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KESAN RESEPTOR TERAKTIF PEMPROLIFERATOR 

PEROKSISOM GAMMA (PPARγ) KE ATAS EKSPRESI FOXP3, TIGIT, 

ICOS DAN PROTEIN HISTONE DALAM SEL T-REGULATORI 

ABSTRAK 

Sel Regulatori T semula jadi (nTreg) mewakili kira-kira 8-10% daripada 

jumlah populasi CD4+ T sel. Sel-sel ini penting untuk homeostasis imun dan 

pencegahan autoimun. Kajian terdahulu menunjukkan bahawa ligan reseptor teraktif 

pemproliferator peroksisom gamma (PPARγ) dapat menindas ekspresi FoxP3 dalam 

sel-sel nTreg setelah dikultur in vitro selama 72 jam. Kajian ini dilakukan untuk 

menjelaskan kesan-kesan ligan PPARγ pada ekspresi TIGIT dan ICOS dalam sel-sel 

nTreg dari mencit Balb/c. Kami juga menumpu kepada pengubahsuaian histon pada 

ekspresi gen FoxP3 dalam sel-sel nTreg berikutan rawatan ligan PPARγ dan 

perencatnya dalam mencit T1D. Limpa mencit Balb/c, Non Obese Diabetic (NOD) 

dan Non Obese Resistant (NOR) diekstrak melalui dislokasi serviks. Sel T 

CD4+CD25+ dipencil menggunakan MoFlow pengisih automasi ataupun MACS 

magnetik dan ketulenan dianalisis oleh sitometri aliran. Sel T CD4+CD25+ dikultur 

selama 72 jam dalam media RPMI dengan kehadiran antibodi anti-CD3/CD28 dan 

sitokin IL-2. Sel nTreg dari mencit Balb/c telah dirawat dengan atau tanpa 15d-PGJ2 

atau ciglitazone untuk kajian mengenai profil penanda permukaan TIGIT dan ICOS. 

Sel nTreg dari mencit NOD/NOR dirawat dengan15d-PGJ2 atau ciglitazone dengan 

atau tanpa perencatnya, GW9662. Ekspresi protein FoxP3 diperhatikan oleh analisis 

imunofluoresensi dan aktiviti enzim histon diukur oleh ELISA. Dalam kajian model 

mencit T1D, kami mendapati berat badan NOD dan NOR meningkat selari dengan 



xxi 

peningkatan umur. Hiperglikemia NOD bermula pada umur 12 minggu. Pengisihan 

automatik adalah sebanding dengan cara MACS magnetik di mana efisiensi 

pengasingan sel-sel nTreg adalah lebih daripada 90% dan 40-70% daripada populasi 

ini adalah sel FoxP3+. Ligan PPARγ dan perencatnya tidak mempengaruhi 

rangsangan sel dan proliferasi dalam kultur in vitro. Kedua-dua 15d-PGJ2 dan 

ciglitazone tidak memberi kesan pada ekspresi molekul TIGIT dan ICOS dalam 

mencit Balb/c yang sihat. Analisis imunofluoresensi menunjukkan protein 

intraselular FoxP3 tidak berubah oleh kesan 15d-PGJ2 dalam kedua-dua kumpulan 

mencit NOD/NOR. Walau bagaimanapun, kombinasi 15d-PGJ2 dengan GW9662 

telah memberi kesan balikan pada protein FoxP3 di NOR. Di samping itu, kami 

mendapati aktiviti HAT asetilasi histon tidak dikawal oleh ligan PPARγ dan 

GW9662 dalam mencit NOR. Tetapi aktivitinya menurun sedikit dalam mencit 

NOD. Sebaliknya, penemuan kami mengenai deasetilasi histon menunjukkan 

pengurangan aktiviti HDAC6 di kedua-dua mencit apabila sel-sel nTreg dirawat 

dengan 15d-PGJ2 dan ditindas oleh GW9662 berbanding dengan kumpulan yang 

tidak dirawat. Penemuan serupa dicatatkan pada aktiviti HDAC11 dengan rawatan 

yang sama. Kesimpulannya, ekspresi TIGIT dan ICOS tiada perantaraan dengan 

laluan PPARγ semasa keadaan tidak keradangan. Pengawalaturan ekspresi gen 

FoxP3 dikaitkan dengan aktiviti asetilasi HAT dan deasetilasi HDAC oleh ligan 

PPARγ, 15d-PGJ2 dan perencatnya GW9662 mempamerkan potensi tutur silang 

dengan enzim-enzim ini melalui laluan isyarat bebas PPARγ. Analisis lanjutan 

diperlukan untuk mengenalpasti peranan sebenar 15d-PGJ2 sebagai perencat HDAC, 

terutamanya dalam mengaktifkan kedua-dua pengaktif dan repressor untuk aktiviti 

enzim HDAC6/11 untuk pembangunan terapi berasaskan histon dalam model 

autoimun. 
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THE EFFECT OF PEROXISOME PROLIFERATOR ACTIVATED 

