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KAEDAH HAMPIRAN ANALITIKAL JELMAAN SUMUDU TERUBAHSUAI

BAGI PENYELESAIAN MASALAH NILAI SEMPADAN

ABSTRAK

Dalam kajian ini, penekanan diberikan kepada kaedah hampiran analitik. Kaedah-

kaedah ini termasuk gabungan jelmaan Sumudu dengan kaedah homotopi usikan, iaitu

kaedah usikan homotopi jelmaan Sumudu, gabungan jelmaan Sumudu dengan kaedah

ubahan lelaran iaitu kaedah ubahan lelaran jelmaan Sumudu dan akhirnya, gabungan

jelmaan Sumudu dengan kaedah analisis homotopi, iaitu kaedah analisis homotopi jel-

maan Sumudu. Walaupun kaedah-kaedah standard ini telah berjaya digunakan dalam

menyelesaikan pelbagai jenis persamaan pembezaan, ia masih mengalami kelemahan

dalam pemilihan tekaan awal. Di samping itu, ia memerlukan bilangan lelaran yang

tak terhingga yang memberi kesan negatif kepada ketepatan dan penumpuan penyele-

saian. Objektif utama tesis ini adalah untuk mengubah suai, menggunakan dan meng-

analisis kaedah-kaedah ini untuk mengatasi kesukaran dan kelemahan serta mencari

penyelesaian hampiran analitik bagi beberapa kes persamaan pembezaan biasa line-

ar dan tak linear. Kes-kes ini termasuk masalah nilai sempadan dua-titik peringkat

kedua, singular serta sistem persamaan bagi masalah nilai sempadan dua-titik pering-

kat kedua. Bagi kaedah-kaedah yang dicadangkan, fungsi cubaan digunakan sebagai

penghampiran awal untuk menyediakan penyelesaian hampiran yang lebih tepat bagi

masalah yang dipertimbangkan. Di samping itu, bagi kaedah ubahan lelaran jelmaan

Sumudu, suatu algoritma baru telah dicadangkan untuk menyelesaikan pelbagai jenis

masalah nilai sempadan dua-titik peringkat kedua yang linear dan tak linear. Dalam

algoritma ini, teorem konvolusi telah digunakan untuk mencari suatu pekali Lagrange

optimum. Kaedah-kaedah yang dicadangkan memberikan penyelesaian dalam suatu

xxvi



siri penumpuan yang pantas, yang mana dalam kebanyakan kes, membawa kepada pe-

nyelesaian bentuk tertutup. Kaedah-kaedah ini digunakan untuk suatu kelas masalah

nilai sempadan yang luas, yang mana keputusan yang diperolehi dibandingkan dengan

kaedah-kaedah standard dan antara satu sama lain. Keputusan yang diperoleh menge-

sahkan keupayaan dan kecekapan kaedah-kaedah terubahsuai ini dalam menyediakan

penyelesaian hampiran yang mempunyai ketepatan yang baik, dengan cara yang lebih

mudah dan ringkas daripada kaedah-kaedah standard.
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MODIFIED SUMUDU TRANSFORM ANALYTICAL APPROXIMATE

METHODS FOR SOLVING BOUNDARY VALUE PROBLEMS

ABSTRACT

In this study, emphasis is placed on analytical approximate methods. These

methods include the combination of the Sumudu transform (ST) with the homotopy

perturbation method (HPM), namely the Sumudu transform homotopy perturbation

method (STHPM), the combination of the ST with the variational iteration method

(VIM), namely the Sumudu transform variational iteration method (STVIM) and fi-

nally, the combination of the ST with the homotopy analysis method (HAM), namely

the Sumudu transform homotopy analysis method (STHAM). Although these standard

methods have been successfully used in solving various types of differential equations,

they still suffer from the weakness in choosing the initial guess. In addition, they

require an infinite number of iterations which negatively affect the accuracy and con-

vergence of the solutions. The main objective of this thesis is to modify, apply and

analyze these methods to handle the difficulties and drawbacks and find the analyt-

ical approximate solutions for some cases of linear and nonlinear ordinary differen-

tial equations (ODEs). These cases include second-order two-point boundary value

problems (BVPs), singular and systems of second-order two-point BVPs. For the pro-

posed methods, the trial function was employed as an initial approximation to provide

more accurate approximate solutions for the considered problems. In addition, for the

