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SIFAT-SIFAT KESERASIAN BIO KOMPOSIT Mg-Zn/HIDROKSIAPATIT 

DIFABRIKASI MELALUI TEKNIK CAMPURAN SERBUK YANG 

BERBEZA  

 

ABSTRAK 

 

Kajian ini bertujuan untuk mengkaji sifat mekanikal dan biodegradasi komposit 

magnesium-zink/hidroksiapatit (Mg-Zn/HA) yang difabrikasi melalui teknik-teknik 

campuran serbuk yang berbeza. Teknik campuran serbuk komposit tersebut 

dibahagikan kepada dua, iaitu pemprosesan langkah tunggal yang melibatkan teknik 

pengaloian mekanikal dan pengisaran mekanikal, sementara pemprosesan langkah 

berganda melibatkan gabungan pengaloian mekanikal dan pengisaran mekanikal. 

Sifat-sifat mekanikal dan biodegradasi komposit tersebut didapati mencapai tahap 

terbaik apabila serbuknya dihasilkan melalui teknik pengaloian mekanikal dengan 

masa pengisaran selama 4 jam dan kelajuan kisaran pada 220 putaran per minit. 

Komposit yang dihasilkan melalui kaedah pengaloian mekanikal kemudiannya dikisar 

dengan tempoh yang berbeza untuk mengkaji kesan masa kisaran kepada sifat 

komposit tersebut. Komposit Mg-Zn/HA yang difabrikasi melalui kaedah pengaloian 

mekanikal dan dikisar selama 6 jam mempunyai kombinasi terbaik dari segi 

penambahbaikan pada sifat kakisan dan sifat mekanikal, iaitu kadar kakisan terendah 

(0.1487 mm/tahun melalui pengutuban elektrokimia dan 0.34 x 10-3 mm/tahun melalui 

ujian rendaman) dan kekerasan mikro (64 HV) juga kekuatan mampatan (193 MPa) 

yang sesuai. Komposit biodegradasi yang difabrikasi melalui teknik pengaloian 

mekanikal selama 6 didapati sangat sesuai untuk aplikasi implan, berdasarkan 

kekuatan mekanikal dan ciri-ciri biodegradasi yang baik. Dari segi keserasian bio, 

secara keseluruhannya komposit Mg-Zn/HA mempamerkan sifat bioaktiviti melalui 
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ujian rendaman yang dijalankan, namun masa rendaman selama 24 jam didapati tidak 

mencukupi untuk menghasilkan komposit yang mempunyai bioaktiviti yang dapat 

memenuhi keperluan pemineralan awal tulang iaitu nisbah Ca:P daripada 1:1 kepada 

1:1.67. Namun begitu, komposit Mg-Zn/HA yang dihasilkan melalui kaedah 

pemprosesan langkah tunggal pengisaran mekanikal (nisbah Ca: P sebanyak 1.76) 

didapati mempunyai bioaktiviti yang paling tinggi mengatasi komposit-komposit yang 

dihasilkan melalui kaedah pemprosesan langkah tunggal pengaloian mekanikal dan 

pemprosesan langkah berganda. 
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PROPERTIES OF BIOCOMPATIBLE Mg-Zn/HYDROXYAPATITE 

COMPOSITE FABRICATED BY DIFFERENT POWDER MIXING 

TECHNIQUES 

 

ABSTRACT 

 

This work aims to investigate the mechanical performance and biodegradation 

behaviour of magnesium-zinc/hydroxyapatite (Mg-Zn/HA) composite that was 

fabricated via different powder mixing techniques. The powder mixing techniques of 

the composite was mainly divided into two, the first one is single step processing 

which involved the mechanical alloying and mechanical milling techniques, while the 

second is double step processing which involved the combination of mechanical 

alloying and mechanical milling. The optimum mechanical properties and 

biodegradation behaviour of the composite was achieved when the powders were 

prepared using mechanical alloying technique with the milling time of 4 hours and 

milling speed of 220 rpm. The composite prepared through the mechanical alloying 

technique was then subjected to various milling time to investigate the effect of milling 

time towards the properties of the composite. Mg-Zn/HA composite which was 

fabricated through the mechanical alloying technique and milled for 6 hours attained 

the best combination of improved corrosion behaviour as well as mechanical 

properties which is due to lowest corrosion rate (0.1487 mm/year by electrochemical 

polarization and 0.34 x 10-3 mm/year by immersion test) and acceptable microhardness 

(64 HV) and compressive strength (193 MPa). Fabrication of the biodegradable 

composite through the mechanical alloying technique within the 6 hours milling time 

was found to be suitable for the implant application, due to good mechanical strength 

and biodegradation behaviour. In term of biocompatibility, generally Mg-Zn/HA 



xx 
 

composite possessed good bioactivity characteristics through the immersion test, 

however immersion time of 24 hours was found to be insufficient to produce 

composites that can satisfy the initial bone mineralization which the Ca:P ratio in the 

range of 1:1 to 1:1.67. However, Mg-Zn/HA composite that was fabricated through 

single step processing of mechanical milling (Ca:P ratio of 1.76) was found to have 

the highest bioactivity over the other two composites that was fabricated through single 

step processing of mechanical alloying and double step processing.     
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CHAPTER ONE 

 

INTRODUCTION 

 

 

1.1 Introduction 

Biomaterials are defined as artificial or natural materials used to replace the 

lost or injured biological structure, with aims to restore its form and function. It is used 

in different parts of the human body as stents in blood vessel, artificial valves in heart, 

replacement implants in knees, hips, elbows, shoulders, ears and orodental structures 

(Geetha et al., 2009).  Along with the advancement in the medical technology, several 

types of materials such as metals, ceramics, polymers and composites have been 

extensively utilized for implants into human body (Adeosun et al., 2014).  