RECEPTOR GAMMA (PPARγ) ON THE EXPRESSION OF FOXP3, TIGIT, 

ICOS AND HISTONE PROTEINS IN NATURAL T-REGULATORY CELLS 

ABSTRACT 

Natural T Regulatory (nTreg) cells represent approximately 8-10% of the 

total CD4+ T cell population. These cells are crucial for immune homeostasis and 

autoimmunity prevention. Previous study showed that peroxisome proliferator-

activated receptor gamma (PPARγ) ligands suppress Forkhead box P3 (FoxP3) 

expression in nTreg cells following 72 hours in vitro culture. Current study was 

performed to elucidate the effects of PPARγ ligands on T cell immunoreceptor with 

Ig and ITIM domains (TIGIT) and Inducible T cell costimulator (ICOS) expressions 

in activated nTreg cells isolated from Balb/c mice. We also focused on histone 

modifications on FoxP3 gene expression in activated nTreg cells following PPARγ 

ligand, 15-Deoxy-△(12,14)-prostaglandin J2 (15d-PGJ2) and its inhibitor, GW9662 

treatment in type 1 diabetes (T1D) mouse model. Spleens of Balb/c, NOD and NOR 

mice were harvested through cervical dislocation. CD4+CD25+ cells were isolated 

using MoFlow automated sorter or Magnetic-activated cell sorting (MACS) magnetic 

separation and purity was analyzed by flow cytometry method. Isolated 

CD4+CD25+ cells were cultured for 72 hours in supplemented RPMI in the presence 

of anti-CD3/CD28 antibodies and IL-2 cytokine. In Balb/c mice, sorted cells treated 

with or without 15d-PGJ2 or ciglitazone for TIGIT and ICOS surface marker 

profiling. In NOD/NOR mice, isolated cells were treated with 15d-PGJ2 or 

ciglitazone with or without GW9662 inhibitor. FoxP3 protein expression was 
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observed by immunofluorescence analysis and histone enzyme activities were 

measured by Enzyme-linked immunosorbent assay (ELISA) method. In T1D mouse 

model study, we found the body weight of NOD and NOR increased parellel by age. 

Hyperglycemia of NOD was started at age of 12 week old. Automated sorting was 

comparable with magnetic selection where the efficiency of nTreg cell isolation was 

more than 90% and 40-70% of the population was FoxP3+ cells. PPARγ ligands and 

its inhibitor did not affect cell stimulation and proliferation in vitro culture. Both 

15d-PGJ2 and ciglitazone had no effect on TIGIT and ICOS molecules expression in 

healthy Balb/c mice. Immunofluorescence analysis showed that intracellular FoxP3 

protein was not altered by 15d-PGJ2 in both NOD/NOR mice. However, 

combination of 15d-PGJ2 with GW9662 had reversed effect on FoxP3 protein in 

NOR mice. In addition, we found histone acetylation HAT activities were not 

regulated by PPARγ and GW9662 in NOR mice. However it was slightly 

downregulated in NOD mice. In contrast, histone deacetylation shown reduction of 

HDAC6 activities in both mice groups when nTreg cells treated with 15d-PGJ2 and 

further suppressed by GW9662 compared to untreated groups. Similar findings were 

recorded on HDAC11 activities with the same treatment. As a conclusion, TIGIT and 

ICOS expressions are not mediated by PPARγ pathway during non inflammation 

condition. Regulation of FoxP3 gene expression attributed to HAT acetylation and 

HDAC deacetylation activities by PPARγ ligand and its inhibitor exhibit potential 

crosstalk with these enzymes through PPARγ-independant signaling pathways in 

T1D mouse model. Further analysis is required to corroborate the putative role of 

15d-PGJ2 as HDAC inhibitor, particularly in profilling both activators and repressors 

for HDAC6/11 enzyme activities regarding histone-based therapy development in 

autoimmune models. 
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CHAPTER 1  

 

INTRODUCTION 

1.1 Study background 

 Immune system is a collective function mediated together by the molecules, 

cells, tissues and organs to provide immunity protection for the host from internal 

and external assaults. The response is regulated by stringent mechanisms in order to 

maintain balance between protection and self-destruction. One of the immune 

regulatory mechanism is through the suppressive effect of Treg cells on autoreactive 

T effector (Teff) cells. Treg cells naturally express surface markers CD4+CD25+ and 

intracellular transcription factor FoxP3 (Sakaguchi, 2005). These cells are originally 

developed in the thymus and mainly engaged in peripheral self-tolerance, 

homeostasis and prevent autoimmune disease through their five putative suppressive 

mechanisms (Sakaguchi et al., 1995). In cancer, high number of nTreg cells are 

correlated with tumorigenesis which indicate poor prognosis (Adeegbe and 

Nishikawa, 2013). While in autoimmune diseases, depletion of CD4+CD25+FoxP3+ 

cell population lead to the development of autoreactivity.  

