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CIRI PRESTASI PEMBAKAR MIKRO MEDIA BERLIANG UNTUK  

PENGHASILAN HABA ATAU KUASA 

  

ABSTRAK  

 

Ancaman kehabisan bahan api mempengaruhi ekonomi negara. Oleh itu, 

beberapa usaha dibuat untuk menambah baik penggunaan bahan api dengan 

mencipta pembakar yang lebih efisien. Oleh yang demikian, kajian ini berfokus 

untuk membina pembakar mikro media berliang berasaskan butana. Pembakar ini 

direka bentuk untuk menjalani pembakaran permukaan dan tenggelam dengan nisbah 

setara. Dua jenis lapisan reaksi diuji; media berliang jenis buih dan bola, manakala 

busa tembikar di zon pra pemanas. Ketebalan tindak balas dan lapisan pra pemanas 

diubah untuk mendapatkan prestasi pembakaran yang optimum. Oleh itu, kecekapan 

haba 90% telah dicatatkan dengan menggunakan busa alumina 15 mm bersama-sama 

dengan busa tembikar 10 mm. Nilai NOx dan CO pada nisbah setara yang optimum 

adalah kurang daripada 15 dan 60 ppm. Tambahan pula, peningkatan 4% dalam 

kecekapan haba dicapai dengan menambahkan titisan minyak sayur-sayuran 

sebanyak 80μL ke atas lapisan reaksi. Di samping itu, kuasa elektrik 2.018 W 

dihasilkan dari pembakaran permukaan menggunakan sel TE. Sel-sel TE ini 

disepadukan dengan konfigurasi hibrid, termasuk kipas litar yang dikuasakan oleh 

panel solar. Selain itu, ketinggian antara lapisan reaksi dan sel TE dioptimumkan (69 

mm) menggunakan reka bentuk eksperimen untuk meningkatkan lagi kuasa elektrik 

sebanyak 8%. Akhir sekali, kajian berangka tiga dimensi dilakukan untuk 

membandingkan data eksperimen untuk kedua-dua suhu dan pelepasan (NOx dan 

CO) pada nisbah setara kritikal (ER = 0.7).   
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PERFORMANCE CHARACTERIZATION OF MICRO POROUS MEDIA 

BURNER FOR HEAT OR POWER GENERATION   

 

ABSTRACT 

 

The threat of fossil fuel depletion affects the nation’s economy. 

Consequently, attempts are made to improve the use of fuels by developing highly 

efficient burners. With this intention, present work was focused to develop premixed 

butane based micro porous media burner. The burner was designed to undergo 

surface and submerged flames by varying equivalence ratio. Two types of reaction 

layer were tested; foam and ball type porous media (PM), while porcelain foam in 

preheat zone. Thickness of reaction and preheat layer was varied suitably to get 

optimum burner performance. Thus 90% thermal efficiency was noted by using 15 

mm alumina foam along with 10 mm porcelain foam. Values of NOx and CO at 

optimum equivalence ratio was less than 15 and 60 ppm respectively. Further, 4% 

improvement in the thermal efficiency was achieved by adding 80 μL of vegetable 

oil droplets over reaction layer. In addition, electric power of 2.018 W was generated 

from the surface flame using TE cells. These TE cells are integrated to a hybrid 

configuration, it includes circuit fan powered from solar panels. Moreover, height 

between reaction layer and TE cells was optimized (69 mm) using design of 

experiments to further increase electric power by 8%. Finally, three dimensional 

numerical study was performed to compare experimental data for both temperature 

and emissions (NOx and CO) at a critical equivalence ratio (ER=0.7).  
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CHAPTER ONE 

INTRODUCTION 

CHAPTER 1  

1.1 General Introduction 

The major direct impact to any nation across the world is due to the fast 

depletion of fossil fuel. Every possible attempts are made to save even a small bit of 

fossil fuels in some way or the other. One of the most popular device which 

consumes large amount of fossil fuels are burners, which are extensively used in 

domestic and industrial sectors. Nowadays, major international organizations such as 

WHO (World Health Organization) and IUAPPA (International Union of Air 

Pollution Prevention and Environmental Protection Associations) have made direct 

mandatory rules for both domestic and industrial sectors in controlling air pollution 

caused by fossil fuels. Thus, porous media burner (PMB) have gained popularity 

because of their outstanding performance in terms of technical and economic aspects, 

especially the burners with premixing and a two-layered structure (Mujeebu et al., 

2009a).  

