PERVAPORATION MEMBRANE CONTAINING ELECTROSPUN POLY(VINYL ALCOHOL) COMPOSITE NANOFIBRE LAYER FOR DEHYDRATION OF 1,4-DIOXANE

YEANG QIAN WEN

UNIVERSITI SAINS MALAYSIA

2018

PERVAPORATION MEMBRANE CONTAINING ELECTROSPUN POLY(VINYL ALCOHOL) COMPOSITE NANOFIBRE LAYER FOR DEHYDRATION OF 1,4-DIOXANE

by

YEANG QIAN WEN

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

December 2018

ACKNOWLEDGEMENT

First and foremost, I would like to convey my heart-felt gratitude to my dedicated supervisor, Associate Professor Dr. Tan Soon Huat and co-supervisor, Associate Professor Ir. Dr. Abu Bakar Sulong for their excellent supervision and guidance throughout my research. Despite their busy schedule, they were willing to provide invaluable assistance in offering constructive comments and suggestions based on their immense knowledge in my field of study. Without their support, this research project would not have come this far.

Next, I would like to express my sincere gratitude to my fellow friends and colleagues, Kin Hang, Swee Pin, Yit Thai, Siew Hoong, Kian Fei, Huey Ping, who had given me their support during the ups and downs of my PhD journey. Their physical, spiritual and mental support gave me motivation to strive for the completion of this research.

Besides that, I would like to express my appreciation to our respected Dean, Professor Dr. Azlina Bt. Harun @ Kamaruddin, Deputy Dean, Associate Professor Ir. Dr. Zainal Ahmad and Professor Dr. Ahmad Zuhairi Abdullah for the guidance throughout my research in USM. Also, I would like to express my gratitude to all the administrative staffs and laboratory assistant engineers of School of Chemical Engineering, USM for giving me full support throughout my research.

Also, my deepest and heart-felt gratitude towards my beloved parents and siblings for their endless love and encouragement throughout my studies.

Not forgotten, my grateful acknowledgement to the financial supports from MyPhd fellowship from the Ministry of Higher Education of Malaysia and the Fundamental Research Grant Scheme (FRGS) (A/C:6071295).

Finally, I would like to thank those who indirectly contributed to this research, including those that I might have missed out. Their contributions and kindness are greatly appreciated.

Thank you very much!

Yeang Qian Wen, 2018

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iv
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	XV
LIST OF SYMBOLS	xvii
ABSTRAK	xix
ABSTRACT	xxi

CHAPTER ONE: INTRODUCTION

1.1	Perva	poration	1
1.2	Curren	nt development of membrane for pervaporation	3
	1.2.1	Polymeric membrane	6
	1.2.2	Inorganic membrane	7
	1.2.3	Mixed-matrix membranes (MMMs)	8
1.3	Electr	ospun nanofibres and their applications	10
1.4	Proble	em Statement	11
1.5	Objec	tives	14
1.6	Scope	of the study	14
1.7	Organ	ization of the thesis	16

CHAPTER TWO: LITERATURE REVIEW

2.1	Fabrication of electrospun nanofibres via electrospinning process		18
	2.1.1	Working principle	19
	2.1.2	Effects of various parameters on electrospinning	21

	2.1	.2(a)	Solution para	meters	22
			2.1.2(a)(i)	Polymer concentration	22
			2.1.2(a)(ii)	Molecular weight	22
			2.1.2(a)(iii)	Viscosity	23
			2.1.2(a)(iv)	Surface tension	25
	2.1	.2(b)	Processing pa	arameters	25
			2.1.2(b)(i)	Applied voltage	25
			2.1.2(b)(ii)	Tip to collector distance	26
			2.1.2(b)(iii)	Flow rate of solution	27
			2.1.2(b)(iv)	Types of collectors	27
2.2	Electrospur	n nano	fibres in memb	prane separation processes	28
	2.2.1 Pre	ssure-	driven membra	ane processes	28
	2.2.2 Ost	motica	lly driven mer	nbrane processes	32
	2.2.3 Me	mbran	e distillation		34
	2.2.4 Per	vapora	ation		36
2.3	Metal organ	nic fra	meworks (MO	Fs): Cu-BTC	37
2.4	Carbon nan	otube	s (CNTs)		39
2.5	Application	n of	nanomateria	ls incorporated MMMs in	41
	pervaporati	ion pro	ocess		
	2.5.1 MC	OFs			41
	2.5.2 CN	Ts			48
2.6	Pervaporati	ion del	hydration of 1,	4-dioxane/water mixture	55
2.7	Fundament Rautenbach	al on 1 mode	the estimation	n of transport coefficient using	58
2.8	Summary				61