 Biomaterial implants can either be used to replace a diseased part or to promote 

healing process. Implants are usually divided into two types, degradable or permanent 

implant, based on how long the implants are required to remain present in human body 

(Manivasagam et al., 2016). Permanent metallic implants available in the medical 

market such as titanium alloys, stainless steel 316L and cobalt-chromium alloys 

always require the implants to stay permanently in the body. In situations where the 

permanent implant is just required until the healing process is complete, the implant is 

no longer useful, thus conducting the secondary surgery is crucial to remove the 

implant (Park & Bronzino, 2003). The development of biodegradable implants clearly 

can obviate the need of secondary surgery, thus reduces the cost of health care and 

patient morbidity.  

There is a wide variety of biomaterials introduced, mainly ceramics-based, 

polymers-based and metallic-based. Each of these three classes of materials possess 

their own unique characteristics to fit into the application of biomaterials. Ceramics-
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based biomaterials, such as widely used calcium phosphate-based bioceramics, is 

acknowledged for its superior bioactivity (an ability of the implant material that allow 

the adherence and proliferation of bone cells on its surface and pores) and 

osseointegration (ability of the implant to be structurally and functionally bonded to 

the living bone (Bose et al., 2012; Parithimarkalaignan & Padmanabhan, 2013). 

Despite of the qualities of bioceramics, it exhibited poor mechanical properties and 

brittleness, which is strictly limits their application in load-bearing implants (Ibrahim 

et al., 2017).  

As for polymer-based biomaterials, the major concern is the possibility of local 

inflammation due to the polymer itself or through its degradation products. The 

biodegradation and resorption process of the polymer begins once implanted in human 

body, and the process also caused the acidic by-products to be released, thus results in 

inflammatory reactions (Sheikh et al., 2015). Inherent poor mechanical properties of 

polymer and maintaining its mechanical strength until the bone is completely healed 

also becoming one of the major challenges faced in the researches of polymeric-based 

biodegradable implants, in addition to design an implant that slowly degrade in body 

environment (Cheung et al., 2007; Adeosun et al., 2014). These problems caused the 

application of polymer-based biomaterials to be limited to be used for load-bearing 

applications. Contrast to metal-based biomaterials, this class possess the sufficient 

mechanical compatibility, with excellent biocompatibility such as titanium and its 

alloys, cobalt-based alloys, stainless steels and new generation of biodegradable 

magnesium. From a perspective of biological, numerous researches reported that more 

new bone is formed when using bioceramics and magnesium alloys as bone fixation 

devices compared to polymers. This can be associated to the osteoconductive and 

osseoinductive of the ceramics and biocompatibility behaviour of magnesium alloys 
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(Sheikh et al., 2015).  

The use of permanent or non-biodegradable metal-based implants such as 

titanium and its alloys, stainless steels and cobalt-based alloys are very dominant in 

the medical market due to their excellent mechanical performance and bioinertness. 

The use of metal-based medical implants can be traced back in 1920’s, which stainless 

steel alloy was used as implant materials owing to its superior corrosion resistance. 

Since the discovery, researchers starting to focus on developing high corrosion 

resistant materials for medical application. This was the era of glorious findings of 

316L stainless steels, cobalt-based alloys and titanium alloys, which all of the materials 

were proved to have excellent mechanical properties and also good biocompatibility 

in human body (Ibrahim et al., 2017). Even though these types of metals are 

predominant in the orthopaedic market, every materials possess their own advantages 

and disadvantages. The most highlighted issues associated with the use of these 

permanent implant are stress shielding problem and the needs of performing secondary 

surgery to remove the implant after healing process is completed (Chen & Thouas, 

2015). These issues quickly becoming the driving forces to the development of new 

generation of biodegradable metals.  

The challenge of developing the biodegradable metals explored three types of 

most promising metals, such as iron based alloy (Li et al., 2014), zinc based alloy 

(Mostaed et al., 2016) and magnesium based alloy (Witte et al., 2008; Feyerabend, 

2014). The use of biodegradable metal as biomaterials has been discovered since 200 

A.D. in Europe, which Fe dental implant was found to be properly integrated into bone 

(Zheng et al., 2014). Since Fe was reported to experience slower degradation rate based 

on animal experiments, surgeons have diverts the use of Fe to Mg and its alloy for 

countless clinical applications, for almost 100 years (Zhen et al., 2013; Li et al., 2014). 
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