A porous material can be defined as “a material with a specific size and 

number of pores, which are well connected to each other to form a solid shape”. 

Porous media (PM) have become popular choice because of their ability to generate 

better heat transfer between combustible and solid media, as well as the dispersion of 

the reactant in the reaction zone. Generally, once combustion in PMB gains better 

thermal efficiency, the by-products of emissions such as NOx, shows less than 10 

ppm (parts per million) (Mujeebu et al., 2011a). A literature survey from the past 

three decades indicates good quality and quantity of work has reported on various 



 

2 
 

aspects and applications of porous media combustion (PMC). However, various 

aspects of dual layer PMB have yet to be confirmed, especially when it comes to 

presence of preheat layer. Exhaustive reviews on PMB indicate a the good scenario 

on the development of innovative and efficient burners (Mujeebu et al., 2009a; 

Mujeebu et al., 2009b). Ismail et al. (2013) made a successful breakthrough 

experimental study with butane as a source fuel to revolutionize the conventional use 

of LPG for cogeneration applications with foam type of porous media (PM). 

Exclusive research reported from (Ismail et al., 2013; Ismail et al., 2016) on butane 

PM burners highlighted the importance of butane for reduction of emissions and 

stable surface temperatures at various ER, thereby performs better over LPG.  

Literature on PMB identifies the popular methods used to increase thermal 

efficiency includes usage of a unique fuel mixtures, changing the thickness of the 

reaction/preheat layer, and replacing PM with new materials (Mujeebu et al., 2010). 

Another possible method to improve burner characteristics is by using 

external additives/fuels over the reaction zone. Lapirattanakun and Charoensuk 

(2017) developed a novel PMB that works with vegetable oil (VO) along with steam 

injection. Their PMB achieved significant improvement in thermal efficiency. Thus, 

VO can be regarded as a stand-alone or a biofuel input to develop a cooking stove, a 

semi-industrial boiler, and a liquid PMB cogeneration applications (Mustafa, 2015). 

VO can also be an interesting alternative to consider as external additives/fuels for 

boosting conventional combustion systems. Another important concern by 

researchers was that the heat generated from the burner should not just be limited to 

domestic/industrial heat supply but also support cogeneration system. Therefore, 

many studies focused on cogeneration system with porous media burners utilize the 

heat from the exhaust/walls to convert it into other forms of energy.  One of the 
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popular ways to generate electric power from heat energy is by considering 

Thermoelectric (TE) cells. It operates on the phenomenon of Seebeck effect which 

produces electric voltage when subjected to temperature gradient across two 

dissimilar metals (which are fused together). Consequently, power output from TE 

cell can be further increased provided the temperature difference across two surfaces 

of the cell are kept higher.   

1.2 Problem Statement 

The combustion of fossil fuels is an important aspect for both domestic and 

industrial sector to act as power source. Even though tremendous amount of 

experimental work has been carried out to improve combustion in burner, but still 

there is a need to improve burner thermal efficiency to much greater level since fuels 

are getting expensive day by day. Especially in a burner which can generate 

submerged flame, since submerged flame gives pure radiation and finds good 

number of applications in domestic and industrial sectors such as in bakery, cosmetic 

companies and textile industries. Apart from aiming to improve thermal efficiency, 

major concern is to focus on reduction of emission parameters like NOx and CO. The 

emission generated during combustion mainly depend on physical and chemical 

mechanisms involved during combustion (Mohamad, 2005). Hence there is almost 

need for new burner with better thermal efficiency and low emissions.    

Porous media burner (PMB) are able to generate two types of flame, namely 

surface and submerged flame. The flame that can be easily seen by the naked eye is 

called a surface flame, were in the actual movement of flame can be easily noticed. 