CHAPTER THREE: MATERIALS AND METHODOLOGY

3.1	Raw n	Raw materials and chemicals	
	3.1.1	Raw materials	63
	3.1.2	Chemicals	63
3.2	Overal	ll research methodology	64
3.3	Synthe	esis of Cu ₃ (1,3,5-benzenetricarboxylate) ₂ , Cu-BTC	66
3.4	Fabric	ation of asymmetric membranes	67

	3.4.1	Fabrication of asymmetric membrane with pre-selective layer of electrospun PVA nanofibres (M ₀)	67
	3.4.2	Fabrication of asymmetric membrane with pre-selective layer of electrospun Cu-BTC/PVA nanofibres (M _{CuBTC})	68
	3.4.3	Fabrication of asymmetric membrane with pre-selective layer of electrospun COOH-MWCNT/PVA nanofibres (MCOOH-MWCNT)	69
3.5	Charao	cterization	70
	3.5.1	Brunauer-Emmett-Teller (BET)	70
	3.5.2	Scanning electron microscopy (SEM)	70
	3.5.3	Transmission electron microscopy (TEM)	70
	3.5.4	Fourier transform infrared (FTIR) analysis	71
	3.5.5	Capillary flow porometer	71
	3.5.6	Contact angle measurement	71
3.6	Liquid	sorption study	72
3.7	Pervap	poration	73
	3.7.1	Pervaporation operation	73
	3.7.2	Pervaporation process study	74
	3.7.3	Evaluation of pervaporation performance	76
	3.7.4	Estimation of the transport coefficient in pervaporation using the Rautenbach model	77

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1	Charac	cterization of Cu-BTC and M _{CuBTC}	82
	4.1.1.	Brunauer-Emmett-Teller (BET) surface area analysis and total pore volume of Cu-BTC	82
	4.1.2	Scanning electron microscopy (SEM)	82
	4.1.3	Fourier transform infrared (FTIR) analysis	85
	4.1.4	Pore size distribution of the electrospun pre-selective nanofibre layer	86
	4.1.5	Contact angle measurement	87
4.2	Liquid	sorption study	87
4.3	Pervap dioxan	poration performance of M_{CuBTC} in the dehydration of 1,4- e/water mixtures	91
	4.3.1	Effect of the electrospun Cu-BTC/PVA layer of the asymmetric membranes on pervaporation	91

	4.3.2	Effect of feed water concentration	96
	4.3.3	Effect of feed temperature	99
4.4	Charac	terization of COOH-MWCNTs and MCOOH-MWCNT	104
	4.4.1	Brunauer-Emmett-Teller (BET) surface area analysis and total pore volume of COOH-MWCNT	104
	4.4.2	Transmission electron microscopy (TEM) images of COOH-MWCNT and electrospun COOH- MWCNT/PVA nanofibre	105
	4.4.3	Scanning electron microscopy (SEM)	106
	4.4.4	Fourier transform infrared (FTIR) analysis	107
	4.4.5	Pore size distribution of the electrospun pre-selective nanofibre layer	109
	4.4.6	Contact angle measurement	109
4.5	Liquid	sorption study	110
4.6	Pervap 1,4-dio	oration performance of MCOOH-MWCNT in dehydration of xane/water mixtures	113
	4.6.1	Effect of the electrospun COOH-MWCNT/PVA layer of the asymmetric membranes on pervaporation	113
	4.6.2	Effect of feed water concentration	117
	4.6.3	Effect of feed temperature	121
4.7	Compa asymm	rison of the pervaporation performances of the etric membranes MCuBTC and MCOOH-MWCNT	126
4.8	Compa literatu	rison of the present pervaporation performance with re reported data	128
4.9	Estima Rauten	tion of the transport coefficient in pervaporation using the bach model	130
	4.9.1	Estimation of the transport coefficient in pervaporation through the $M_{CuBTC(1.0)}$ asymmetric membrane	130
	4.9.2	Estimation of the transport coefficient in pervaporation through the M _{COOH-MWCNT} (0.5) asymmetric membrane	139
	4.9.3	Comparison of the Rautenbach model-predicted parameters of the M _{CuBTC(1.0)} and M _{COOH-MWCNT(0.5)} asymmetric membranes	147