STVIM method, a new algorithm has been proposed to solve various kinds of linear

and nonlinear second-order two-point BVPs. In this algorithm, the convolution the-

orem has been used to find an optimal Lagrange multiplier. The proposed methods

provide the solution in a rapid convergent series, which leads to a closed form of the
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solution in the majority of the cases. These methods were applied to a wide class

of BVPs, in which the obtained results were compared with those obtained from the

standard methods and with each other. The obtained results verified the capability and

efficiency of these modified methods in providing approximate solutions with good

accuracy, in an easier and simpler way than the standard methods.
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CHAPTER 1

INTRODUCTION

1.1 Research Introduction

In the field of mathematics studies, a differential equation (DE) is an equation

containing the derivatives of one or more unknown functions (or dependent variables),

with respect to one or more independent variables. If a DE contains only ordinary

derivatives of one or more unknown functions with respect to a single independent

variable, it is said to be an ODE. An equation involving partial derivatives of one or

more unknown functions of two or more independent variables is called a partial dif-

ferential equation (PDE). Many phenomena in the engineering and sciences fields can

be modeled using linear and nonlinear ODEs with associated supplementary condi-

tions. If the ODE is of second-order and the supplementary conditions are given at two

different points, then second-order two-point BVPs result. Such problems often occur

in engineering and sciences and many field of study.

Accordingly, ODEs can be classified according to whether the equations are lin-

ear or nonlinear. When the dependent variables and all their derivatives only appear in

the first degree and are not multiplied together, the DE is linear, otherwise, it is non-

linear (Zill, 2016). A further classification of DEs can be carried out according to the

highest ordered derivative, which appears in the equation. Therefore, any DE needs

supplementary conditions that correspond to the highest order derivative to solve it.

For example, solving a problem that is described by a DE of second order requires two

supplementary conditions to obtain a unique solution. If these conditions are given at

1



one starting point, then we have an initial value problem (IVP), and if these conditions

are given at two points then we have a two-point BVP.

In general, the exact analytical solution of second order two-point BVPs is usu-

ally not available, especially for nonlinear equations because of their complexity. Thus

numerical and analytical techniques were used to obtain the approximate solution for

such problems. Although numerical approximate methods are applicable to a wide

range of practical cases, analytical approximate methods provide highly accurate so-

lutions and subsequently, increase our insights into the natural behavior of complex

systems. One of the important advantages of analytical approximate methods involves

the ability to provide an analytical representation of the solution that provides better

solution information over time intervals. On the other hand, the numerical methods

provide solutions in numerical and discretized form, which makes it somewhat com-

plicated in achieving a continuous representation. The focus of this thesis is to study

and develop analytical methods for the solution of second-order two-point BVPs as

well as systems of BVPs.

1.2 Two-Point Boundary Value Problems (BVPs)

In this thesis, the focus will be on second-order two-point BVPs of the following

form:

u′′(t) = f (t,u,u′), t ∈ [a,b],

with the following boundary conditions:

• Dirichlet: u(a) = α, u(b) = β ,
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• Neumann: u′(a) = α, u′(b) = β ,

• Mixed: u(a)+u′(a) = α, u(b)+u′(b) = β ,

where f is a linear or a nonlinear continuous function on the set A = {|(t,u,u′)|, a ≤

t ≤ b, u ∈ R} and a, b, α , and β are real numbers.

1.3 Motivation

The main motivation of this study is to develop efficient approximate techniques

that provide solutions to BVPs. In this regard and in most cases, these types of prob-

lems do not have exact analytical solutions and, therefore, several methods for the

analytical approximate solutions were used in solving the equations, including the

homotopy perturbation method (HPM) (Chun and Sakthivel, 2010; He et al., 2008),

variational iteration method (VIM) (Khuri and Wazwaz, 2013; Lu, 2007; Mo and

Wang, 2009), and homotopy analysis method (HAM) (Hassan and El-Tawil, 2011;

Liao and Tan, 2007). Furthermore, many authors improved these methods that are

capable of handling linear, as well as nonlinear boundary value problems, these meth-

ods include the works of Niu and Wang (2010), Ghorbani et al. (2011), Shivanian and

Abbasbandy (2014), Abbasbandy and Shivanian (2010) and Khuri and Sayfy (2017).

Also, these methods have been combined with ST to remove its drawbacks, such as,

STHPM (Singh and Devendra, 2011), STVIM (Abedl-Rady et al., 2014) and SSTHAM

(Rathore et al., 2012).

