via a series of compressions, refrigeration, and distillation systems. This section is called the Cold Section. Unreacted feed together with certain products are recycled back into the furnace to mix with the fresh feed.

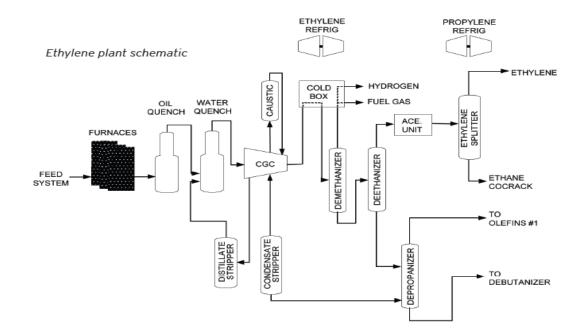


Figure 1.1: Process schematic of ethylene production plant (Samad and Annaswamy, 2011)

Throughout the run length of the furnace, the dynamics of the process slowly change as the feed composition changes after fresh feed is mixed with recycled feeds (Zhuang and Yu, 2003), and coke is deposited along the reactor tubes. The presence of the coke layer reduces the overall heat transfer coefficient of the coil and increases the heat input requirement to the reactor (Masoumi et al., 2006a, Karimzadeh et al., 2009). After a period of time, the coke deposition is thick enough to cause the heat input to the coil to be too high, making the coil temperature reach its mechanical limit,

known as the Maximum Tube Metal (MTM) temperature. The furnace operation is stopped and undergone a process called decoking to remove all the coke deposits in the coils (Zhang et al., 2009). Upon completion of decoking, the furnace is started up again with fresh feed.

The depth of the cracking reactions is called cracking severity - which is dependent on feed conversion, feed composition, product composition, reactor temperature, reactor pressure, and residence time. Monitoring the severity enables plant operators to evaluate the condition of the cracking process and allows them to optimize the cracking furnace accordingly. If the severity is allowed to be too high, it leads to over-cracking, which promotes the progression of secondary reactions and the production of by-products. If the severity is allowed to be too low, it causes the undercracking of the feedstock, producing an insufficient rate of the desired products and subsequently severing the economics of the plant. Thus, maintaining cracking severity continuously at target is paramount to ensure an optimum cracking process (Ghashghaee and Karimzadeh, 2011).

Based on the review of severity measures by Van Camp et al. (1985), the easiest method to analyse severity is by using the properties of the reactor effluent. Based on the effluent properties, two methods can be used to measure cracking severity. The first method is using a temperature-based index. Typically COT is chosen as the temperature-based severity measure due to its proportional relation to the feed conversion (Van Camp et al., 1985). The other method is by relating the severity index directly to product compositions such as Methane yield (Y_{meth}), Propylene/Ethylene ratio (PER) and Ethylene/Ethane ratio (EER) (Van Geem et al., 2005). There are pros and cons in using each severity index. While COT is the easiest to measure and control, it does not provide an accurate description of the product distribution (Van Camp et

al., 1985). Changes to the process parameters will change the distribution of the product yield even though COT is continuously maintained at target. Because of that, the furnace is not operating at optimum performance (Ghashghaee and Karimzadeh, 2011). Since it is not able to accurately relate to product yield distribution, COT is not a good measure of severity.

Using a of composition-based severity index is the most informative way of measuring severity as it enables plant operators to gauge the effect of process parameters on product distributions. Setting the composition-based severity index as the control objective allows the reactor to be operated optimally in terms of production and cost, as demonstrated by Ghashghaee and Karimzadeh (2011) in their severity optimization study. Using the composition-based severity index as the control objective will also allow process adjustments towards maximum desirable products (Ghashghaee and Karimzadeh, 2011). Thus, a composition-based severity index is a better measure. In order to direct the ethane cracking severity index towards ethylene selectivity, the use of the Ethylene/Ethane ratio (EER) is proposed (Van Geem et al., 2005).

1.1.2 The need for soft sensor

The drawback of using a composition-based severity index is the dependency on the measurements from the analyser. The analyser data is infrequent and has a long sampling time, which could be up to 35 minutes per sample (Masoumi et al., 2006a). Obtaining real time product composition data that enables immediate control adjustment is not possible. One of the proposed methods to tackle this issue is by using a soft sensor (Masoumi et al., 2006a). The soft sensor is an inferential model capable of inferring the product composition of the process from secondary measurements such as temperature, pressure, and flow rate. Since the response time of the soft sensor is much faster than the analyser, it can be used as a replacement for the analyser in the process monitoring system and the severity control system.

Many chemical processes are inherently nonlinear. Some processes exhibit stronger nonlinearity compared to others (Pearson, 2006). The steam cracking process is one of the processes that exhibit nonlinearity characteristics primarily due to the interaction between process parameters, the interaction between the process equipment (Fluegel et al., 1997), and the inherent nonlinearities that come from the cracking reaction system (Xu et al., 2011). In order to accurately model the steam cracking process, the first principle method (FPM) and nonlinear empirical methods are among the suitable methods to be used. The FPM suffers from complex development processes and high computational requirements to solve the set of differential equations present in the model (Bhutani et al., 2006). In order to reduce the computational requirements, many assumptions need to be made to simplify the physics and chemistry of the system. This greatly reduces the accuracy of the model and reduces its merit. The alternative for the FPM is the empirical model, which is built from actual operating data. One of the data-based modelling method which works well with the nonlinear system is the Artificial Neural Network (ANN) (Jin et al., 2016).

1.2 Problem Statement

The ethane cracking furnace is usually operated by controlling the coil outlet temperature (COT). However, apart from temperature, the cracking severity is also influenced by other factors. Maintaining COT at target does not take into account the effect of other influencing process parameters towards the product yield. The use of the Ethylene/Ethane ratio (EER) as a severity index is a more accurate measure. Information on the actual product yield will enable adjustment of the process the parameters to maintain EER at target. However, due to the long sampling time, using the analyser data as feedback will make immediate control action not possible (Masoumi et al., 2006b). Thus, there is a need to develop an inferential model that can predict product composition based on the current operating condition. The predicted product yields will be used as the input to the severity controller until the analyser result is available (D'Hulster et al., 1980). Thus, this enables a quick response when deviation is detected in product quality.

Among the methods that can be used to develop the inferential model is the Artificial Neural Network (ANN). This method is gaining attention due to its ability to learn from available data and its capability to model nonlinear systems. Since the cracking process is known to be nonlinear (Xu et al., 2011), the ANN is suitable to be used. Apart from nonlinearity, another characteristic of the cracking process is timevariance. This is due to the changing process dynamic over time (Zhang et al., 2009). The same values of the process parameters will not produce the same product yield distribution several days later. In addition, the steam cracking furnace is never operated in full steady state condition (Ghashghaee and Karimzadeh, 2011). Thus, the inferential model has to be able to track the changing process condition (Slišković et al., 2013) and be able to update the model parameters (Iliyas et al., 2013), if necessary. In order to solve this issue, the ANN with a fast training capability is required. Among the techniques that are capable of fast trainings are the Generalized Regression Neural Network (GRNN) and the use of the Extreme Learning Machine (ELM) algorithm to train the Feedforward Neural Network (ELM-NN). Thus, the GRNN or the ELM-NN is used to develop the inferential model.