 FoxP3 expression in nTreg cells is transforming growth factor-beta (TGF-β) 

independant whereas for peripheral inducible T Regulatory (iTreg) cells required 

TGF-β and IL-10 for FoxP3 expression  (Fahlén et al., 2005). Treg cells secrete IL-

10 and TGF-β which are involved in immunosuppressive towards dendritic cells 

(DCs) (Onishi et al., 2008), stimulate T lymphocytes such as T helper 1 (Th1), Th2 

dan Th17 cell proliferation (Corthay, 2009).  They also suppress allergy reactions 

from mast cells, basophils and eosinophils (Palomares et al., 2010). Naturally 

occurring mutations in the FoxP3 gene cause immune dysregulation, 

polyendocrinopathy, enteropathy, X-linked (IPEX) in human and scurfy in mouse 
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model which accelerate the development of autoimmune diabetes  (Bennett et al., 

2001; Chen et al., 2005; Bacchetta, Barzaghi and Roncarolo, 2018). As the master 

regulator for transcription factor gene of forkhead box family, stable expression of 

FoxP3 is important to maintain its suppressive effect (Horwitz et al., 2008; Chen et 

al., 2011). The development of nTreg cells start in developing thymocytes and 

mature nTreg cells where Treg-specific demethylated region (TSDR) of the FoxP3 

locus exhibit hypomethylation or demethylated at CpG motif (Floess et al., 2007), 

thus expression of FoxP3 is regulated by both genetic and epigenetic factors. Both 

nuclear factor of activated T cells (NFAT) and nuclear factor kappa B (NF-ĸB) are 

the target protein suppressed by FoxP3 resulting in downregulation of other effector 

T cells cytokines including IL-2 (Bettelli, Dastrange and Oukka, 2005; Lopes et al., 

2006). As a transcriptional repressor, FoxP3 requires direct deoxyribonucleic acid 

binding domain (DBD) in regulating T cell activation (Schubert et al., 2001) to form 

oligomeric complexes with other proteins dynamically.   

 Recently, FoxP3 expression was found to be regulated negatively by PPARγ 

ligands in activated nTreg cells through PPARγ-independant mechanism (s) (Nor 

effa, Yaacob and Norazmi, 2018). The role of PPARγ as an immune suppressor has 

been widely studied. Activation of PPARγ by its ligands lead to binding of 

PPAR/retinoid X receptor (RXR) heterodimer, subsequently conformational change 

of the ligand-binding domain (LBD) causes corepressor releasing bind on the 

coactivators resulting modulation of PPARγ activity (Peters and Heuvel, 2002; 

Laudet and Gronemeyer, 2002). Therefore, PPARγ becomes an important nuclear 

receptor in diabetes as it acts as insulin sensitizer (Kletzien, Clarke and Ulrich, 1992) 

besides playing roles in adipogenic differentiation, energy storage and fatty acid 

metabolism (Stump et al., 2015). 15d-PGJ2 which is a natural ligand and prostanoids 
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to activate PPARγ translocation into nucleus  (Forman et al., 1995; Kliewer et al., 

1995).  However, in vivo production of the 15d-PGJ2 is insufficient to be a 

significant agonist (Erzin and Cakir, 2017). Thus natural ligands could potentially 

provide beneficial effect as adjuvant factor for understanding the role of PPARγ and 

its ligands on FoxP3 expression in Treg cells which may benefit as a potential 

molecular target in treating immune-related diseases. 

 TIGIT molecules are expressed on Treg cells, NK and CD8+ T cells but not 

in B cells and monocytes (Yu et al., 2009). Ligation of CD155 and TIGIT has been 

found to inhibit CD8+ T cell metabolism resulting in anergy antitumor immunity (He 

et al., 2017). TIGIT molecules that are expressed on activated T cells interact with 

high affinity polio receptors on DC to suppress IL-10 production (Yu et al., 2009). In 

cancer, enriched TIGIT signalling have been studied in tumor-infiltrating 

lymphocytes (TIL), this signalling is exclusively found in Treg cells but not in 

effector CD8+ T cells due to its malfunction (Kurtulus et al., 2015). Recently, Liu et 

al. (2019) revealed administration of TIGIT-Ig effective in lupus treatment and 

prevention.  

 ICOS, homologue to CD28, is an inducible co-stimulator receptor expressed 

on activated T cells but not in naïve T cells (Hutloff et al., 1999; Tafuri et al., 2001). 

T cell activation cascade initiates the ligation of T cell receptor (TCR)-Major 

Histocompatibility Complex (MHC) class I/II complex following secondary co-

stimulation signals for proper T cell responses, whereas Cytotoxic T lymphocyte-

associated molecule-4 (CTLA-4) was found to attenuated this stimulation (Krummel 

and Allison, 1995; Greenwald, Latchman and Sharpe, 2002; Rudd and Schneider, 

2003). Notably, ICOS was found to be crucial in maintaining Treg cells stability in 

T1D animal model (Kornete, Sgouroudis and Piccirillo, 2012). During pre-diabetes, 
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islet-derived ICOS+ Treg cells adopt a Th1-like Treg phenotype in 

immunoregulation (Kornete et al., 2015) and Teff cells coexist with Treg cells where 

this depends on ICOS regulation (Herman et al., 2004) in delaying the onset of T1D. 

