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PENYIASATAN TERHADAP PEMETAAN PERSEPSI MANUSIA DENGAN 

MENGGUNAKAN ROBOT BERGERAK PENGLIHATAN STEREO 

ABSTRAK 

Kognitif ruang adalah cabang psikologi kognitif mengenai pemerolehan, 

penyusunan, penggunaan, dan semakan pengetahuan tentang persekitaran ruang.  

Teori pengiraan baru untuk pemetaan kognitif ruang manusia telah dicadangkan dalam 

kesusasteraan dan dianalisis menggunakan robot mudah alih berasaskan laser.  

Berbeza dengan pendekatan SLAM (Penyetempatan dan Pemetaan Secara Serentak) 

yang membina peta persekitaran yang tepat dan sempurna, prosedur pembinaan peta 

persepsi manusia yang dicadangkan lebih mewakili pemetaan kognitif ruang dalam 

otak manusia, di mana peta persepsi persekitaran yang tidak tepat dan tidak lengkap 

boleh dibina dengan mudah.  Langkah-langkah utama dalam metodologi adalah 

memperolehi imej-imej stereo penglihatan persekitaran, mewujudkan objek rujukan, 

menjejaki jumlah baki objek rujukan, dan mengembangkan peta apabila titik-titik had 

persekitaran dicapai.  Sumbangan utama penyelidikan ini adalah penggunaan teknik 

penglihatan komputer dan algoritma pengiraan pemetaan pada robot mudah alih 

berasaskan stereo penglihatan untuk merumuskan peta persepsi manusia secara 

sistematik dan menilai peta persepsi manusia yang berkaitan dengan persekitaran 

dalaman dan persekitaran luaran secara komprehensif.  Pengesahan peta persepsi 

manusia dengan menggunakan teknik berasaskan penglihatan adalah penting kerana 

dua sebab.  Pertama, penglihatan memainkan peranan penting dalam pembangunan 

kognitif ruang manusia; Kedua, sistem penglihatan komputer kurang mahal dan kaya 

dengan maklumat dalam mewakili persekitaran.  Secara khusus, teknik penglihatan 

komputer dibangunkan terlebih dahulu untuk menganalisis imej stereo yang berkaitan 
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dan memperolehi maklumat anjakan robot bergerak, serta mewujudkan objek rujukan.  

Beberapa algoritma pengiraan pemetaan digunakan kemudian untuk membina 

persepsi manusia terhadap persekitaran dalam penyelidikan ini.  Empat persekitaran 

dunia nyata iaitu dua persekitaran dalaman dan dua persekitaran luaran yang besar, 

dinilai secara empirik.  Geometri ruang dari persekitaran pemeriksaan adalah berbeza-

beza, dan persekitaran tertakluk kepada pelbagai kesan semula jadi termasuk pantulan 

dan hingar.  Pantulan dan hingar terjadi di banyak bahagian imej.  Oleh itu, algoritma 

tambahan dibangunkan untuk menyingkirkan pantulan dan hingar.  Penyingkiran 

pantulan dan hingar ketara mengurangkan objek-objek rujukan (TROs) yang dibuat, 

untuk setiap pandangan semasa.  Hasilnya menunjukkan bahawa teknik penglihatan 

komputer dan algoritma pengiraan pemetaan yang dicadangkan untuk pembinaan peta 

persepsi manusia adalah mantap dan berguna.  Teknik penglihatan komputer yang 

dicadangkan dapat membina peta persepsi manusia yang tidak tepat dan tidak lengkap 

dengan perwakilan ruang yang baik untuk seluruh persekitaran.  Peta yang tidak tepat 

dan tidak lengkap merujuk kepada peta yang dihasilkan tidak tepat dalam istilah metrik 

dan mempunyai permukaan yang hilang.  Hasil kajian menunjukkan bahawa kedua-

dua sistem berasaskan penglihatan dan laser dapat menghasilkan geometri ruang yang 

agak tepat bagi persekitaran yang diuji. 
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INVESTIGATIONS ON HUMAN PERCEPTUAL MAPS USING A 

STEREO-VISION MOBILE ROBOT 

ABSTRACT 

Spatial cognition is a branch of cognitive psychology concerning the acquisition, 

organization, utilization, and revision of knowledge about spatial environments.  A 

new computational theory of human spatial cognitive mapping has been proposed in 

the literature, and analyzed using a laser-based mobile robot.  In contrast with the well-

established SLAM (Simultaneous Localization and Mapping) approach that creates a 

precise and complete map of the environment, the proposed human perceptual map 

building procedure is more representative of spatial cognitive mapping in the human 

brain, whereby an imprecise and incomplete perceptual map of an environment can be 

created easily.  The key steps in the methodology are capturing stereo-vision images 

of the environment, creating the tracked reference objects (TROs), tracking the number 

of remaining TROs, and expanding the map when the limiting points of the 

environment are reached.  The main contribution of this research is on the use of 

computer vision techniques and computational mapping algorithms on a stereo-vision 

mobile robot for formulating the human perceptual map systematically, and evaluating 

the resulting human perceptual maps pertaining to both indoor and outdoor 

environments comprehensively.  Validating the human perceptual maps using vision-

based techniques is important for two reasons.  Firstly, vision plays an important role 

in the development of human spatial cognition; secondly, computer vision systems are 

less expensive and information-rich in representing an environment.  Specifically, 

computer vision techniques are first developed for analyzing the associated stereo 

images and retrieving the displacement information of a mobile robot, as well as 



xx 

creating the necessary tracked reference objects.  A number of computational mapping 