Although these analytical approximate methods have been widely used in solv-

ing various types of BVPs, several drawbacks of these methods were recurrently re-
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ported by many authors. For example, a suitable choice of the initial guess satisfying

the boundary conditions is necessary. In addition, an infinite number of iterations is re-

quired to obtain the approximate solutions, where at each step, an integration is needed

to obtain the results. Also, the general Lagrange multiplier used in the STVIM are re-

stricted. These drawbacks are presented and discussed further in detail in Chapters

3, 4 and 5. Therefore, developing new techniques basing on the existing methods to

overcome these drawbacks and reduce the computational work and make computations

easier are necessary. Also, motivated by Kilicman and Gadain (2009) approach, the

convolution theorem will be employed to find the optimal Lagrange multiplier. This

represents the motivation of the present study.

1.4 Problem Statement

The exact analytical solution of second-order two-point BVPs is usually is not

available, especially for nonlinear equations because of their complexity. Therefore,

several analytical approximate methods such as HPM, VIM, HAM, STHPM, STVIM

and STHAM were widely used to provide analytical approximate solutions for this

type of differential equations. However, these methods still suffer from the weakness

in the choice of the so-called initial guess; in addition, they require an infinite number

of iterations which negatively affect the accuracy and convergence of the solutions.

Hence, this study aims to develop new techniques which will reduce the volume of

calculations introduced by the standard methods. Also, it can remove the task of hav-

ing to randomly choose the initial guess by setting a specific rule so that the solution

algorithms give more powerful.
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1.5 Research Objectives

The objectives of this study are as follows:

• To formulate a new modification based on the ST with both methods HPM and

HAM, namely the modified Sumudu transform homotopy perturbation method

(MSTHPM) and the modified Sumudu transform homotopy analysis method

(MSTHAM), respectively, using power series as an initial approximation to solve

linear and nonlinear second-order two-point BVPs.

• To develop a new algorithm based on the ST and the VIM which is called the

modified Sumudu transform variational iteration method (MSTVIM), using the

convolution theory to obtain the optimal general Lagrange multiplier and em-

ploying the power series as an initial approximation to solve linear and nonlinear

second-order two-point BVPs.

• To apply MSTHPM, MSTVIM and MSTHAM to solve linear and nonlinear

singular second-order two-point BVPs as well as systems of this type.

• To investigate the efficiency and the accuracy of MSTHPM, MSTVIM and MSTHAM

by comparing with known exact solutions and the existing STHPM, STVIM and

STHAM methods.

1.6 Methodology

The methodology of this study is provided and discussed in this section. The

focus will be on the STHPM, STVIM and STHAM. The general structure of these
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methods will be studied. Subsequently, these methods will be constructed and formu-

lated to solve linear and nonlinear second-order two-point BVPs as well as singular

and systems of BVPs. This step will provide a basis for the research to follow. New

modifications of the STHPM, STVIM, and STHAM will be proposed and applied to

solve the linear and the nonlinear second-order BVPs, as well as singular and systems

of the BVPs. Numerical experiments will be carried out to illustrate the efficiency of

these modifications. The obtained results using the three methods and their modifica-

tions will be presented and analyzed in addition to comparisons with exact solutions

or known results wherever possible. All the numerical examples in this study will be

investigated using Mathematica 11.

1.7 Basic Concepts and Techniques

This section consists of a discussion of the fundamental concepts and techniques

which will be used throughout this thesis.

1.7.1 Power Series

In mathematics, a power series (in one variable) is an infinite series of the form

(Sánchez-Reyes and Chacón, 2003):

∞

∑
n=0

an(t− c)n,

where an represents the coefficient of the nth and c is a constant. an is independent of

t and may be expressed as a function of n (e.g., an = 1
n! ). Power series are useful in

analysis since they arise as Taylor series of infinitely differentiable functions. In many
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situations c (the center of the series) is equal to zero, for instance when considering a

Maclaurin series. In such cases, the power series takes the simpler form:

∞

∑
n=0

an tn.

1.7.2 Sumudu Transform (ST)

Watugala (1993) introduced a new integral transform, named the ST and further

applied it to the solution of ODE in control engineering problems. The ST is defined

by the following formula (Eltayeb and Kilicman, 2010):

F(η) = S( f (t)) =
1
η

∫
∞

0
e−

t
η f (t)dt,

for any function f (t), and −τ1 ≤ η ≤ τ2.

We state the general properties of the ST in the next theorems which are very useful in

the study of the DEs.