While, the flame that runs under the surface of reaction zone is known as a 

submerged flame. Submerged flame can directly heat the objects in a common 
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environment, not the air in between. Hence, heat transfer study with 

surface/submerged flame in a burner can be an interesting aspect of the study. 

Selection of PM inside burner is a challenging task. Three main factor play important 

role in building novel PMB includes type of PM to installed in reaction and preheat 

layer, porosity and ppcm (pores per centimetres). In addition, mechanism of stable 

combustion phenomenon depends on burner size, and type of incoming fuel mixture. 

Size of the PMB are decided based on the actual application of the burner, cost of the 

system, required flame type and available PM. Next, importance of fuel 

identification is a critical aspect, since commercially available fuels are obtained 

from fossil fuels. Gaseous fuels like methane, propane, butane and LPG finds their 

own advantages and limitations based on application of the burner.  

Thermal efficiency can also be enhanced by the using suitable combustion 

enhancing liquids like vegetable oil, spraying nano particles and biofuel spray. These 

liquids release additional energy during combustion, thereby increases thermal 

efficiency. Involvement of external liquids can be utilized in different ways either 

over surface of the reaction zone or it can be injected between porous media. 

Considering vegetable oil to enhance efficiency is an interesting option, due to its 

availability. Since the triglycerides present in vegetable oil contains significant 

amount of oxygen, which enhances combustion (Mustafa, 2015).  

Heat energy from the burner can also be utilized to convert in to electric 

power by using energy conversion cells. Since electric power is very much essential 

for electronic gadgets like; mobile phone and portable LED lamps. Generally, 

thermoelectric (TE) or thermophotovoltaic (TPV) are the potential candidate in 

conversion of heat energy in to electrical energy with respect to burners. Therefore, 

the need to generate both heat and electrical power generation by micro burner can 
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be considered as better approach of study. Hence, by focusing on low fuel consuming 

burner, emission perspectives, external additives to boost thermal efficiency and 

electric power generation all together shall give rise to new research and 

development in the area of burners.   

1.3 Objectives of the study 

The objectives of the study are listed below, 

I. To develop a dual layered micro porous media burner to undergo both surface 

and submerged flames at low fuel mixture. 

II. To obtain the performance of porous media burner experimentally by using 

foam and ball type of porous media with various thickness of reaction and 

preheat layers.  

III. To investigate the effect of vegetable oil droplets during porous media 

combustion at various equivalence ratios. 

IV. To measure the electric power using thermoelectric cells with the help of 

hybrid configuration.  

1.4 Scope of the Study 

The scope and limitation of the study are given below, 

I. The fabricated burner was designed only to undergo surface and submerged 

flame at low fuel rate, in order to save the fuel. 

II. Porous media used in the study was limited to the alumina foam and ball 

type; alumina and zirconia sphere with 10 mm size. 
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III. Only butane as a gaseous fuel was used throughout the experimental trials 

with equivalence ratio from 1 to 0.4.  

IV. Vegetable oil was varied from of 20 to 80 μL in steps of 20 μL. 

V. Only thermoelectric cells where used to generate electric power.  

VI. Optimum height at which thermoelectric cells need to be located was 

determined using RSM optimization technique. 

VII. Three dimensional numerical analysis using ANSYS FLUENT with standard 

governing equation and global reaction mechanism was conducted in the 

study at only critical equivalence ratio only. 

1.5 Thesis overview 

This thesis consists of five chapters, with this first chapter highlights on 

general introduction about the work done. Chapter two highlights on research work 

carried out by previous researchers. It basically summarizes the research trends and 

findings with respect to the study of porous media combustion especially involving 

various types of burner used by other researchers for domestic and industrial 

applications. For better understanding a detailed discussion on types of flames i.e., 

surface and submerged flame was added. Importance of adding external liquids to 

enhance porous media combustion (PMC) was also focused. It is worth to be noted 

that the impact of external liquids shall enhance performance of burner, thereby 

generating high thermal efficiency.  

Next, chapter three highlights main aspects of methodology adopted. It 

includes detailed explanation on how presented work was performed with justified 
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