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	151
5.2	Recommendations	153

REFERENCES

APPENDICES

Appendix A	Calculation of sorption properties
Appendix B	Calculation of pervaporation performances
Appendix C	Calculation of activity coefficients
Appendix D	Estimation of transport coefficients

LIST OF PUBLICATIONS

LIST OF TABLES

		Page
Table 2.1	Performance of various membranes in pervaporation dehydration of 1,4-dioxane.	59
Table 3.1	List of chemicals used in this research work	64
Table 3.2	Experimental studies on the effect of feed concentration of water for dehydration of 1,4-dioxane.	75
Table 3.3	Experimental studies on the effect of feed temperature for dehydration of 1,4-dioxane.	75
Table 4.1	Pore size distribution of the electrospun pre-selective nanofibre layer of M_0 , $M_{CuBTC(0.5)}$ and $M_{CuBTC(1.0)}$.	86
Table 4.2	Comparison of contact angle measurements of dense PVA, M_0 , $M_{CuBTC(0.5)}$ and $M_{CuBTC(1.0)}$.	87
Table 4.3	Comparison of the sorption selectivities of dense PVA, M_0 , $M_{CuBTC(0.5)}$ and $M_{CuBTC(1.0)}$ in 95 wt.% 1,4-dioxane/5 wt. % water.	90
Table 4.4	Performance of $M_{CuBTC(1.0)}$ for the pervaporation dehydration of 95 wt.% 1,4-dioxane/5 wt.% water mixture at 30°C and 5 mmHg.	96
Table 4.5	Pore size distribution of the electrospun pre-selective nanofibre layer of M_0 , $M_{COOH-MWCNT(0.5)}$ and $M_{COOH-MWCNT(1.0)}$.	109
Table 4.6	Measured contact angles of dense PVA, M0, MCOOH- MWCNT(0.5) and MCOOH-MWCNT(1.0).	110
Table 4.7	Comparison of the sorption selectivities of dense PVA, M ₀ , M _{COOH-MWCNT(0.5)} and M _{COOH-MWCNT(1.0)} in 95 wt.% 1,4-dioxane/5 wt. % water	113
Table 4.8	Performance of M _{COOH-MWCNT(0.5)} for the pervaporation dehydration of 95 wt.% 1,4-dioxane/5 wt.% water mixture at 30°C and 5 mmHg.	118
Table 4.9	Comparison with available literature on the pervaporation dehydration of 1,4-dioxane/water mixture.	129

- Table 4.10Activation energies, relative transport coefficients and
enthalpies of sorption of water and 1,4-dioxane of the
MCuBTC(1.0) asymmetric membrane.131
- Table 4.11Experimental and predicted transport coefficient, D of134water and 1,4-dioxane in the MCuBTC(1.0) asymmetricmembrane at different feed temperature.
- Table 4.12R² values for the permeation fluxes of water and 1,4-
dioxane and separation factor of the MCuBTC(1.0) predicted
with Rautenbach equation.138
- Table 4.13Activation energies, relative transport coefficients and
enthalpies of sorption of water and 1,4-dioxane of the
MCOOH-MWCNT(0.5) asymmetric membrane.140
- Table 4.14Experimental and predicted transport coefficient, D of
water and 1,4-dioxane in the MCOOH-MWCNT(0.5)
asymmetric membrane at different feed temperature.143
- Table 4.15R² values for the permeation fluxes of water and 1,4-
dioxane and separation factor of the MCOOH-MWCNT(0.5)
predicted with Rautenbach equation.147
- Table 4.16Comparison of the activation energies, relative transport147coefficients and enthalpies of sorption of water and 1,4-
dioxane of the MCuBTC(1.0) and MCOOH-MWCNT(0.5)
asymmetric membranes.147
- Table 4.17Comparison of the predicted transport coefficient, D of
water and 1,4-dioxane in the MCuBTC(1.0) and MCOOH-
MWCNT(0.5) asymmetric membranes at different feed
temperature.149