Theorem 1.1 (Belgacem and Karaballi, 2006)

The ST amplifies the coefficients of the power series function,

f (t) =
∞

∑
n=0

antn,

by sending it to the power series function,

F(η) =
∞

∑
n=0

n!anη
n.
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So, the linear function f (t) = c0 + c1t transforms to itself, F(η) = c0 + c1η = f (η).

Theorem 1.2 (Belgacem et al., 2003)

If c1≥ 0, c2≥ 0 and c≥ 0 are any constants, and f1(t), f2(t) and f (t) are any functions

having the ST F1(η), F2(η) and F(η), respectively, then

i. S(c1 f1(t)+ c2 f2(t)) = c1S( f1(t))+ c2S( f2(t))

= c1F1(η)+ c2F2(η).

ii. S( f (ct)) = F(cη).

iii. S
(

t
d f (t)

dt

)
= η

dF(η)

dη
.

The next theorem deals with the affect of the differentiation of the function f (t) on the

ST F(η).

Theorem 1.3 (Asiru, 2002)

If F(η) is the ST of f (t), then the ST of differentiation of the function f (t) for n times

is

i. S( f ′(t)) =
F(η)− f (0)

η
,

ii. S( f ′′(t)) =
1

η2 F(η)− 1
η2 f (0)− 1

η
f ′(0),

iii. S( f (n)(t)) =
1

ηn F(η)− 1
ηn

n−1

∑
k=0

η
k f (k)(0).

where f (0)(0) = f (0), f (k)(0), k = 1,2,3, ...,n−1 are the kth derivatives of the function

f (t) evaluated at t = 0.
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Theorem 1.4 (Belgacem and Karaballi, 2006)

If S( f (t)) = F(η), then:

i. S(t f (t)) = η
2 d

dη
F(η)+ηF(η).

ii. S(t2 f (t)) = η
4 d2

dη2 F(η)+4η
3 d

dη
F(η)+2η

2F(η).

iii. S(tn f (t)) = η
n

n

∑
k=0

an
kη

kFk(η).

iv. S(tn+1 f (t)) = η
n+1

n+1

∑
k=0

an+1
k η

kFk(η),

where an
0 = n!, an

n = 1, an
1 = n!n, an

n−1 = n2, and for k = 2,3, ...,n−2,

an
k = an−1

k−1 +(n+ k)an−1
k .

The next theorem very useful in study of differential equations having non constant

coefficient.

Theorem 1.5 (Eltayeb and Kilicman, 2010)

If Sumudu transform of the function f (t) given by S( f (t)) = F(η), then

i. S(t f ′(t)) = η
2 d

dη

(
F(η)− f (0)

η

)
+η

(
F(η)− f (0)

η

)
.

ii. S(t f ′′(t)) = η
2 d

dη

(
F(η)− f (0)− f ′(0)

η2

)
+η

(
F(η)− f (0)− f ′(0)

η2

)
.

iii. S(t2 f ′′(t)) = η
2 d2

dη2

(
F(η)− f (0)− f ′(0)

η2

)
+4η

3 d
dη

(
F(η)− f (0)− f ′(0)

η2

)
+

2η
2
(

F(η)− f (0)− f ′(0)
η2

)
.
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Theorem 1.6 (Eltayeb et al., 2010)

Let f (t) and g(t) having Laplace transforms F(s) and G(s) respectively, and Sumudu

transform M(η) and N(η), respectively. Then the Sumudu transform of the convolu-

tion of f and g

( f ∗g)(t) =
∫

∞

0
f (t)g(t−ξ )dξ ,

is given by

S(( f ∗g)(t)) = ηM(η)N(η).

1.8 Definition of Homotopy

A homotopy between two continuous functions f (t) and g(t) from a topological

space T to a topological space Y is formally defined to be a continuous function H :

T ×[0,1]→ Y from the product of the space T with the unit interval [0,1] to Y such

that, if t ∈ T then (Liao, 2012)

H (t,0) = f (t) and H (t,1) = g(t).

1.9 Accuracy of Solution

For most ODE problems, the exact solutions are unknown. Therefore to check

the accuracy of the approximate solution of these problems:

Firstly, we solve the problems by Runge-Kutta-Fehlberg Method (RKF45), then com-

pare the numerical solution obtained by RKF45 with approximate solutions obtained

by the analytical methods.
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Secondly, we use the square residual error (SRE), which is a measure of how well the

approximate solution u(t) satisfies the original ODE. Consider a general nonlinear DE

in the form

L(u(t))+N(u(t)) = f (t), (1.1)

with boundary conditions

β (u,∂u/∂ t), t ∈ Γ, (1.2)

where L and N are a linear and nonlinear operators, respectively, f (t) is a known

analytical function, β is a boundary operator and Γ is the domain boundary for Ω .

