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KESAN PENYEPUHLINDAPAN KE ATAS MIKROSTRUKTUR DAN 

SIFAT-SIFAT MEKANIKAL BAGI KELULI KARBON 0.06% 

 

ABSTRAK 

 Kajian ini bertujuan untuk mengkaji mikrostruktur dan sifat mekanik keluli 

rendah karbon (0.06% C) terhadap beberapa proses rawatan haba dan kerja sejuk. 

Proses ini bermula dengan tiga rawatan haba yang berbeza; Penyejukan Udara (AC), 

Pelindapkejutan Air dan Ais (IWQ), dan Penyepuhlindapan Bertingkat (SQ) sebelum 

75% pengelekkan-sejuk. Semua spesimen tergelek-sejuk disepuhlindap pada suhu 

sub-genting dan inter-kritikal. Keputusan menunjukkan bahawa IWQ adalah kaedah 

terbaik untuk memulakan mikrostruktur awal berbanding dengan kaedah AC dan SQ. 

Suhu penyepuhlindapan optimum sub-genting adalah pada 525ºC. Pada suhu ini 

(525ºC), butiran ferit ultra-halus diperolehi ( 500 nm). Kekuatan tegangan dan 

mikro-kekerasan adalah lebih tinggi daripada keadaan diterima kira-kira 89% dan 

79% masing-masing. Tambahan pula, didapati bahawa suhu penyepuhlindapan inter-

kritikal yang optimum adalah pada 800ºC. Pada suhu ini (800ºC), kombinasi ferit dan 

martensit yang terbaik terbentuk. Kekuatan tegangan dan mikro-kekerasan adalah 

lebih tinggi daripada spesimen yang diterima lebihkurang 81% dan 104%, masing-

masing. 
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EFFECT OF ANNEALING ON MICROSTRUCTURE AND MECHANICAL 

PROPERTIES OF 0.06% CARBON STEEL 

 

ABSTRACT 

The present study is aimed to examine the microstructure and mechanical 

properties of low-carbon (0.06% C) steel against several heat treatment and cold 

worked processes. The process was started with three different heat treatments; Air 

Cooling (AC), Ice-Water Quenching (IWQ), and Step Quenching (SQ) prior 75% 

cold rolling. All cold-rolled specimens were subcritical and intercritical annealing. 

The results show that   the   IWQ   is   the   best   method   to   start   initial   

microstructure compared to AC and SQ method. The optimum of subcritical 

annealing temperature is at 525ºC. At this temperature (525ºC), ultrafine   ferrite   

grains   are   obtained ( 500 nm). Tensile   strength   and microhardness are higher 

than as-received condition about 89% and 79%, respectively. Furthermore, it was 

found that the optimum intercritical annealing temperature is at 800ºC. At this 

temperature (800ºC), a good   combination   of   ferrite   and   martensite   are 

formed.   The   tensile   strength   and microhardness are higher than the as-received 

specimen about 81% and 104%, respectively.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

 

In general terms, iron and steel are often confusing. Iron is a chemical element 

(atomic number 26 on the periodic table). The symbol of chemical „Fe‟ is from the 

Latin word for iron, Ferrum. The word steel is used to describe almost all alloy of 

iron and it is often mentioned that steel is an alloy of iron and other elements, 

primarily carbon (Hosford, 2012). The basic material in human development is steel. 

An adequate quantity of quality steel materials is essential for the realization of 

industrial development of countries all over the world and for supplying conditions 

for the modern lifestyle of humanity. Steel is a necessary component of all 

machinery used for the manufacture of all our goods (Weng, 2009). The study of 

steels is essential because of the steel represents by far the most extensively-utilized 

metallic materials, basically due to steel can be manufactured cheaply in large 

quantities to accurate specifications (Bhadeshia et al., 2011). On the other hand, the 

wide range of desirable properties which can be managed easily by altering the 

elemental composition and processing.  

The increasing rapidly of motor vehicles worldwide and the associated 

environmental impact, lightweighting automobile has become an urgent global 

initiative. In order to provide automobile market requirements such as lightweight 

materials to improve vehicles with high fuel efficient. The automobile industry has 

developed steels which are advanced high strength steels (AHSS) together with dual-

phase (DP) steels. These steels display both high strength and excellent formability 
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with weight reduction (Cornette et al., 2001; Shaw et al., 2001). The most common 

steels used in the automobile industry are mild steels, which are low-carbon steels 

due to it is cheap and excellent deep draw ability.  

Figure 1.1 is a schematic of the Ford Car-2014 model, displaying the dissimilar 

types of materials that used for designing the body of the car. It can be seen that the 

bulk of the car body consists of dual-phase steels and mild steels which are low-

carbon steels are predominantly used. Hence, the present study is attempting to 

investigate a plain low-carbon steel. 

 

 

Figure 1.1 Schematic of Ford Car-2014 model, displaying the dissimilar types of 

materials for designing the body of the car (Mike, 2016). 
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1.2   Problem statement  

 

Low-carbon steel is known as low mechanical properties and they have very 

limited applications compare to other higher mechanical properties steels. Many 

research groups have investigated various innovative methods to improve the 

strength of low-carbon steel. The methods include Severe Plastic Deformation (SPD) 

processes such as Equal Channel Angular Pressing (ECAP) (Nejnoto et al., 1998; 

Horita et al., 2000; Valiev et al., 2006), Accumulative Roll-Bonding (ARB) (Saito et 

al., 1998; Tsuji et al., 2002b), and High Pressure Torsion (HPT) (Valiev, 1997; 

Huang et al., 2003). By using these methods, ultrafine grains steel (grains size 

smaller than 1 m) with superior mechanical properties (Tsuji et al., 2002b; Valiev et 

al., 2006) can be achieved. 

Besides the SPD processes have been reported by other researchers as well. Fu 

et al., (2007) had improved the strength of low-carbon (0.10-0.25% C) steels by 

adding elements such as Titanium (Ti) and Cerium rare earth (Ce) into steels. They 

had found that tensile strength improved up to about 36% compared with the sample 

without addition of Ti and Ce. In addition, Li et al., (2014a) lately enhanced 

mechanical properties of low-carbon (0.091% C) steel by adding Manganese (Mn) 

and Titanium (Ti) alloy elements. The results showed a yield strength of 920 MPa 

with elongation about 10%.  

Although all these methods have played a big role in improving mechanical 

properties of low-carbon steels, but they also show drawbacks as following:  

 

(i) SPD processes are difficult for bulk production, particularly in 

producing large dimension of UFG steel with appropriate strength 
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