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𝑇max𝐵𝑂  The maximum backoff for the relay nodes 

𝑇𝐴𝐶𝐾 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ACK timeout 
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𝑇𝑒  Duration of unsuccessful transmission due to error 

𝑇𝑠  The average transmission time 

𝑇𝑥 The average packet transmission time for 𝑆 to 𝐷 pairs with a data-rate 

of 𝑥 Mbps  

𝑇𝐿𝐸𝐴−𝐶𝑀𝐴𝐶 𝑂𝐻 LEA-CMAC overhead 

𝑇𝑂𝐻  Legacy 802.11 MAC overhead 

𝑇𝑐  The collision time  

𝑇̅𝑠  The average of the 𝑇𝑠 observed by other nodes in the network 

𝑇̅𝑒  The average of the 𝑇𝑒 observed by other nodes in the network 

𝑇̅𝑐  The average of the 𝑇𝑐 observed by other nodes in the network 

𝑇𝑠
𝐷𝑇  The duration of successful Legacy 802.11 MAC  

𝑇𝑠
𝐶𝑜𝑜𝑝𝑀𝐴𝐶

  The duration of successful CoopMAC  

𝑇𝑠
𝑃𝑂−𝐶𝑀𝐴𝐶       The duration of successful PO-CMAC,  

𝑇𝑠
𝑇𝑆−𝐸𝐻−𝐶𝑀𝐴𝐶 The duration of successful TS-EH-CMAC 

𝑇𝑠
𝑃𝑂−𝑇𝑆−𝐶𝑀𝐴𝐶 The duration of successful PO-TS-CMAC 

𝑇𝑠
𝑃𝑆−𝐸𝐻−𝐶𝑀𝐴𝐶 The duration of successful PS-EH-CMAC 

𝑇𝑠
𝑃𝑂−𝑃𝑆−𝐶𝑀𝐴𝐶 The duration of successful PO-PS-CMAC  

𝜓𝑟𝑖
𝑇𝑆  The harvested energy at the 𝑖𝑡ℎ relay node for TS  

𝜓𝑟𝑖
𝑃𝑆  The harvested energy at the 𝑖𝑡ℎ relay node for PS  

𝑢(𝑡)   The stochastic process of the residual suspension time 𝑘 

𝜈   Path-loss exponent 

𝑥(𝑡)  The normalized information symbol from 𝑆, with Ε{⌊𝑥(𝑡)⌋2} = 1, 

𝑥̂(𝑡)   The re-encoded signal 

𝑋  The subset of TS and PS 

𝑦𝑟𝑖(𝑡)  The received signal at the 𝑖𝑡ℎ helper terminal 
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𝑦𝐷(𝑡)  The received signal at the destination terminal 

𝛾𝑆,𝑟𝑖
𝑇𝑆   The instantaneous received SNR at the 𝑖𝑡ℎ relay nodes for TS relaying 

𝛾𝑟𝑖,𝐷
𝑇𝑆  The instantaneous received SNR at the destination nodes for TS 

relaying 

𝛾𝑆,𝑟𝑖
𝑃𝑆   The instantaneous received SNR at the 𝑖𝑡ℎ relay nodes for PS relaying 

𝛾𝑟𝑖,𝐷
𝑃𝑆  The instantaneous received SNR at the destination nodes for PS 

relaying 

𝛾𝑡ℎ  Threshold SNR 
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