The SRE is defined as ∫ b

a
R2(u(t))dt,

where a and b are the end points of the interest interval, and R(u(t)) is the residual

error of Eq.(1.1) which is defined as the following:

R(u(t)) = L(u(t))+N(u(t))− f (t), t ∈ [a,b]

and u(t) is an approximate solution to Eq.(1.1). The SRE is in general terms a positive

number, which is representative of the total error committed by using the approximate

solution u(t). The main reason to choose the SRE as an accuracy approach is that it

is reliable and independent of numerical simulations. Finally SRE would be zero only

for the case where u(t) turns out to be the exact solution of the differential equation

(Filobello-Nino et al., 2017).

On the other hand, if the exact solution uexact of a problem is known, then we can

directly find the absolute error by calculating |uexact−u(t)|.
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1.10 Thesis Outline

The thesis is organized into six chapters. Figure 1.1 presents the flow chart of

the study. Chapter 2 reviews the previous studies that were recently conducted by

many authors to find the approximate solutions of various kinds of differential equa-

tions. Chapter 3 investigates the analytical solutions of second-order two-point BVPs

as well as singular BVPs by using STHPM and MSTHPM. A new algorithm is pro-

posed, and some numerical examples are tested. A comparison of the results that were

obtained by STHPM and MSTHPM with exact solutions is also provided. Moreover,

the convergence of MSTHPM is discussed. In Chapter 4, the STVIM and MSTVIM

are applied to solve various problems of second-order two-point BVPs. The convolu-

tion theorem has been used in the structure of STVIM algorithm which contributed to

finding an optimal Lagrange multiplier. Comparison of results by these methods with

exact solutions is also given. In Chapter 5, the STHAM and MSTHAM are introduced

and applied to solve the problems that were solved in Chapters 3 and 4. Subsequently,

a comparison of the obtained results by MSTHPM, MSTVIM and MSTHAM is car-

ried out. In Chapter 6, systems of linear and nonlinear second-order two-point BVPs

are solved using MSTHPM, MSTVIM and MSTHAM. Comparisons of the obtained

results by MSTHPM, MSTVIM and MSTHAM are performed. Finally, Chapter 7

provides the main results of the study and recommendations are forwarded for further

research.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

For the last two decades or so, the field of DEs has received considerable at-

tention from mathematicians and research scientists, where some promising analytical

approximate and numerical methods were proposed and developed for solving vari-

ous kinds of DEs. In this chapter, we review recent studies related to find analytical

approximate solutions of DEs using the coupling of ST with many analytical approx-

imate methods falling within the area of study interest. Some modifications of these

methods and their advantages are reviewed in this chapter. A summary of issues and

objectives will be discussed in the last section.

2.2 Sumudu Transformation Method (STM)

Ever since a long time ago, DEs have played an important role in all aspects of

mathematics. In order to develop new technological processes, scientific computation

is important and it helps in understanding and controlling our natural environment.

Analysis of DEs helps in a profound understanding of mathematical problems. Vari-

ous techniques may be used to solve DEs. In the literature, there are numerous integral

transforms that are widely used in physics, astronomy as well as in engineering. The

integral transform method is also an efficient method to solve differential equations.

Watugala (1993) introduced a new transform named as ST. He applied this new trans-

form to the solution of ODEs and control engineering problems.
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The ST possesses many interesting properties such as the scale and unit-preserving

properties, that make visualization easier and its application has been demonstrated in

the solution of ODEs. The ST helps in solving complex problems in applied sciences

and engineering mathematics without resorting to a new frequency domain. This is

one of many strength points of this transform, especially with regards to applications

in problems with physical dimensions. In fact, the ST which is itself linear, preserves

linear functions, and hence in particular does not change units (Belgacem and Kara-

balli, 2006; Belgacem et al., 2003; Eltayeb and Kilicman, 2010; Kılıçman and Gadain,

2010).

The partial differential equations (PDEs) of the type Maxwell’s equations were

solved by Hussain and Belgacern (2007) using the ST method. The ST of Maxwell

equations provides directly a solution in the time domain without the need for per-

forming an inverse ST. The provided solution as well as its inverse ST, have the same

characteristics. They provide equal information about the phenomenon of wave prop-

agation. This property is referred to as the Sumudu reciprocity which is useful in

engineering applications that involve solving DEs.