LIST OF FIGURES

Page

Figure 1.1	Schematic diagram of the pervaporation process (Feng and Huang, 1997).	2
Figure 1.2	Graphical representation of the solution-diffusion mechanism (Ong et al., 2016).	4
Figure 1.3	Schematic diagram of a MMM.	9
Figure 1.4	Schematic diagram of the proposed asymmetric membrane.	13
Figure 2.1	A basic electrospinning set up (Bhardwaj and Kundu, 2010).	20
Figure 2.2	Schematic illustration of the Taylor cone formation: (A) Surface charges are induced in the polymer solution due to the electric field. (B) Elongation of the pendant drop. (C) Deformation of the pendant drop to the form the Taylor cone due to the charge-charge repulsion. A fine jet initiates from the cone (Baji et al., 2010).	21
Figure 2.3	Variation in morphology of electrospun nanofibres of poly(ethylene oxide) PEO with increasing viscosity: (a–d) schematic and (e–h) SEM micrographs (Haider et al., 2015).	24
Figure 2.4	Flexible assembly process of MOFs from metal nodes and organic linkers (Burtch et al., 2014).	38
Figure 2.5	Dimeric cupric tetracarboxylate unit and unit cell crystal structure of Cu-BTC (Cu: light pink; C: grey; H: white and O: red) (Yang et al., 2013).	39
Figure. 2.6	Schematic structures of (a) single-walled CNT (SWCNT) and (b) multi-walled CNTs (MWCNT) (Dubey et al., 2017). Transmission electron microscopy (TEM) images of (c) SWCNT (Vadahanambi et al., 2013) and (d) MWCNT (Yee et al., 2014).	40
Figure 3.1	Schematic diagram of the overall research methodology.	65
Figure 3.2	Schematic diagram of the electrospinning setup.	68
Figure 3.3	Schematic diagram of the pervaporation test rig.	74
Figure 4.1	SEM images of Cu-BTC crystals at (a) $3000 \times$ and (b) $10000 \times$ magnification.	82

Figure 4.2 SEM images of PVA nanofibres electrospun using PVA 83 solutions with concentration of (a) 6, (b) 7 and (c) 8 wt.%. Figure 4.3 Surface and cross-sectional SEM images of (a and b) the 84 M_{CuBTC} membrane and (c and d) the M₀ membrane. Figure 4.4 FTIR spectra of Cu-BTC, PVA membrane and MCuBTC 86 membrane. 89 Figure 4.5 Degree of swelling of dense PVA, M0, MCuBTC(0.5) and M_{CuBTC(1.0)} in various solutions. Figure 4.6 Composition of liquid sorbed by $M_{CuBTC(0.5)}$ in various feed 89 solutions. Figure 4.7 Composition of liquid sorbed by M_{CuBTC(1.0)} in various feed 90 solutions. Figure 4.8 Permeation fluxes and separation factors of dense PVA, M₀, 92 MCuBTC(0.5) and MCuBTC(1.0) when used for dehydration pervaporation of 95 wt.% 1,4-dioxane solution at 30 °C and downstream pressure of 5 mmHg. Figure 4.9 Schematic diagrams of (a) dense PVA, (b) M₀, and (c) 93 MCUBTC membranes. Effects of the concentration of water in the feed on (a) the 97 Figure 4.10 permeation flux, (b) the permeate concentration and separation factor and (c) the permeance and selectivity of the M_{CuBTC(1.0)} membrane at 30 °C and downstream pressure of 5 mmHg. Figure 4.11 Effects of the feed temperature on (a) the permeation flux, 100 (b) the permeate concentration and separation factor and (c) the permeance and selectivity of the M_{CuBTC(1.0)} membrane with a feed of 95 wt.% 1,4-dioxane and a downstream pressure of 5 mmHg. Figure 4.12 Arrhenius plots of (a) the permeation flux and (b) the 103 permeance of $M_{CuBTC(1.0)}$ with a feed of 95 wt.% 1,4-dioxane and a downstream pressure of 5 mmHg. Figure 4.13 TEM images of (a) COOH-MWCNT and (b) electrospun 105 COOH-MWCNT/PVA nanofibre. Figure 4.14 Surface and cross-sectional SEM images of (a and b) the 107

MCOOH-MWCNT membrane and (c and d) the M₀ membrane.