 T1D is  defined by World Health Organization (WHO) as deficiency of 

insulin production and requires administration of insulin by daily. Previously T1D 

known as insulin-dependant, juvenile or childhood-onset and is not preventable like 

Type 2 diabetes (IDF, 2017). The lacking of insulin production leads to 

hyperglycaemia, which  cause various complications such as cardiovascular disease, 

neuropathy, nephropathy and retinopathy (IDF, 2017). According to International 

Diabetes Federation (IDF) Diabetes Atlas 8th edition (2017), T1D has been 

diagnosed in 169,900 children and adolescent in United States of America (USA), < 

20 years old age group made up the highest in the world (IDF, 2017).  Globally, it is 

estimated 96,100 children and adolescents aged < 15 years,  and 132,600 of them 

with age range < 20 years to be diagnosed with T1D annually (IDF, 2017). 

 In 2015, Ministry of Health (MOH) Malaysia has published Clinical Practice 

Guidelines (CPG) regarding Management of T1D in Children and Adolescent to 

guide the clinical practitioners (MOH, 2015). According to Malaysian Diabetes in 

Children and Adolescents Registry (DiCARE) annual report (2008) published in the 

same CPG, 69.2% of children had T1D and 57.1% has presented with Diabetic 

Ketoacidosis (DKA); the ratio male to female was 1:1.2 indicating female (54.2%) 

higher than male (45.8%).  Whereas, Malaysia National Diabetes Registry (volume 

1, 2009-2012) has reported that 0.6% of 657,839 diabetes patients have been 

diagnosed as T1D.  Hence, the early management of T1D is critical as development 

of DKA that has been associated with high morbidity and mortality (MOH, 2015; 

IDF, 2017). 
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 Similar to diagnosing Type 2 diabetes (T2D), which is based on blood 

glucose test, however diagnosis of T1D requires detection of  autoantibodies against 

4 different markers: cytoplasmic protein in the pancreatic β-cell, glutamic acid 

decarboxylase (GAD), anti-insulinoma associated antigen 2 (IAA) and anti-insulin G 

(Taplin and Barker, 2008; Chiang et al., 2018).  Innate immune cells including DCs, 

macrophages and neutrophils infiltrate into the pancreas which attract the infiltration 

of T lymphocytes into islet cells eventually develop insulitis that contribute to the 

development of diabetes (Miyazaki et al., 1985). T1D is a T-cell mediated disease, 

NOD mice that develop spontaneous autoimmune diabetes has favoured animal 

model to study T1D as compared to lymphopenic bio-breeding rat (Jackson et al., 

1981). In addition, NOD mice have similarities of immunopathology in human T1D 

(Pearson, Wong and Wen, 2016). 

 Epigenetics study involves covalent modifications of deoxyribonucleic acid 

(DNA) strands such as methylation, acetylation, ubiquitination, phosphorylation and 

SUMOlylation in gene expression without affecting the DNA sequence. Of note, four 

epigenetic mechanisms have been identified including DNA CpG methylation, 

histone post-translational modifications (PTMs), non-covalent mechanisms e.g. 

incorporation of histone variants, and non-coding Ribonucleic acids (ncRNAs) 

including microRNAs (miRNAs). It is well- known that this field has becoming the 

focus of worldwide researchers to investigate mesmerizing topics such as 

neuropsychiatric disorders, cancer, metabolic diseases, nutritional development and 

novel therapeutics. For example, T1D susceptibility correlates with loci-dependant 

methylation where data showed significant CpG count across Human Leukocyte 

Antigen (HLA)-DR-DQ locus by using bioinformatics. It was found that HLA-DR3-

DQ2 and DR4-DQ8 cis-met Quantitative Trait Locus (QTLs) at CpG sites are 
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present in both children and adults. However, methylation pattern was found to be 

significantly different due to the difference in CpG site abundance between these 

groups which may contribute to development of diabetes (Kindt et al., 2018). Hence, 

epigenetic factors may as well complement the genetic and environment factors 

contributing to disease development. 

 PTMs have been recognized strongly affects gene expression regulation in 

cancer (Chrun, Modolo and Daniel, 2017) and inflammatory diseases (Barnes, 

Adcock and Ito, 2005; Villagra, Sotomayor and Seto, 2010; Shakespear et al., 2011). 

Histone acetylation is regulated by the opposite actions of histone deacetylases 

(HDACs) and histone acetyltransferases (HATs) enzymes (Brownell et al., 1996; De 

Ruijter et al., 2003). Therefore, development of histone deacetylase inhibitor 

(HDACi) as small-molecular to regulate these enzyme activities has become major 

interest among therapeutics and pharmaceutical fields. The synergistic effect of 

HDACi has enhance the efficacy of standard chemotherapy when use in combination 

(Suraweera, O’Byrne and Richard, 2018).  

 HATs covalently transfer acetyl group from acetyl-coenzyme A to lysine 

residues on proteins whereas HDACs remove acetyl group enabling the negatively 

charged DNA bind to nucleosome. In addition, HATs enabling transcriptional 

activation as a result of more relaxed chromatin but HDACs act as transcriptional 

repressors in multi-subunit complexes and gene silencing under closed chromatin 

condition (Cress and Seto, 2000). Based on phylogenetic classification, mammals 

have four classes of HDACs based on homology to the yeast original enzymes and 

domain organization (Dokmanovic, Clarke and Marks, 2007) while HATs are group 

into five families according their catalytic domain and substrate specificity (Allis et 

al., 2007). 
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 Primarily, cytoplasmic Class IIb HDAC6 modulates histone and non-histone 

protein with its unique of two functional catalytic domains (Zou et al., 2006). 

