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MEMBRAN PENYEJATTELAPAN DENGAN LAPISAN GENTIAN 

BENANG NANO KOMPOSIT POLI(VINIL ALKOHOL) HASILAN 

PEJAMAN ELEKTRIK UNTUK PENYAHHIDRATAN 1,4-DIOXAN  

 

ABSTRAK 

 

Dalam kajian ini, membran asimetri baru dengan lapisan pra-memilih hasilan 

pejaman elektrik yang terdiri daripada gentian benang nano poli (vinil alkohol) (PVA) 

dan gentian benang nano komposit PVA yang bersepadu dengan dua jenis pengisi 

hidrofilik iaitu kuprum benzena-1,3,5-trikarboksilat (Cu-BTC) bersaiz mikron dan 

tiub-nano karbon dinding berlapis berfungsikan kumpulan karboksil (COOH-

MWCNT) bersaiz nano berjaya dihasilkan. Membran PVA dilapiskan dengan gentian 

benang nano PVA, gentian benang nano komposit Cu-BTC/PVA dan COOH-

MWCNT/PVA untuk masing-masing membentuk membran asimetri M0, MCuBTC dan 

MCOOH-MWCNT. Semua membran asimetri mempamerkan peningkatan prestasi dalam 

penyahhidratan 1,4-dioxan melalui proses penyejattelapan. Kejadian ini adalah kesan 

daripada lapisan pra-memilih berfungsi sebagai penapis hidrofilik yang memerangkap 

molekul air. Prestasi penyejattelapan membran meningkat dalam susunan berikut: 

membran PVA < M0 < MCOOH-MWCNT < MCuBTC. Berbanding dengan membran PVA, 

M0 menunjukkan menunjukkan peningkatan hampir 50% dalam fluks penelapan air 

serentak dengan peningkatan dalam faktor pemisahan. Antara membran MCuBTC dan 

MCOOH-MWCNT, membran MCuBTC mempamerkan prestasi penyejattelapan yang lebih 

baik. Prestasi membran MCuBTC meningkat dengan peningkatan kandungan Cu-BTC 

dari 0.5 hingga 1.0 wt.%. Di antara semua membran yang dikaji, membran MCuBTC 

dengan 1.0 wt.% Cu-BTC (MCuBTC(1.0)) mempamerkan fluks telapan dan faktor 



 

xx 

pemisahan tertinggi dengan jumlah fluks penelapan sebanyak 87.69 g/m2·j, faktor 

pemisahan sebanyak 1852.32, kebolehtelapan air yang bernilai 2176.20 GPU, dan 

kememilihan membran untuk air yang bernilai 1417.52. Fluks penelapan air yang 

ditunjukkan oleh membran MCuBTC(1.0) adalah dua kali ganda daripada membran PVA, 

manakala faktor pemisahan meningkat dari 392.65 hingga 1852.32. Berbanding 

dengan M0, membran MCuBTC(1.0) menunjukkan peningkatan hampir 40% dalam fluks 

penelapan air bersama dengan peningkatan dalam faktor pemisahan. Walau 

bagaimanapun, di antara membran MCOOH-MWCNT dengan 0.5 dan 1.0 wt.% COOH-

MWCNT, iaitu MCOOH-MWCNT(0.5) and MCOOH-MWCNT(1.0), prestasi penyejattelapan yang 

lebih baik ditunjukkan oleh MCOOH-MWCNT(0.5) dengan jumlah fluks penelapan yang 

bernilai 75.71 g/m2·j, faktor pemisahan yang bernilai 605.35, kebolehtelapan air yang 

bernilai 1836.08 GPU dan kememilihan membran untuk air yang bernilai 462.30. 

Peningkatan sebanyak lebih kurang 80% dan 20% dalam fluks penelapan air 

ditunjukkan oleh  MCOOH-MWCNT(0.5) berbanding dengan membran PVA dan M0 

masing-masing. Walaupun faktor pemisahan MCOOH-MWCNT(0.5) meningkat daripada 

392.65 kepada 605.35 berbanding dengan membran PVA, faktor pemisahan berkurang 

dari 682.11 kepada 605.35 berbanding dengan M0. Paramater yang diramal dengan 

menggunakan model Rautenbach menunjukkan bahawa penyahhidratan 1,4-dioxan 

melalui proses penyejattelapan dikawal oleh proses penyerapan.  
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PERVAPORATION MEMBRANE CONTAINING ELECTROSPUN 

POLY(VINYL ALCOHOL) COMPOSITE NANOFIBRE LAYER FOR 

DEHYDRATION OF 1,4-DIOXANE 

 