Kilicman and Gadain (2009) proposed the so-called double ST method to solve

the linear second-order partial differential of the type wave equations in one dimension

having a singularity at the initial conditions. The so-called double convolution theorem

was used to solve this type of DEs. In addition, a comparison was made between the

double Laplace transform and the double ST. The results showed that there was a

high correlation between the two transforms, and that the proposed method was very

effective and efficient.
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Kiliçman and Eltayeb (2010) applied the ST method to solve the linear ODEs

with constant and non-constant coefficients. The results confirmed that the proposed

method is both efficient and reliable.

Eltayeb and Kilicman (2010) compared the Sumudu and Laplace transformations

by applying both transforms to solve linear ODEs with constant and non-constant co-

efficients to investigate the differences as well as the similarities. The results showed

that the solution is obtained by the Laplace transform in the complex domain, and it is

obtained by the ST in the real domain.

The ST of the convolution was proposed and proved by Kiliçman et al. (2010)

for matrices. It was used to solve the regular system of DEs. The obtained results

proved that the integral transform is quite effective; it can solve the systems of DEs.

However, in spite of the usefulness of ST, only a few investigations were found in

the literature. In addition, ST is totally incapable of handling nonlinear equations

because of the difficulties that are caused by the nonlinear terms. Various ways have

been proposed recently to deal with these nonlinearities such as, STHPM, STVIM, and

STHAM whose literature will be discussed in detail in the next sections.

2.3 Sumudu Transform Homotopy Perturbation Method (STHPM)

The HPM was developed by He (1999a, 2000) by combining the homotopy in

topology and classical perturbation techniques to solve many linear and nonlinear DEs

because this method is proved to be very effective, simple, and convenient for both

weakly and strongly nonlinear BVPs. In spite of the previous features of this method,

an infinite number of iterations is required to obtain the accurate approximate solutions,
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where at each iteration step, an integration is needed to obtain the desired results. Con-

sequently, it was necessary to develop new techniques based on the current method to

overcome these defects and reduce the computational work, therefore, making compu-

tations easier are necessary. Hence, this method has been combined with other meth-

ods such as Laplace transform homotopy perturbation method (LTHPM) (Aminikhah,

2012; Khan and Wu, 2011; Tripathi and Mishra, 2016), variational homotopy pertur-

bation method (VHPM) (Noor and Mohyud-Din, 2008), Elzaki transform homotopy

perturbation method (EHPM) (Elzaki and Biazar, 2013), and Sumudu transform ho-

motopy perturbation method (STHPM) (Singh and Devendra, 2011).

Singh and Devendra (2011) proposed the STHPM as a modification of HPM

to find the analytical approximate solutions of nonlinear PDEs. The method is an

elegant combination of the ST, the HPM and He’s polynomials. The proposed method

was applied to two examples of nonlinear PDEs with initial conditions. It is worth

mentioning that the method is capable of reducing the volume of computational work

as compared to the classical methods while still maintaining the high accuracy of the

numerical result.

Also, the proposed method was applied by Singh et al. (2013a) to solve nonlinear

time-fractional gas dynamics equation with initial conditions. Further, the same prob-

lem is solved by the Adomian decomposition method (ADM). The results obtained

by the two methods are in good agreement. Therefore, the STHPM has an advantage

over the ADM which is, that it solves the nonlinear problems without using Adomian

polynomials and hence this technique may be considered as an alternative and efficient

method for finding approximate solutions of both linear and nonlinear fractional DEs.
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Elbeleze et al. (2013) successfully applied the STHPM for getting the analytical

solution of one type of partial fractional DEs, called the Black-Scholes option pric-

ing equation. Two examples with initial conditions from the literature are presented.

Further, the same equation is solved by the LTHPM. The results obtained by the two

methods are in agreement. The STHPM is a very powerful and efficient method to find

approximate solutions for this type of equations.

Kumar et al. (2013) employed STHPM to find the analytical approximate so-

lutions for nonlinear nonhomogeneous fractional partial differential equations (FPDE)

with initial conditions, called the Harry Dym equation. Furthermore, the same problem

is solved by ADM. The results obtained by the two methods are in good agreement.

The STHPM may be considered as a nice refinement in the existing numerical tech-

niques and might find wide applications.