Furthermore, inhibition of HDAC6 increases the immunosuppressive function of 

FoxP3+ Treg, thus promotes Treg-dependant suppression of autoimmunity and 

transplant rejection when bind to Heat Shock Protein (HSP) 90 (de Zoeten et al., 

2011). Thus, they are often deregulated in diseases and inhibition of their enzymatic 

activities by the lacking of DNA binding remains of therapeutic interest. On the other 

hand, HDAC11 initially was identified as negative regulator of anti-inflammatory 

cytokine IL-10 (Villagra et al., 2009) until HDAC6 found physically interact with 

HDAC11 in nuclear compartments to modulate the expression of IL-10 (Cheng et 

al., 2014). As the sole member of Class IV which is zinc-dependant HDAC, 

HDAC11 is an immunomodulator in DNA replication resides in nuclear (Gao et al., 

2002). HDAC11 was found to bind to FoxP3 and promote deacetylation to enhance 

FoxP3 expression that increases Treg cells suppressive function and gene expression 

when HDAC11 deletion (Huang et al., 2017). In transplantation, deletion of 

HDAC11 in Treg cells can prolong allograft survival (Huang et al., 2017). Thus, this 

inhibition of HDAC11 is important for  the maintenance and development of Treg 

lineage (Mantel et al., 2006; Huang et al., 2017). 

1.2 Study Objectives 

 Current study was performed to determine the influence of PPARγ activation 

in nTreg cells on TIGIT and ICOS expression as well as to elucidate its role in 

histone proteins regulation on the expression of FoxP3 in nTreg cells from 

autoimmune diabetic condition and its control strain, NOR. Understanding the 

relation between these transcription factors will help in underlining the potential 
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synergistic effect for the establishment of molecular therapeutic target in treating 

autoimmune diseases. In this study, we measured histone activities in these cells 

following treatment with PPARγ ligands and its inhibitor. Schematic workflow of the 

experiments is stated as in Figure 1.1. 

The objectives of this study are:  

1. To identify the effects of PPARγ ligands on TIGIT and ICOS expression in 

nTreg cells isolated from Balb/c. 

2. To determine histones modifications on FoxP3 gene expression following 

PPARγ activation by its ligands in nTreg cells from NOD and NOR mice. 
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Figure 1.1 Schematic workflow of in vitro study in Balb/c, NOD and NOR mice. 
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CHAPTER 2  

 

LITERATURE REVIEW 

2.1 Overview of the immune system 

 Immune system is a host defence network which cells (lymphocytes, antigen-

presenting cells, and effector cells), tissues, and organs that work together to protect 

the body from infections. It can generally be divided into two: innate also known as 

natural or native immunity and adaptive immunity also known as specific or acquired 

immunity (Figure 2.1). 

 Innate immunity is the first line host defence, capable of a rapid response to 

microbes and stimulate adaptive immune responses. Innate immunity components 

include epithelial barriers (skin or mucosa tissues) and cells (phagocytes, natural 

killer cells and the complement system) that protect the host agaist repeated 

infections and tissue injury (Abbas, Lichtman and Pillai, 2014). Thus, inflammation 

and anti-viral defenses are the two protective reactions in innate immune system.  

 Adaptive immunity is the second line of defence and comprises of two types 

of responses: humoral and cell-mediated immune response. This immunity requires 

clonal expansion and differentiation of the cells before it becomes effective (Alberts 

et al., 2002; Abbas, Lichtman and Pillai, 2014). Memory cells will be developed 

from proliferated clones and provide rapid and specific response against similar 

pathogen in the future (Burnet and Fenner, 1953). 
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Figure 2.1 Principal mechanisms of innate and adaptive immunity. 

NK, natural killer; ILCS, Innate Lymphoid Cell. 

[Adapted from Abbas, Lichtman and Pillai, (2014)]. 
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2.2 Antibody-mediated immunity 

2.2.1 Antibody production by B cells 

 All lymphocytes arise from stem cells in the bone marrow (Abbas, Lichtman 

and Pillai, 2014). B cells undergo maturation in the bone marrow (generative 

lymphoid organ) and circulate to peripheral lymphoid organs (lymph nodes, spleen, 

mucosal and cutaneous lymphoid tissues).  

 Burnet and Fenner (1953) coined the clonal selection theory which explained 

that an individual B cell that produces all antibody molecules supposedly has the 

same antigen-binding site (Figure 2.2). The newly formed B cell is not secrete out its 

first antibody but this antibody will be inserted into the plasma membrane to be 

served as receptor for antigen (Alberts et al., 2002).  

 When a naïve or memory B cell is activated by antigens, it proliferates and 

differentiates into an antibody-secreting effector cell (Alberts et al., 2002). Effector 

B cells can begin secreting antibody while they are still small cells, but the end stage 

of their maturation pathway is large plasma cells (Alberts et al., 2002; Abbas, 

Lichtman and Pillai, 2014). The continuously secretion of antibodies are short-lived 

plasma cells die after several days, some long-lived plasma cells survive in the bone 

marrow for months or years and continue to secrete antibodies into the blood (Abbas, 

Lichtman and Pillai, 2014; Churlaud et al., 2015). 
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Figure 2.2 Clonal selection. 

