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PENCIRIAN PELBAGAI JENIS PENGISI NANO TERISI                       

KOMPOSIT POLIETILENA TERSAMBUNG SILANG UNTUK                                    

APLIKASI KABEL 

 

ABSTRAK 

            Kajian ini adalah untuk mengkaji kesan pengisi nano terhadap sifat 

mekanikal, fizikal, dielektrik dan terma matriks polietilena tersambung silang 

(XLPE). Pengisi nano yang tidak dirawat adalah zink oksida (ZnO) dan aluminium 

oksida (Al2O3). Pengisi nano yang telah dirawat adalah tanah liat (OMMT), ZnO 

dirawat dengan 3-aminopropyltriethoxysilane (KH550-ZnO), ZnO dirawat dengan 

triethoxycaprylylsilane (TCS-ZnO) dan Al2O3 dirawat dengan aluminic ester (AE- 

Al2O3). Komposit nano XLPE telah disediakan dengan pencampuran leburan dengan 

ekstruder skru tunggal diikuti dengan penekan panas. Peratusan berat yang berlainan 

(0.5, 1, 1.5 dan 2 wt%) telah dikompaun bagi komposit nano yang tidak dirawat dan 

telah dirawat. Gabungan ZnO/Al2O3 dan ZnO/OMMT dengan nisbah yang berbeza 

(75/25, 50/50 dan 25/75) dalam jumlah 1 wt% berat pengisi telah dikompaun bagi 

komposit nano hibrid. Komposit nano telah diuji dengan mengikut kaedah piawaian 

ASTM dan dicirikan dengan pemeriksaan mikroskop elektron (SEM), analisis 

termogravimetrik (TGA) dan kalorimetri pengimbasan berbeza (DSC). Keputusan 

menunjukkan penambahan pengisi nano yang tidak dirawat dan dirawat 

meningkatkan sifat tegangan, kadar pembakaran, sifat dielektrik dan suhu penguraian. 

Walau bagaimanapun, ia menunjukkan kesan terhad terhadap sifat rintangan air, 

suhu leburan dan suhu penghabluran. Berat pengisi optimum adalah 1.5 wt% dan 

kesan Al2O3 lebih baik daripada pengisi nano ZnO dan OMMT berdasarkan 

kebanyakan sifat. Rawatan permukaan dengan ejen gandingan meningkatkan 
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kawasan antara muka pengisi dan matriks dengan ikatan kimia. Interaksi pengisi-

matriks yang kuat meningkatkan lagi sifat komposit. Berat pengisi optimum adalah 

1.5 wt% dan kesan AE-Al2O3 adalah lebih baik daripada pengisi nano KH550-ZnO 

dan TCS-ZnO berdasarkan kebanyakan sifat. Dalam komposit nano hibrid, nisbah 

pengisi yang terbaik adalah 50/50 bagi gabungan ZnO/Al2O3 dan 75/25 bagi 

gabungan ZnO/OMMT disebabkan oleh sifat sinergi. Secara keseluruhan, komposit 

nano AE-Al2O3(1.5)/XLPE mempunyai keputusan yang terbaik. Berbanding XLPE 

yang tidak terisi, ia telah menunjukkan peningkatan ketara dalam kekuatan tegangan 

(59%), pemanjangan pada takat putus (51%), modulus Young’s (60%), sudut sentuh 

(4%), kekuatan pecahan dielektrik (35%), rintangan isipadu (55%), suhu penguraian 

dan pengurangan kadar pembakaran (14%). Ia sesuai untuk aplikasi penebat kabel 

kerana ciri-ciri mekanik, fizikal, dielektrik dan haba yang luar biasa. 
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CHARACTERIZATION OF VARIOUS TYPES OF NANOFILLERS               

FILLED CROSSLINKED POLYETHYLENE COMPOSITES FOR                      

CABLE APPLICATION 

 

ABSTRACT  

            This research is to study the effect of nanofillers on mechanical, physical, 

dielectric and thermal properties of the crosslinked polyethylene (XLPE) matrix. 

Untreated nanofillers used are zinc oxide (ZnO) and aluminium oxide (Al2O3). 