algorithms are then employed to build a human perceptual map of the environment in 

this research.  Four real-world environments, namely two large indoor and two large 

outdoor environments, are empirically evaluated.  The spatial geometry of the test 

environments vary, and the environments are subject to various natural effects 

including reflection and noise.  The reflection and noise occurrin many parts of the 

images.  Therefore, additional algorithms are developed in order to remove the 

reflection and noise.  The removal of reflection and noise significantly reduces the 

number of TROs createdfor every immediate view.  The outcomes indicate that the 

proposed computer vision techniques and computational mapping algorithms for 

human perceptual map building are robust and useful.  They are able to create 

imprecise and incomplete human perceptual maps with good spatial representation of 

the overall environments.  The map is imprecise and incomplete in the sense that it is 

not accurate in metric terms and has perceived surfaces missing.  It is shown that both 

vision-based and the laser-based systems are able to compute a reasonably accurate 

spatial geometry of the tested environment.  
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1One 

CHAPTER ONE 

INTRODUCTION 

1.1Background 

Spatial cognition is a branch of cognitive psychology which is concerned with the 

acquisition, organization, utilization, and revision of knowledge about spatial 

environments (Freksa, 2004).  It allows cognitive agents, e.g. humans, animals, or 

robots, to act and interact in space effectively and to communicate about spatial 

environments efficiently.  The spatial and temporal cognitive capabilities allow 

humans to efficiently manage cognitive tasks, e.g.  going to workplace or/and returning 

home,  in everyday life (Nebel and Freksa, 2011, Freksa, 2004). 

Researchers in the spatial cognition community infer one’s internal representation 

of spatial knowledge pertaining to an explored environment as a ‘cognitive map’, a 

term first coined by Tolman (1948).  The term was created by recording the behavior 

of a maze-running rat that was able to take short-cuts to a desired destination.  In 

principle, cognitive mapping is a mental structuring mechanism involving the process 

of sensing, encoding, storing, and decoding knowledge that describes the relative 

locations and attributes of phenomena in one’s spatial environment (Downs and Stea, 

1973, Arthur and Passini, 1992). 

Since Tolman’s (1948) work, researchers in cognitive psychology have carried out 

numerous experiments to investigate the nature of cognitive maps, e.g. Olton (1977); 

Siegel and White (1975); Presotto and Izar (2010); and Rosati and Hare (2013).  Lynch 

(1960) carried out an empirical research on city planning and studied how urban 

residents orient themselves by means of mental maps.  The mental maps consist of five 
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inter-related components: paths, landmarks, nodes, edges, and districts.  Their 

cognitive maps are the “images” of their city.  In neurological studies, O’keefe and 

Nadel (1978) first outlined a spatial function of place-coded neurons in hippocampus 

to compute a cognitive map.  The hippocampus of the human brain is regarded as the 

neural substrate of a cognitive map.   

Despite attracting much interest, the notion of a cognitive map is still controversial 

(Bennett, 1996).  Many studies, e.g. Tolman (1948); O’keefe and nadel (1978); and 

Gallistel (1990), have tried to define what it is.  While it is widely accepted that the 

term “cognitive map” refers to the representation of one’s environment, what is 

controversial is its map-like property that supposedly differentiates it from other 

known knowledge of one’s environment (Yeap and Jefferies, 2000, Mackintosh, 2002, 

Yeap, 2014, Andrews and Beck, 2017).  In conjunction with the notion of a cognitive 

map, a perceptual map is defined as a representation of the spatial layout of 

surfaces/objects perceived in one’s immediate surroundings (Hossain et al., 2011, 

Yeap, 2011a).  Therefore, much research focuses on integrating successive views and 

remembering the position of objects viewed, either relative to the self or within a fixed 

reference frame. 

The perceptual map is used to maintain a perspective view of objects in one’s 

immediate surroundings, while the cognitive map is used to create different 

perspectives on the remembered spatial arrangement of objects.  A perceptual map acts 

as an interface between what is one’s view and one’s cognitive map.  Figure 1.1 shows 

the Sholl (2001) model that depicts the relationship of a viewer, a perceptual map, and 

a cognitive map.  On the other hands, One key aspect of cognitive mapping, as opposed 

to perceptual mapping, is the ability to do abstraction and use the knowledge abstracted 

to help solve spatial tasks (Hossain, 2014).   
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Figure 1.1 Sholl (2001) model: the dot with a cross indicates the position and 

orientation of the viewer in the map.  The view and the human perceptual map are 

egocentric representations, while the cognitive map is an allocentric 

representation. 

 

It is evident that humans have the capability of building a perceptual map of the 

environment.  We are able to remember what is out of sight when we  move forward 

or turn (Glennerster et al., 2009).  Some investigations, e.g., Allen and Haun (2004) 

and Farrell and Robertson (1998), provide evidence to show that humans compute the 

perceptual map seamlessly and almost effortlessly.  The computed map is accurate 

enough for humans to orient themselves in the environment.  Many studies in spatial 

cognition, e.g. Burgess (2006); Wang and Spelke (2000); Zhang, Mou, and McNamara 

(2011); and Tatler and Land (2011) often assume that a perceptual map is computed 

by integrating successive views using a co-ordinate transformation method.  As such, 

current research studies are focused on how to use the frame of references (egocentric 

and allocentric), and what representation can be computed from such a spatial 

cognition in general, and the perceptual map in particular.  

 

1.2 Problem Statement and Motivation 

A well-known problem of the co-ordinate transformation method is the computed 

perceptual map is easily distorted owing to errors in computing the turn and distance 
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