Mature cells with receptors for many antigens develop before encountering these 

antigens. A clone refers to a population of cells with identical antigen receptors and 

therefore specific to all of these cells are presumably derived from one precursor cell. 

Each antigen (e.g., X and Y) selects a pre-existing clone of specific cells and 

stimulates the proliferation and differentiation of that clone. The diagram shows only 

B cell giving rise to antibody-secreting cells, but the same principle applies to T cell. 

The antigens shown are surface molecules of microbes, but clonal selection is also 

true for extracellular soluble and intracellular antigens [Adapted from Abbas, 

Lichtman and Pillai (2014)]. 
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2.3 T cell mediated-immunity 

2.3.1 T cell development 

 T cell is derived from haematopoietic precursor cells which are found in the 

bone marrow.  Progenitors of these cells undergo series of complex maturation stage 

in the generative lymphoid organs mainly thymus. Thymus is made up by an outer 

cortex, inner cortex and medulla region (Figure 2.3).  

 The earliest developing thymocytes are lack of the expression of TCR, CD4 

and CD8, therefore termed as double negative (DN) cells at cortex region (Germain, 

2002). DN population can be further sub-divided into 4 stages of differentiation: 

(DN1) CD44+CD25−; (DN2) CD44+CD25+; (DN3) CD44− CD25+; and (DN4) 

CD44− CD25− (Germain, 2002; Abbas, Lichtman and  Pillai, 2014).  

 When thymocytes passage from DN2 to DN4, pre-TCR is expressed then 

undergo transition and replacement of α- and β-TCR chains which eventually 

progress to essential cell proliferation from DN4 to be αβ-TCR+CD4+CD8+ double 

positive (DP) (Germain, 2002; Abbas, Lichtman and Pillai, 2014). The interaction of 

DP cells with cortical epithelial cells associated to high expression of MHC class I 

and class II molecules with self-peptides.  

 The fate of  DP thymocytes depends on the signal between TCR with these 

self-peptide-MHC ligands (Robey and Fowlkes, 1994). Low signalling lead to 

delayed apoptosis (death by neglect), while too high signalling can result acute 

apoptosis (negative selection). The appropriate intermediate levels of TCR signalling 

initiate effective maturation i.e. positive selection.  

 Thymocyte that express TCRs bind to self-peptide-MHC-class I complexes 

become CD8+ T cell, whereas those that express TCRs that bind to self-peptide-
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MHC-class-II ligands become CD4+ T cell. Both cells are ready to migrate from 

medulla to peripheral lymphoid sites (lymph nodes, spleen, mucosal and cutaneous 

lymphoid tissues) as single positive (SP) (Germain, 2002; Abbas, Lichtman and 

Pillai, 2014). 
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Figure 2.3 T cell development in the thymus.  

Lymphoid progenitor undergo series of selection and maturation stages to be mature 

T cell possess co-receptor molecule (CD4 or CD8) expression that commited to 

MHC-binding property that match with its TCR [Adapted from Germain (2002)]. 
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2.3.2 Subsets of T cells 

 CD4+ and CD8+ T cells are two major arms of  T cell-mediated immunity. 

CD4+ Th cells enhance killing o extracellular and intracellular microbes by 

eliminating phagocytosed microbes through cytokines production and recognition of 

class II MHC (Abbas, Lichtman and Pillai, 2014). On the other hand, CD8+ T cells 

are called cytotoxic T lymphocytes (CTLs) complete the adaptive immune system by 

killing tissue cells that harboring viruses through recognition of class I MHC. CTLs. 

also play important role in tumors eradication besides critical in acute rejection of 

organ allografts (Kindt et al., 2007; Abbas, Lichtman and Pillai, 2014). 

 CD4+ Th cells consist of four major effector subsets called type 1, 2, 17 and 

T follicular helper (Tfh) cells that produce distinct sets of cytokines, immune 

reactions, different host defense as well as immunologic diseases (Figure 2.4). The 

differentiation of Th1, Th2 and Th17 are developed from naïve CD4+ T cells in 

response to the cytokines produced by antigen presenting cells (APCs) mainly DCs 

and macrophages, NK and mast cells in the lymphoid organs (Abbas, Lichtman and 

Pillai, 2014).  

 When intracellular microbes present during innate immune response, IL-12 is 

produced by DCs and macrophages while interferon gamma (IFN-γ) produced by NK 

cells. These cytokines activate the transcription factors such as T-bet, STAT1 and 

STAT4 in naïve CD4+ T cells that promote Th1 development (Abbas, Lichtman and 

Pillai, 2014). After Th1 cells have developed, their secretion of IFN-γ is to amplify 

the differetiation, thus maintain Th1 population by inhibiting the development of Th2 

and Th17 subsets. The signature role of Th1 cells is to activate macrophages so that 

the increase of phagolysosomes can destroy phagocytosed microbes. Besides this, 
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Th1 cells produce tumor necrosis factor (TNF) in recruitment of neutrophils that 

promotes inflammation.  