- Figure 4.15 FTIR spectra of COOH-MWCNT, PVA membrane, and 108 MCOOH-MWCNT membrane.
- Figure 4.16 Degree of swelling of dense PVA, M₀, M_{COOH-MWCNT(0.5)} and 111 M_{COOH-MWCNT(1.0)} in various solutions.
- Figure 4.17 Composition of liquid sorbed by MCOOH-MWCNT(0.5) in various 112 feed solutions.
- Figure 4.18 Composition of liquid sorbed by MCOOH-MWCNT(1.0) in various 112 feed solutions.
- Figure 4.19 Permeation fluxes and separation factors of dense PVA, M₀, 114 M_{COOH-MWCNT(0.5)} and M_{COOH-MWCNT(1.0)} when used for dehydration pervaporation of 95 wt.% 1,4-dioxane solution at 30 °C and downstream pressure of 5 mmHg.
- Figure 4.20 Schematic diagram showing the interaction of water 115 molecules with electrospun M_{COOH-MWCNT} membrane.
- Figure 4.21 Effects of the concentration of water in the feed on (a) the 119 permeation flux, (b) the permeate concentration and separation factor and (c) the permeance and selectivity of the M_{COOH-MWCNT(0.5)} membrane at 30 °C and downstream pressure of 5 mmHg.
- Figure 4.22 Effects of the feed temperature on (a) the permeation flux, 122 (b) the permeate concentration and separation factor and (c) the permeance and selectivity of the MCOOH-MWCNT(0.5) membrane with a feed of 95 wt.% 1,4-dioxane and a downstream pressure of 5 mmHg.
- Figure 4.23 Arrhenius plots of (a) the permeation flux and (b) the 125 permeance of MCOOH-MWCNT(0.5) with a feed of 95 wt.% 1,4-dioxane and a downstream pressure of 5 mmHg.
- Figure 4.24 Permeation fluxes and separation factors of M_{CuBTC(0.5)}, 126 M_{CuBTC(0.5)}, M_{COOH-MWCNT(0.5)} and M_{COOH-MWCNT(1.0)} when used for dehydration pervaporation of 95 wt.% 1,4-dioxane solution at 30 °C and downstream pressure of 5 mmHg.
- Figure 4.25 Arrhenius plot of the transport coefficient of water and 1,4- 131 dioxane for M_{CuBTC(1.0)}.
- Figure 4.26 Parity plot of the predicted and experimental value of the 135 transport coefficient, D of (a) water and (b) 1,4-dioxane at different feed temperature for M_{CuBTC(1.0)}.
- Figure 4.27 Plot of the (a) partial permeation flux of water and 1,4dioxane and (b) separation factor over feed temperature for M_{CuBTC(1.0)}.

- Figure 4.28 Arrhenius plot of the transport coefficient of water and 1,4- 140 dioxane for MCOOH-MWCNT(0.5).
- Figure 4.29 Parity plot of the predicted and experimental value of the 143 transport coefficient, *D* of (a) water and (b) 1,4-dioxane at different feed temperature for MCOOH-MWCNT(0.5).
- Figure 4.30 Plot of the (a) partial permeation flux of water and 1,4- 146 dioxane and (b) separation factor over feed temperature for MCOOH-MWCNT(0.5).

LIST OF ABBREVIATIONS

[Bmim][BF4]	1-butyl-3-methylimidazolium tetrafluoroborate
3D	3-dimensional
ABE	Acetone-butanol-ethanol
Al ₂ O ₃	Aluminum oxide
Al-MCM-41	Alumina-containing mobile composition matter-41
BDC	Benzene dicarboxylate
BET	Brunauer-Emmett-Teller
BP	Buckypaper
BSA	Bovine serum albumin
BTC	Benzene-1,3,5 tricarboxylic acid or trimesic acid
CNT	Carbon nanotube
Co(HCOO) ₂	Co(II)-formate
COOH-MWCNT	Carboxyl multi-walled carbon nanotube
CS	Chitosan
Cu-BTC	Cu ₃ (1,3,5-benzenetricarboxylate) ₂
CVD	Chemical vapour deposition
DMF	N,N-dimethylformamide anhydrous
Fe ₃ O ₄	Magnetite
FTIR	Fourier transform infrared
GPU	Gas permeation units
IPA	Isopropanol
M_0	Asymmetric membranes with electrospun PVA nanofibres
	as pre-selective layer
Мсоон-мистт	Asymmetric membranes with electrospun COOH-
	MWCNT/PVA nanofibres as pre-selective layer
MCubtc	Asymmetric membranes with electrospun Cu-BTC/PVA
	nanofibres as pre-selective layer
MMM	Mixed matrix membrane
MOF	Metal organic framework
MWCNT	Multi-walled carbon nanotube
PA	Polyamide