The STHPM was employed by Latifizadeh (2013) to solve partial differentials of

the type heat and wave-like equations with initial conditions. The method gives more

realistic series solutions that converge very rapidly in physical problems. The fact that

the STHPM solves nonlinear problems without using Adomian’s polynomials is a clear

advantage of this technique over the decomposition method.

Singh et al. (2013b) went deeply into using the STHPM to employ it in solving a

system of nonlinear DEs governing the problem of two-dimensional and axisymmetric

unsteady flows due to normally expanding or contracting parallel plates. The numerical

solutions obtained by the proposed technique indicate that the approach is easy to

implement and are computationally very attractive. The proposed method requires less
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computational work as compared to the other analytical methods.

Rathore et al. (2013) coupled the STHPM with Pade approximants to solve two-

dimensional viscous flow with a shrinking sheet. The method is applied in a direct

manner without any limitations. The results showed that the STHPM is a powerful and

efficient technique in finding exact and approximate solutions for nonlinear differential

equations. The STHPM could be a promising tool for solving more complex boundary

equations.

Furthermore, Singh and Kumar (2014) used the STHPM to solve a certain type

of PDEs called the magnetohydrodynamics (MHD) viscous flow due to a stretching

sheet. An excellent agreement is achieved by comparing the obtained solution with the

HPM and exact solution. The method is applied in a direct manner without the use of

linearization, transformation, discretization, perturbation, or restrictive assumptions.

The approach gave more practical solutions that converge very rapidly in physical

problems. The numerical solutions obtained by the proposed method show that the

approach is easy to implement and are computationally very attractive.

The STHPM has been used by Patra and Ray (2014) to evaluate ordinary frac-

tional differential equations (FDEs) with boundary conditions. These equations repre-

sent the temperature distribution and effectiveness of convective radial fins with con-

stant and temperature-dependent thermal conductivity. STHPM is a perturbation based

iterative technique and it is an effective method for the solution of nonlinear FDEs. In

each iteration, the method gave the solution directly as a polynomial expression and

this is the main advantage of the method.

19



Karbalaie et al. (2014) used the STHPM to find the exact solution of nonlinear

time-FPDEs with initial conditions. This method has been successfully applied to one-

and two-dimensional FDEs and also for systems of more than two linear and nonlinear

PDEs. The STHPM is shown to be an analytical method that runs by using the initial

conditions only. Thus, it can be used to solve equations with fractional and integer

order with respect to time. An important advantage of the new approach is its low

computational cost.

Hamed et al. (2014) applied successfully STHPM for finding exact and approx-

imate solutions for linear and nonlinear space-time fractional Schrödinger equation

with initial conditions. The efficiency of this method was demonstrated by four nu-

merical examples of a variety of linear and nonlinear equations. The results showed

that the proposed method is reliable, effective, and easy to implement and produces

accurate results. Thus, the method can be applied to solve other nonlinear FPDEs.

The STHPM method was employed by Singh et al. (2014a) to solve nonlinear

FPDEs arising in spatial diffusion of biological populations in animals. The obtained

results were compared with Sumudu decomposition method. The numerical solutions

obtained by the proposed method indicate that the approach is easy to implement and

accurate. These results reveal that the proposed method is computationally very attrac-

tive. It is worth mentioning that the proposed methods provide the solutions in terms

of convergent series with easily computable components in a direct way without any

limitations.

Singh et al. (2014b) computed an analytical approximate solution of the system
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of nonlinear DEs governing the problem of two-dimensional viscous flow between

slowly expanding or contracting walls with weak permeability. The numerical re-

sults clearly showed that the STHPM is capable of solving two-dimensional problems

with successive rapid convergent approximations without any restrictive assumptions

or transformations causing changes in the physical definition of the problem.

The PDEs of the type Jeffery-Hamel flow have been solved by Sushila et al.

(2014) using STHPM. The results of the proposed method are in excellent agreement

with the reproducing kernel Hilbert space method. The numerical solutions obtained

by the proposed method indicate that the approach is effective for finding the solution

of nonlinear PDEs. The method is straightforward, powerful and efficient technique in

finding approximate solution for linear and nonlinear problems.

Yousif and Hamed (2014) applied STHPM to obtain exact analytical solutions

of nonlinear non-homogenous time-FPDEs with initial conditions where the solutions

were given in closed forms. Thus, this method is powerful, reliable and effective and

easy to implement, and can be applied to solve many nonlinear problems in applied

science.