 Th2 subset is phagocyte-independent defense mainly in eradicate helminthic 

infections and allergens (Abbas, Lichtman and Pillai, 2014). The initiate 

development of Th2 is incompletedly defined, but the further proliferation is depends 

on its signature cytokine, IL-4 to start up transcription factor STAT6 simultaneously 

with TCR signals that induce GATA3 expression in naïve CD4+ T cells. As a result, 

the expression of GATA3, IL-4, IL-5 and IL-13 production are stimulated. IL-4 acts 

as growth factor to maintain the differentiation and development of Th2 effector cells 

from naïve T cells. When IL-4 works together with IL-13, they are involved in 

mucosal barriers immunity, activate macrophage through alternative pathway in 

tissue repair but suppress classical Th1-mediated macrophage activation (Abbas, 

Lichtman and Pillai, 2014). Lastly, IL-5 as an activator of eosinophils is mainly 

produced by Th2 cells in eliminating helminthic by releasing its granule contents and 

important in allergic diseases (Abbas, Lichtman and Pillai, 2014). 

 When DCs recognised extracellular bacteria and fungi, they produces 

proinflammatory cytokines including IL-1, IL-6 and IL-23. Cytokines such as IL-1, 

IL-6 and TGF-β collectively promote differentiation of naïve CD4+ T cells into Th17 

subset by activating transcription factor RORγt and STAT3. Interestingly, IL-23 is 

crucial in maintainance and proliferation of Th17 cell population. In mucosal tissues, 

Th17 cells stimulate local tissue IL-17 production by recruiting neutrophils to 

combat intestinal infections. Furthermore, IL-17 also increase the production of 

antimicrobial peptides together with IL-22. In particular, IL-22 produced by Th17 in 

tissue cells increase barrier function and associated with tissue injury in 

inflammatory diseases.  
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 In germinal center, naïve CD4+ T cells are exposured to antigen require 

sequential activation initially by DCs and then by activated B cells to differentiate 

into Tfh cells. The unite phenotype of Tfh cells is they express ICOS, PD-1, IL-21, 

chemokine receptor CXCR5 in high level and transcription factor Bcl-6. IL-21 as the 

signature cytokine of Tfh cells play role to facilitate B cell selection events and 

differentiated activated B cells into plasma cells. In addition, Tfh cells also secrete 

IFN-γ, IL-4 and low level of IL-17. Activated Tfh cells produce IL-4 that stimulates 

B cell isotype switching and production of IgE bind to mast cells leading 

degranulation and inflammation (Abbas, Lichtman and Pillai, 2014). 

 Similar to CD4+ T cells, naïve CD8+ T cells also undergo differentiation to 

be effector CTLs. The activation of naïve CD8+ T cells begins while the antigen is 

presented by DCs through effective cross-presentation involved CD4+ Th cells and 

cytokines. Cells infected by viruses or tumor cells are ingested by DCs and 

transported into cytosol to be processed in proteasomes, therefore the antigen is able 

to be presented by MHC class I pathway.  

 In addition, other T cell subsets are small populations but serve specialized 

host defense functions mainly located in epithelial tissues. These populations of the 

cells are including Treg cells, γδ T cells, natural killer T (NKT) cells and mucosa-

associated invariant T (MAIT) cells. Some of these cells are not MHC restricted in 

antigen presentation and work in between innate and adaptive immunity. Unlikely 

other CD4+ Th cells, Treg cells  is immportant immunosuppression cells to maintain 

self tolerance.   
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Figure 2.4 Properties of the major subsets of CD4+ helper T cells. 

The cytokines produced by these T cell subsets determine their effector functions and 

role in diseases [Adapted from Abbas, Lichtman and Pillai (2014)]. 
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2.3.3 Antigen processing and presentation by MHC 

 There are two pathways in antigen processing and presentation by MHC: 

endogeneous (intracellular antigens) by class I MHC and exogeneous (extracellular 

antigens) by class II MHC as stated in Figure 2.5.  

 In cytoplasm, class I MHC pathway begins when cytosolic protein of viral or 

infected cells undergo proteasomal degradation. Peptides are transported to the 

endosplamic reticulum (ER) to be bound with newly synthesized class I MHC 

molecules through transporter associated with antigen processing (TAP). Class I 

MHC molecules become stable after bound with peptides are moved through Golgi 

apparatus to be expressed on the cell surface. The class I MHC complex therefore is 

recognised by CD8+ T cells (Kindt et al., 2007; Abbas, Lichtman and Pillai, 2014). 

 On the hand, class II MHC pathway involved extracellular proteins captured 

by APCs such as macrophage, DCs and B cells to form endocytic vesicle. The 

internalized protein antigens are then processed with lysosome and endosome 

vesicles in peptide forms. Meanwhile, the sysnthesis of class II MHC molecules with 

class II associated Ii peptide (CLIP) happen in ER are transported to endosomes. The 

binding of processed peptides to class II MHC occur after proteolytic degradation of 

invariant chain (Ii). The class II MHC complex are stablized after bound with 

peptides then displayed to surface of APCs for recognition by CD4+ T cells (Kindt et 

al., 2007; Abbas, Lichtman and Pillai, 2014). 