PAH	Poly(allylamine hydrochloride)
PAN	Poly(acrylonitrile)
PANI	Polyaniline
PBI	Polybenzimidazole
PDMS	Polydimethylsiloxane
PEBA	Poly(ether block amide)
PEC	Polyelectrolyte-polyelectrolyte complex
PEI	Polyethyleneimine
PES	Polyethersulfone
PET	Polyethylene terephthalate
РНВ	Poly(3-hydroxybutyrate)
PI	Polyimide
PS	Polystyrene
PSF	Polysulfone
PSI	Pervaporation separation index
PSSA	Poly(styrene sulfonic acid)
PVA	Polyvinyl alcohol
PVDF	Polyvinylidene fluoride
SEM	Scanning electron microscope
SILM	Supported ionic liquid membrane
SPES	Sulfonated polyethersulfone
SPES-C	Sulfonated polyarylethersulfone with cardo
SWCNT	Single-walled carbon nanotube
TED	Triethylenediamine
TEM	Transmission electron microscopy
TiO ₂	Titanium dioxide
ZIF	Zeolitic imidazolate framework
β-CD	β-cyclodextrin
	PAH PAN PANI PBI PBI PDMS PEBA PEC PEI PES PET PHB PHB PI PS PSF PSF PSF PSF PSF PSF PSF PSF PSF

LIST OF SYMBOLS

$\overline{\gamma}_i$	Average activity coefficient of component <i>i</i> at the feed side and
	permeate side
D_i^*	Relative transport coefficient of component <i>i</i>
ΔH_{Si}	Enthalpy of sorption of component <i>i</i>
Α	Effective membrane area
A_{ij}	Wilson parameter
Aji	Wilson parameter
D_i	Transport coefficient of component <i>i</i>
E_{Di}	Activation energy for diffusion of component <i>i</i>
E_{Ji}	Activation energy for the permeation of component <i>i</i> which
	takes into account the impact of the driving force
EPi	Permeation activation energy, which characterises the
	dependence of the membrane permeance on the temperature
J	Permeation flux
J_{io}	Pre-exponential factor of the permeation flux
M_d	Weight of the dry membrane
Ms	Weight of the swollen membrane
MW_i	Molar mass of component <i>i</i> ,
Р	Permeance
p_{i1}	Partial pressure of component i at the liquid phase side of the
	membrane
pi2	Partial pressure of component i at the vapour phase side of
	membrane
Pio	Pre-exponential factor of the permeance
p_i^{sat}	Saturated vapour pressure of component i at the feed side
p_p	Downstream pressure at permeate side
Q	Amount of permeate collected
Q_0	Permeability of the porous layer of membrane
R	Universal gas constant
Т	Absolute temperature
T^*	Reference temperature, equal to 293K

X_i	Weight fraction of component i in the feed
Xi	Molar fraction of component i at the feed side
Xj	Molar fraction of component j at the feed side
Yi	Weight fraction of component i in permeate
<i>Yi</i>	Molar fraction of component i at the permeate side
Yim	Weight fraction of component i in the membrane
α	Separation factor
β	Membrane selectivity
eta_{diff}	Diffusion selectivity
eta_{sorp}	Sorption selectivity
γi1	Activity coefficient of component <i>i</i> at the feed side
γi2	Activity coefficient of component i at the permeate side
γ_{j1}	Activity coefficient of component <i>j</i> at the feed side
δ	Thickness of the asymmetric membrane
Δt	Time interval

MEMBRAN PENYEJATTELAPAN DENGAN LAPISAN GENTIAN BENANG NANO KOMPOSIT POLI(VINIL ALKOHOL) HASILAN PEJAMAN ELEKTRIK UNTUK PENYAHHIDRATAN 1,4-DIOXAN