The system of nonlinear PDEs with initial conditions, which is derived from the

attractor for Keller-Segel was solved by Atangana (2015) using STHPM. The STHPM

does not require linearization or the assumption of weak nonlinearity. The solutions

are not generated in the form of a general solution, which is the case with the ADM.

Moreover, Lagrange multipliers and correction functions are not required, which is the

case with the VIM. The STHPM is more realistic compared with other methods used
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to simplify physical problems. If the exact solution of the PDE exists, the approximate

solution rapidly converges to the exact solution using the STHPM.

Touchent and Belgacem (2015) presented STHPM to find the analytical approx-

imate solution for the nonlinear systems of FPDEs with initial conditions. The results

showed that the solutions obtained coincide with those of the ADM. However, the

STHPM turns out to have a significant advantage over the ADM since it solves the

nonlinear problems without the cumbersome need and use of Adomian polynomials.

Kumar et al. (2015) employed STHPM to find the analytical approximate solu-

tions for the fractional multi-dimensional diffusion equations with the initial conditions

which describes density dynamics in a material undergoing diffusion. The technique

provides the solutions in terms of convergent series with easily computable compo-

nents in a direct way without using linearization, perturbation or restrictive assump-

tions. Thus, it can be concluded that the STHPM is very powerful and efficient in

finding analytical as well as numerical solutions for a wide class of FPDEs.

Dubey et al. (2015) presented STHPM for solving linear and nonlinear space-

time fractional partial Fokker-Planck equations with initial conditions. It is easy to

conclude that the solution continuously depends on the space-fractional derivatives and

the approximate solutions obtained by using the ADM are the same as those obtained

by STHPM. The numerical results showed that the method used is very simple and is

straightforward to implement.

The nonlinear partial differential Schrödinger equations with initial conditions

were solved by Koçak and Koç (2016) using the STHPM. The proposed method pro-
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vided the solution in a rapid convergent series which may lead to the solution in a

closed form. This method is very efficient, simple and can be applied to other linear

and nonlinear problems.

Patra and Ray (2016) presented STHPM to find analytical approximate solutions

for the FDEs. The proposed method is a perturbation based iterative technique and

it was an effective method in the solution of nonlinear FDEs. In each iteration, the

method gives directly the solution as a polynomial expression and this is the main

advantage of the method.

The local fractional Tricomi equation with its applications in fractal transonic

flow was solved and discussed by Singh et al. (2016) using the local fractional STHPM.

The results showed that the proposed technique is very efficient and can be used to

solve various kinds of local FDEs. Hence, the introduced method is a powerful tool

for solving local fractional linear equations of physical importance.

Zhang et al. (2017) applied STHPM to solve nonlinear systems of time-space

FDEs with initial conditions. The advantage of the STHPM is its capability in com-

bining two powerful methods for obtaining exact and analytical approximate solutions

for nonlinear systems. It provides the solutions in terms of convergent series with eas-

ily computable components in a direct way without using linearization, perturbation,

or restrictive assumptions. The numerical results indicate that this method is effective

and simple in constructing analytic or approximate solutions for fractional coupled

systems.

23



Khader (2017) implemented STHPM to obtain the approximate solutions of the

multi-dimensional nonlinear FPDEs of heat-like equations. The obtained approximate

solution using the suggested method is in excellent agreement with the exact solution,

and shows that these approaches can solve the problem effectively and illustrate the

validity and the great potential of the proposed technique.

The fractional partial of Klein-Gordon equations was solved by Kumar et al.

(2017) using STHPM. The proposed computational approach is very simple and easy

to employ and computationally nice for solving local FDEs arising in various real

world problems.

Choi et al. (2017) solved the time-fractional nonlinear nonhomogeneous PDEs

with initial conditions by using STHPM. This method gives a series solutions which

converge rapidly, and require less computational work and provide high accurate re-

sults for systems of nonlinear equations.

Kumar et al. (2018) presented the STHPM to find the analytical approximate

solutions for fractional partial of fractal vehicular traffic flow equations. The solutions

are presented in a closed form, which are very suitable for numerical computations.

The result indicates that the suggested computational schemes are very simple and

computationally sound for handling similar kinds of differential equations occurring

in natural sciences.

The nonlinear local FPDEs arising in fractal media was solved by Prakash and

Kaur (2018) using the STHPM. The numerical solution obtained by the proposed

method is in closed form of the exact solution. The proposed numerical technique is
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