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TABURAN PEKALI TEKANAN DI SEPANJANG PROFIL LUAR RUMAH 

LUAR BANDAR YANG TERDEDAH KEPADA RIBUT DI MALAYSIA 

MENGGUNAKAN PERKOMPUTERAN DINAMIK BENDALIR (CFD) 

 

ABSTRAK 

 

Kajian terhadap kesan aliran angin di sekeliling rumah luar bandar menjadi fokus di 

dalam kajian ini. Kajian lapangan selepas angin ribut menunjukkan banyak kerosakan 

bumbung pada rumah dapur dan bukan hanya pada rumah ibu. Walaubagaimanapun, 

kajian-kajian lepas terhad kepada bangunan tinggi dan rendah tanpa ruang tambahan 

(rumah dapur) berbanding rumah luar bandar di bahagian Utara di Semenanjung 

Malaysia. Kajian berangka menggunakan simulasi Perkomputeran Dinamik Bendalir 

dijalankan untuk mensimulasikan aliran angin terhadap rumah luar bandar, seterusnya 

menghasilkan taburan tekanan di sekeliling rumah dan disahkan dengan keputusan 

ujian terowong angin. Oleh itu, kajian ini dijalankan untuk mengkaji kesan juntaian, 

sudut bumbung, ketinggian jurang dan kedudukan rumah dapur ke atas aliran angin di 

sekeliling rumah luar bandar menggunakan Perkomputeran Dinamik Bendalir. 

Persamaan RANS menggunakan model bergelora RNG 𝑘 − 𝜀  diperkenalkan untuk 

menyelesaikan masalah aliran dalam kajian ini. Sedutan tertinggi di batas bumbung 

(CP =-2.28) telah direkod untuk model rumah dapur berada di tengah. Pekali tekanan 

yang tertinggi di tinggi sela telah direkod menjadi 0.97 untuk model dengan 0.25 m 

sela. Sementara itu, model yang bersudut bumbung 17° telah membangunkan sedutan 

tertinggi di batas bumbung dengan nilai pekali tekanan -2.28. Kesan sedutan tertinggi 

berlaku di juntaian bumbung dengan nilai pekali tekanan bersih dikira menjadi -2.35 

dan tidak berlaku di batas bumbung. Akhir sekali, keputusan dari rekabentuk 

ekperimen menunjukkan juntaian bumbung dan sudut bumbung memberi kesan kuat 
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kepada nilai CP sedangkan juntaian bumbung, sudut bumbung dan kedudukan rumah 

dapur menyumbangkan kesan interaksi yang kuat. 
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DISTRIBUTION OF PRESSURE COEFFICIENT ALONG THE EXTERNAL 

PROFILE OF RURAL HOUSE EXPOSED TO WINDSTORM IN MALAYSIA 

USING COMPUTATIONAL FLUID DYNAMICS (CFD)  

 

ABSTRACT 

 

The study of effects of wind flow surrounding the rural house become the focus of the 

present study. Post windstorm site-survey shows that most damages part of the roof is 

over the kitchen house and not only core house. However, the previous studies are 

limited to the high-rise building and low-rise building without extended room (kitchen 

house) rather than the rural house in the Northern region of Peninsula Malaysia. The 

numerical study using CFD simulation was performed to simulate the wind flow 

toward rural house, resulting a pressure distribution surrounding the house and 

validated with the wind tunnel test. Therefore, the study is conducted to investigate the 

effect of house features namely overhang, roof pitch, gap height and position of kitchen 

house on the wind flow surrounding the rural house using CFD. The steady-RANS 

equation using RNG 𝑘 − 𝜀  turbulence models were introduced to solve the flow 

problems for this study. The highest suction at the roof ridge (CP = -2.28) was recorded 

for the model with kitchen house located at the center. The highest pressure coefficient 

at the gap height was recorded to be 0.97 for model with 0.25 m gap.  Meanwhile, the 

model with 17° roof pitch developed the highest suction at the roof ridge with the value 

of CP -2.28.  The highest suction effect occurred on the roof overhang with the values 

of net CP calculated to be -2.35 and not at the roof ridge. Finally, the results using 

Design of Experiment show that overhang roof and roof pitch cause the most 

significant influence to the CP values whereas the roof overhang, roof pitch and kitchen 

house position contributed to the strong interaction effect.



1 

 CHAPTER ONE 

INTRODUCTION 

 

1.1 Overview of windstorm induced damage  

 

Most high winds are produced by severe storms such as hurricanes, tornadoes, 

thunderstorm, downburst (Liu, 1991), tropical cyclone, monsoon and gale (Henderson 

and Ginger, 2008). The same types of severe storms such as hurricanes, typhoons and 

cyclones are termed differently based on the geographical region and in Asia is known 

as cyclones (Liu, 1991). Cyclones generally impacted the coastal regions in the tropics, 

and can extend hundreds of kilometers in land. Therefore, this type of storm has the 

potential to cause the most damage such as roof blown off, uprooted trees, building 

collapse, injuries and deaths of human or animals. Figure 1.1 shows the damage caused 

by a strong wind event in Mourilyan, Australia. 

  

 

Figure 1.1: Damage in Mourilyan from tropical cyclone Larry (Henderson and 

Ginger, 2008) 
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