ABSTRAK

Dalam kajian ini, membran asimetri baru dengan lapisan pra-memilih hasilan pejaman elektrik yang terdiri daripada gentian benang nano poli (vinil alkohol) (PVA) dan gentian benang nano komposit PVA yang bersepadu dengan dua jenis pengisi hidrofilik iaitu kuprum benzena-1,3,5-trikarboksilat (Cu-BTC) bersaiz mikron dan tiub-nano karbon dinding berlapis berfungsikan kumpulan karboksil (COOH-MWCNT) bersaiz nano berjaya dihasilkan. Membran PVA dilapiskan dengan gentian benang nano PVA, gentian benang nano komposit Cu-BTC/PVA dan COOH-MWCNT/PVA untuk masing-masing membentuk membran asimetri M0, MCuBTC dan MCOOH-MWCNT. Semua membran asimetri mempamerkan peningkatan prestasi dalam penyahhidratan 1,4-dioxan melalui proses penyejattelapan. Kejadian ini adalah kesan daripada lapisan pra-memilih berfungsi sebagai penapis hidrofilik yang memerangkap molekul air. Prestasi penyejattelapan membran meningkat dalam susunan berikut: membran $PVA < M_0 < M_{COOH-MWCNT} < M_{CuBTC}$. Berbanding dengan membran PVA, M₀ menunjukkan menunjukkan peningkatan hampir 50% dalam fluks penelapan air serentak dengan peningkatan dalam faktor pemisahan. Antara membran M_{CuBTC} dan MCOOH-MWCNT, membran MCuBTC mempamerkan prestasi penyejattelapan yang lebih baik. Prestasi membran M_{CuBTC} meningkat dengan peningkatan kandungan Cu-BTC dari 0.5 hingga 1.0 wt.%. Di antara semua membran yang dikaji, membran M_{CuBTC} dengan 1.0 wt.% Cu-BTC (MCuBTC(1.0)) mempamerkan fluks telapan dan faktor pemisahan tertinggi dengan jumlah fluks penelapan sebanyak 87.69 g/m²·j, faktor pemisahan sebanyak 1852.32, kebolehtelapan air yang bernilai 2176.20 GPU, dan kememilihan membran untuk air yang bernilai 1417.52. Fluks penelapan air yang ditunjukkan oleh membran M_{CuBTC(1.0)} adalah dua kali ganda daripada membran PVA, manakala faktor pemisahan meningkat dari 392.65 hingga 1852.32. Berbanding dengan M₀, membran M_{CuBTC(1.0)} menunjukkan peningkatan hampir 40% dalam fluks penelapan air bersama dengan peningkatan dalam faktor pemisahan. Walau bagaimanapun, di antara membran MCOOH-MWCNT dengan 0.5 dan 1.0 wt.% COOH-MWCNT, iaitu MCOOH-MWCNT(0.5) and MCOOH-MWCNT(1.0), prestasi penyejattelapan yang lebih baik ditunjukkan oleh M_{COOH-MWCNT(0.5)} dengan jumlah fluks penelapan yang bernilai 75.71 g/m²·j, faktor pemisahan yang bernilai 605.35, kebolehtelapan air yang bernilai 1836.08 GPU dan kememilihan membran untuk air yang bernilai 462.30. Peningkatan sebanyak lebih kurang 80% dan 20% dalam fluks penelapan air ditunjukkan oleh MCOOH-MWCNT(0.5) berbanding dengan membran PVA dan Mo masing-masing. Walaupun faktor pemisahan MCOOH-MWCNT(0.5) meningkat daripada 392.65 kepada 605.35 berbanding dengan membran PVA, faktor pemisahan berkurang dari 682.11 kepada 605.35 berbanding dengan M₀. Paramater yang diramal dengan menggunakan model Rautenbach menunjukkan bahawa penyahhidratan 1,4-dioxan melalui proses penyejattelapan dikawal oleh proses penyerapan.