Treated nanofillers used are organoclay (OMMT), 3-aminopropyltriethoxysilane 

treated ZnO (KH550-ZnO), triethoxycaprylylsilane treated ZnO (TCS-ZnO) and 

aluminic ester treated Al2O3 (AE-Al2O3). XLPE nanocomposites were prepared by 

melt mixing with a single screw extruder followed by hot press moulding. Different 

weight percentages (0.5, 1, 1.5 and 2 wt%) were compounded in untreated and 

treated nanocomposites. Combinations of ZnO/Al2O3 and ZnO/OMMT with different 

ratios (75/25, 50/50 and 25/75) in total of 1 wt% filler loading were compounded in 

hybrid nanocomposites. Nanocomposites were tested as per ASTM standard methods 

and characterized with scanning electron microscopy (SEM), thermogravimetric 

analysis (TGA) and differential scanning calorimetry (DSC). The results showed that 

the addition of untreated and treated nanofillers improved tensile property, burning 

rate, dielectric property and decomposition temperature. However, it has limited 

effect on the water resistance property, melting and crystallization temperatures. The 

optimal filler loading was 1.5 wt% and the effect of Al2O3 is better than ZnO and 

OMMT nanofillers based on most properties. Surface treatment with coupling agent 

enhanced the interface between the filler and the matrix with chemical bonding. 

Strong filler-matrix interaction further improved the properties of composite. The 
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optimal filler loading was 1.5 wt% and the effect of AE-Al2O3 is better than KH550-

ZnO and TCS-ZnO nanofillers based on most properties. In hybrid nanocomposites, 

the best filler ratio was 50/50 in ZnO/Al2O3 and 75/25 in ZnO/OMMT combinations 

which induced synergistic properties. Overall, AE-Al2O3(1.5)/XLPE nanocomposite 

has the best results. As compared with the unfilled XLPE, it has led to the significant 

improvement in tensile strength (59%), elongation at break (51%), Young’s modulus 

(60%), contact angle (4%), dielectric breakdown strength (35%), volume resistivity 

(55%), decomposition temperature and reduced burning rate (14%). It is suitable for 

cable insulation application due to its extraordinary mechanical, physical, dielectric 

and thermal properties.  
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CHAPTER ONE  

INTRODUCTION 

1.1      Background of Research  

            Electricity is the key component to modern technology used for domestic 

appliances in our daily life. By the rapid of urban and city growth, demand of 

electrical energy is ever increasing and the power system is becoming more complex. 

The reliability of power supply to the consumers must be ensured with a trustworthy 

insulation system in order to has greater efficiency and cost effectiveness.  

            The growing of power cable technology had beginnings in the 1870 where 

the cables were insulated with natural rubber or porcelain (Ponniran, 2005). After 

that it was insulated with gutta-percha, oil and wax, jute, hemp and cotton. New 

evolution had beginnings in 1942 where polyethylene has been used as insulator in 

cable. It has been launch throughout the years until crosslinked polyethylene (XLPE) 

was first invented in Canada and United State in the late 1960s. Nowadays, XLPE 

has been extensively used throughout the world as electrical insulating material in 

underground distribution and transmission class. In Malaysia, underground power 

cables are the primary pathway of distributing electrical energy to the houses or 

industry area. Tenaga Nasional Berhad (TNB) is the largest electricity utility in 

Malaysia which responsible in keeping the lights on for all residents (Zainal, 2016). 

TNB has been switched to XLPE cable for the 11 kV underground systems since 

1990s (Osman et al., 2005). It was reported that huge number of failures for 

underground cable system from year 2010 to 2015 as shown in Figure 1.1.  
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Figure 1.1: Number of failure report for underground cable system from year 2010 

to 2015 in Malaysia (Zainal, 2016) 

 

           Based on Figure 1.1, it shows the reduction failure number for the past years 

for medium voltage underground cable. Recently, much effort has been carried out to 

find the solutions to overcome the problems in particularly insulation part. The 

existing cable mainly failed due to the breakdown of insulation and cable joint. At 

high water ground area, function failed due to the water ingression of internal part of 

cable.   

            A good insulation system is often considered by its electric strength as a 

dominant characteristic. Nevertheless, thermal and mechanical properties are crucial 

factors which could critically affect the performance or even failures of electrical 

insulation (Nelson, 2010). The approach towards seeking the long-term solution to 

the choice of cable insulation technology is to develop a better insulation system. It 

has been raised the risk and get attention from the Institute of Electrical and 

Electronics Engineers (IEEE) and also Dielectrics and Electrical Insulation Society 

(DEIS) where they are currently focus on the research of improving insulation by 

adding additives including nanofillers to existing materials. Even little gains in 

performance can bring commercial significance on electrical insulation usage.  
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