22 

 
 

Figure 2.5 Pathways of antigen processing and presentation. 

In class I MHC pathway, cytosolic protein are processed by proteasomes, peptides 

are transported into ER to bind with class I MHC molecules. The class I MHC 

complex is expressed on the cell surface to recognise by CD8+ CTL. In class II 

MHC pathway, extracellular microbes are processed through endocytosis vesicle 

bind to class II MHC from Golgi complex to form endosome. The peptide-MHC 

association then presented on APCs cell surface to recognise by CD4+ T cells 

[Adapted from Abbas, Lichtman and Pillai (2014)].  
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2.4 Immunological tolerance 

 The term immune tolerance arise from the observation of animal experiments 

by Sir Frank McFarlane Burnet and Frank Fenner (Burnet and Fenner, 1953). In 

similar, Gershon and Kondo demonstrated tolerance induction in thymic cells 

(Gershon and Kondo, 1970). Thus, immunological tolerance is defined as 

unrecognition to an antigen that is induced by previous exposure (Brent, 1997; 

Abbas, Lichtman and Pillai, 2014). Tolerance divided into two types mainly central 

tolerance and peripheral tolerance (Figure 2.6). The failure of self-tolerance 

mechanism results in autoimmunity. Thus, autoimmune diseases are associated with 

impairment of immunosuppression mechanism.  

 Central tolerance occurs during maturation of lymphocytes develop in the 

generative lymphoid organs (bone marrow and thymus) (Abbas, Lichtman and Pillai, 

2014). Immature lymphoctes that recognize self antigen specifically in generative 

lymphoid organs are undergo negative selection process through cell death 

(apoptosis), change their receptors (B cells only) or develop into Treg cells (CD4+ T 

cells) (Abbas, Lichtman and Pillai, 2014).  

 Peripheral tolerance happens when the mature lymphoctes that recognize self 

antigen in peripheral tissues become anergy, apoptosis or suppressed by Treg. The 

suppression by Treg cells occurs actively in secondary lymphoid organs and non-

lymphoid tissues to maintain peripheral tolerance since central tolerance is imperfect 

(Abbas, Lichtman and Pillai, 2014). Therefore, Treg cells are protective cells in 

autoimmune disorders (Sakaguchi et al., 2008), but they are harmful cells in cancer 

(Vignali, Collison and Workman, 2008). Moreover, in chronic infectious diseases, 

Treg cells suppress the inflammation to reduce the tissue injury (Belkaid, 2007). 



24 

 
 

Figure 2.6 Central and peripheral tolerance. 

In generative lymphoid organs, immature lymphocytes encounter self antigen are 

undergo deletion, receptor editing in B cells or develop into CD4+ Treg cells. Some 

mature self-reactive lymphocytes enter peripheral tissues become inactivated, deleted 

or suppressed by Treg cells in peripheral tolerance [Adapted from Abbas, Lichtman 

and Pillai, (2014)]. 
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2.4.1 Heterogeneity and plasticity of Treg lineage 

 History of Treg cells begins in 1970 by Gershon and Kondo (Gershon and 

Kondo, 1970) until Sakaguchi and colleagues (1995) began the observation of 

adoptive transfer “suppressor” T cell as depletion of CD4+CD25+ T cells. These 

cells have induced multi-organ autoimmunity in recipient animals (Sakaguchi et al., 

1995; Asano et al., 1996), thereafter these cells are now known as Treg cells.   

 The heterogeneity of Treg subsets have been summarized as Table 2.1. 

Briefly, there are two major Treg cells known as nTreg cells (Noble, Giorgini and 

Leggat, 2006; Miyara and Sakaguchi, 2007; Akdis and Akdis, 2009) and iTreg cells 

according to their cellular localization (Kretschmer et al., 2005; Ray et al., 2010). 

Despite iTreg cells mainly Th3 are developed after induction by TGF-β from 

CD4+CD25- Teff or naïve T cells, their suppressive function remain similar as nTreg 

cells (Kretschmer et al., 2005; Tran, Ramsey and Shevach, 2007).   

 On the other hand, adapted type 1 regulatory (Tr1) exclusively produced high 

and potent immunosuppressive cytokine i.e. IL-10 (Bacchetta et al., 1994); where its 

anti-inflammation has been demonstrated in mouse model to prevent colitis (Groux 

et al., 1997). The co-expression of CD49b and lymphocyte-activation gene 3 (LAG-

3) has become specific biomarkers for Tr1 cell in mice and human despite its specific 

transcription factor has not determined (Gagliani et al., 2014). Also, Tr1 controls 

allergy inflammation through inhibition on Th2, mast cells, basophils and 

eosinophils (Wu et al., 2007) other than transplantation and  autoimmune (Pot, 

Apetoh and Kuchroo, 2011). 

 Oral tolerance investigation has been carried out on gut-associated lymphoid 

tissue (GALT), TGF-β secreting Treg cells, Th3 has been found work simultaneously 

with IgA in mucosal immunity (Chen et al., 1994) which is able to suppress both Th1 