PERVAPORATION MEMBRANE CONTAINING ELECTROSPUN POLY(VINYL ALCOHOL) COMPOSITE NANOFIBRE LAYER FOR DEHYDRATION OF 1,4-DIOXANE

ABSTRACT

In this study, novel asymmetric membranes with pre-selective layer consist of electrospun poly(vinyl alcohol) (PVA) nanofibres and electrospun PVA nanofibres integrated with two different types of hydrophilic fillers i.e. micron-sized copper benzene-1,3,5-tricarboxylate (Cu-BTC) and nano-sized carboxyl multi-walled carbon nanotube (COOH-MWCNT), respectively were successfully fabricated. Electrospun PVA nanofibres, Cu-BTC/PVA and COOH-MWCNT/PVA composite nanofibres were deposited on dense PVA membranes to form M0, MCuBTC and MCOOH-MWCNT asymmetric membranes, respectively. All asymmetric membranes showed improved performance in the pervaporation dehydration of aqueous 1,4-dioxane solutions. This phenomenon is due to the electrospun hydrophilic nanofibre layer serving as a hydrophilic pre-selective barrier that traps water molecules. The pervaporation separation performance increased in the following order: dense PVA membrane $< M_0$ < M_{COOH-MWCNT} < M_{CuBTC}. Compared to dense PVA membrane, M₀ exhibited an increment of almost 50% in water permeation flux accompanied with an increase in separation factor. Between M_{CuBTC} and M_{COOH-MWCNT} membranes, M_{CuBTC} membranes exhibited better separation performance. The performance of the M_{CuBTC} membranes increases with increasing Cu-BTC loading of 0.5 to 1.0 wt.%. Among all the membranes studied, M_{CuBTC} membrane incorporated with 1.0 wt.% Cu-BTC $(M_{CuBTC(1.0)})$ exhibited the highest permeation flux and separation factor with a total

permeation flux of 87.69 g/m² \cdot h, separation factor of up to 1852.32, water permeance of 2176.20 GPU, and water selectivity of 1417.52. The water permeation flux of the M_{CuBTC(1.0)} membrane was double of that of the dense PVA membrane, while the separation factor increased from 392.65 to 1852.32. When compared to M₀, M_{CuBTC(1.0)} membrane provided an enhancement of nearly 40% in water permeation flux along with an increase in separation factor. However, among the MCOOH-MWCNT membranes integrated with 0.5 and 1.0 wt.% COOH-MWCNT, i.e. MCOOH-MWCNT(0.5) and MCOOH-MWCNT(1.0), respectively, better separation performance was demonstrated by MCOOH-MWCNT(0.5) with a total permeation flux of 75.71 g/m² \cdot h, separation factor of 605.35, water permeance of 1836.08 GPU and membrane selectivity of 462.30 for water. An increment of around 80% and 20% in water permeation flux was achieved by the MCOOH-MWCNT(0.5) when compared to that of the dense PVA membrane and M₀, respectively. Although the separation factor of M_{COOH-MWCNT(0.5)} increased from 392.65 to 605.35 when compared to the dense PVA membrane, a slight decrease in separation factor from 682.11 to 605.35 was observed when compared to M₀. The parameters estimated using Rautenbach model showed that the dehydration of aqueous 1,4dioxane solutions via pervaporation is dominantly governed by sorption process.

CHAPTER ONE

INTRODUCTION

An overview of the entire research project is presented in this chapter. The background and current development of pervaporation process is provided at the beginning of this chapter. In addition, electrospun nanofibres and their applications are briefly discussed. Then, the problem statement and objectives of this study are highlighted. Lastly, the scope of study and organization of the thesis are included at the end of this chapter.

1.1 Pervaporation

Pervaporation, a membrane-based separation technology, has attracted an exceptionally great amount of interest from researchers worldwide. It has been viewed as a potential alternative to the conventional separation techniques such as distillation process. In pervaporation, a dense membrane acts as a separating barrier and regulates the mass transport across the membrane. The feed liquid mixture is brought into contact with one side of the membrane where the component with higher affinity for the membrane will be preferentially transported across the membrane and removed from the other side of the membrane as a low pressure vapour. In order for separation to occur, the permeate side of the membrane is being held under vacuum or applying a sweep gas to create a chemical potential difference (Feng and Huang, 1997). The permeation of a component in membrane is driven by concentration and pressure gradients, and the overall driving force producing movement of a permeant is the chemical potential gradient. Schematic diagram of the pervaporation membrane cell operation is illustrated in Figure 1.1. The separation mechanism of the pervaporation