ABSTRACT 

 

In this study, novel asymmetric membranes with pre-selective layer consist of 

electrospun poly(vinyl alcohol) (PVA) nanofibres and electrospun PVA nanofibres  

integrated with two different types of hydrophilic fillers i.e. micron-sized copper 

benzene-1,3,5-tricarboxylate (Cu-BTC) and nano-sized carboxyl multi-walled carbon 

nanotube (COOH-MWCNT), respectively were successfully fabricated. Electrospun 

PVA nanofibres, Cu-BTC/PVA and COOH-MWCNT/PVA composite nanofibres 

were deposited on dense PVA membranes to form M0, MCuBTC and MCOOH-MWCNT 

asymmetric membranes, respectively. All asymmetric membranes showed improved 

performance in the pervaporation dehydration of aqueous 1,4-dioxane solutions. This 

phenomenon is due to the electrospun hydrophilic nanofibre layer serving as a 

hydrophilic pre-selective barrier that traps water molecules. The pervaporation 

separation performance increased in the following order: dense PVA membrane < M0 

< MCOOH-MWCNT < MCuBTC. Compared to dense PVA membrane, M0 exhibited an 

increment of almost 50% in water permeation flux accompanied with an increase in 

separation factor. Between MCuBTC and MCOOH-MWCNT membranes, MCuBTC membranes 

exhibited better separation performance. The performance of the MCuBTC membranes 

increases with increasing Cu-BTC loading of 0.5 to 1.0 wt.%. Among all the 

membranes studied, MCuBTC membrane incorporated with 1.0 wt.% Cu-BTC 

(MCuBTC(1.0)) exhibited the highest permeation flux and separation factor with a total 
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permeation flux of 87.69 g/m2·h, separation factor of up to 1852.32, water permeance 

of 2176.20 GPU, and water selectivity of 1417.52. The water permeation flux of the 

MCuBTC(1.0) membrane was double of that of the dense PVA membrane, while the 

separation factor increased from 392.65 to 1852.32. When compared to M0, MCuBTC(1.0) 

membrane provided an enhancement of nearly 40% in water permeation flux along 

with an increase in separation factor. However, among the MCOOH-MWCNT membranes 

integrated with 0.5 and 1.0 wt.% COOH-MWCNT, i.e. MCOOH-MWCNT(0.5) and MCOOH-

MWCNT(1.0), respectively, better separation performance was demonstrated by MCOOH-

MWCNT(0.5) with a total permeation flux of 75.71 g/m2·h, separation factor of 605.35, 

water permeance of 1836.08 GPU and  membrane selectivity of 462.30 for water. An 

increment of around 80% and 20% in water permeation flux was achieved by the 

MCOOH-MWCNT(0.5) when compared to that of the dense PVA membrane and M0, 

respectively. Although the separation factor of MCOOH-MWCNT(0.5) increased from 392.65 

to 605.35 when compared to the dense PVA membrane, a slight decrease in separation 

factor from 682.11 to 605.35 was observed when compared to M0. The parameters 

estimated using Rautenbach model showed that the dehydration of aqueous 1,4-

dioxane solutions via pervaporation is dominantly governed by sorption process.  

 



 

1 

CHAPTER ONE 

INTRODUCTION 

 

 An overview of the entire research project is presented in this chapter. The 

background and current development of pervaporation process is provided at the 

beginning of this chapter.  In addition, electrospun nanofibres and their applications 

are briefly discussed. Then, the problem statement and objectives of this study are 

highlighted. Lastly, the scope of study and organization of the thesis are included at 

the end of this chapter. 

 

1.1 Pervaporation 

Pervaporation, a membrane-based separation technology, has attracted an 

exceptionally great amount of interest from researchers worldwide. It has been viewed 

as a potential alternative to the conventional separation techniques such as distillation 

process. In pervaporation, a dense membrane acts as a separating barrier and regulates 

the mass transport across the membrane.  The feed liquid mixture is brought into 

contact  with  one  side  of  the membrane  where  the component with higher affinity 

for the membrane will be preferentially transported across the membrane and removed  

from  the  other  side  of the membrane as  a  low pressure  vapour. In order for 

separation to occur, the permeate side of the membrane is being held under vacuum or 

applying a sweep gas to create a chemical potential difference (Feng and Huang, 1997). 

The permeation of a component in membrane is driven by concentration and pressure 

gradients, and the overall driving force producing movement of a permeant is the 

chemical potential gradient. Schematic diagram of the pervaporation membrane cell 

operation  is illustrated in Figure 1.1. The separation mechanism of the pervaporation 
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