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PENENTUKARAN TERUSAN-PANTULAN-GARISAN UNTUK PELBAGAI 

LAPISAN SUBSTRAT BERSEPADU PANDU GELOMBANG BAGI JARAK 

FREKUENSI KUMPULAN-X 

 

ABSTRAK 

Parameter S (S-parameter) adalah penting untuk dinilai untuk memastikan prototaip  boleh 

direka mengikut spesifikasi. Pelbagai kaedah penentukuran telah digunakan untuk 

penganalisis rangkaian untuk mendapatkan parameter S, seperti pendek-buka-beban-terusan 

(SOLT) dan terusan-pantulan-bebanan (TRL). Substrat bersepadu pandu gelombang (SIW) 

menunjukkan kehilangan yang rendah, saiz padat, dan kemudahan untuk integrasi dengan litar 

planar. Dalam kajian ini, penentukuran MTRL dicadangkan untuk meramalkan lapisan tunggal 

dan pelbagai lapisan SIW. Parameter S bagi prototaip diukur oleh MTRL kit dicadangkan dan 

dibandingkan dengan kit komersial SOLT, dan disahkan oleh keputusan FE. Lima parameter 

reka bentuk yang berlainan bagi prototaip SIW lapisan tunggal dan satu pelbagai lapisan SIW 

dengan slot segi empat telah diukur dan dianalisis. Hasil perbandingan antara model MTRL, 

SOLT dan FE untuk satu lapisan SIW dibincangkan dan dianalisis. Penentukuran MTRL pada 

satu lapisan SIW menunjukkan sisihan 0% - 5.0% dari frekuensi pusat, jalur lebar operasi yang 

lebih besar dan kehilangan sisipan yang lebih dekat dengan model FE. Selain itu, persetujuan 

yang baik dicapai antara model FE dan keputusan percubaan menggunakan penentukuran 

MTRL untuk dwilapisan SIW dengan slot segi empat. Model dwiapisan SIW menunjukkan 

empat frekuensi resonan yang berbeza dengan kehilangan sisipan 2.71 dB. Pengukuran yang 

diperoleh menggunakan kaedah SOLT memaparkan tiga kekerapan resonans yang berbeza 

dengan kehilangan sisipan 3.41 dB. Sebaliknya, pengukuran yang diperoleh menggunakan 

penentukuran MTRL memaparkan empat frekuensi resonan yang berlainan dan kehilangan 

sisipan 2.87 dB. Berdasarkan penemuan ini, kalibrasi MTRL meramalkan lebih tepat berkaitan 

dengan SIW tunggal dan multi lapisan dengan kekerapan resonan yang hampir dan kehilangan 

sisipan yang rendah berbanding dengan kaedah SOLT. 
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THRU-REFLECT-LINE (TRL) CALIBRATION ON MULTILAYER SUBSTRATE 

INTEGRATED WAVEGUIDE (SIW) FOR X-BAND FREQUENCY RANGE 

 

ABSTRACT 

Scattering-parameters (S-parameters) are important to be evaluated in order to ascertain the 

hardware prototype can be designed according to the specifications. Various calibration 

methods have been applied to the network analyser to obtain the S-parameters, such as short-

open-load-thru (SOLT) and thru-reflect-line (TRL). Substrate integrated waveguide (SIW) 

demonstrates low loss, compact size, and ease for integration with the planar circuits.  In this 

research, MTRL calibration is proposed to predict the single- and multilayer- SIW. The 

analytical modelling of MTRL calibration, and the FE models of the prototypes are discussed 

and simulated.  The S-parameters, such as insertion loss, bandwidth, and resonant frequency, 

can be measured in the frequency range of 8.0 GHz – 13.0 GHz.  The S-parameters of the 

prototype are measured by the proposed MTRL kits and compared with commercial SOLT 

kits, and validated by FE results. The comparison results between MTRL, SOLT and FE 

models for single layer SIW are discussed and analysed. MTRL calibration on single layer 

SIW shows deviation of 0 % - 5.0 % of centre frequency, larger operating bandwidth and 

closer insertion loss with respect to FE models. Moreover, a good agreement is achieved 

between the FE model and experimental results using MTRL calibration for double layer SIW 

with rectangular slot. A finite model of double layer SIW with rectangular slot shows four 

different resonant frequencies with 2.71 dB insertion loss. The measurement obtained using 

the SOLT method displays three different resonant frequencies with 3.41 dB insertion loss.  In 

contrast, the measurement obtained using MTRL calibration displays four different resonant 

frequencies and 2.87 dB insertion loss. Based on these findings, MTRL calibration predicts 

more accurately pertaining to single- and multi- layer SIW with close resonant frequencies and 

low insertion loss as compared with that of the SOLT method. 
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CHAPTER ONE 

1 INTRODUCTION 

 

1.1  Background 

The development of millimetre-wave (mm-wave) integration technologies is essential for the 

evolution of wireless system and utilised electromagnetics in future. In fact, a variety of 

application has been proposed in GHz frequency range, which are wireless network [1], 

automatic radar [2], imaging sensors [2], and biomedical device [3]. In many of these systems, 

there are several aspects such that the availability of cost effective technology which is suitable 

to mass production of wireless system [4]. It is predictable that ease of integration technique 

together with cost effective fabrication process should offer solution for commercial planar 

circuit application. Planar mm-wave circuits that commonly explored by researcher are 

microstrip [5], waveguide [6] , and substrate integrated waveguide (SIW) [7].  

Microstrip components such as antennas, filters, and power divider are widely used, 

owing to their advantages of electrical properties in broadband frequency, i.e., MHz frequency 

range [5]. Besides that, industrial sector has high interest in microstrip for commercial 

purposes because microstrip are generally economical to be fabricated and advantage of 

interconnection with other active or passive circuits [8]. Moreover, microstrip features 

compact size and lightweight which considerable by industrial sector for reduce packaging 

and assembly problems that are major concern in current mm-wave equipment [2].  

 Other than microstrip components, metallic waveguides are typical transmission 

medium for radar, radio astronomy, imaging systems, medical diagnosis, spectral analysis, and 

high-bandwidth wireless communications [9]. This is because waveguides exhibit low 

insertion loss, low return loss, and high power capability when compared with planar 

transmission line at GHz frequency range [10]. The metallic waveguides can be fabricated by 

utilizing electrical discharge machining equipment with extremely high precision [11]. This 
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fabrication accuracy requirements become more strict when dealing with resonant structures  

of waveguides [12].  

 From the findings, SIW technology provides new approach in the mm-wave 

applications which are the emerging of the advantages of waveguides and microstrip [4]. Bozzi 

et al. (2009) reported that the SIW with the whole systems, combining passive components 

(filters, couplers, and antennas), active components (amplifiers, oscillators, and mixers) can 

be integrated on same substrate. This solution gains high interest in different market sectors, 

especially in aerospace and industrial [6]. Then, this solution allows the components to be 

designed in a significant reduction in size; moreover, the losses are lower than that in 

microstrip component, especially in GHz frequency [13]. Furthermore, there are no radiation 

and packaging problems in SIW technology [13]. 

 Concerning the passive circuits, the most common measurement task in radio 

frequency (RF) and mm-wave engineering involve the analysis of electrical performance for 

passive circuit using a network analyser (NA) [14]. The electrical performances of 

experimental passive circuits can be evaluated through the scattering-parameter (S-parameters) 

from the NA [15]. The S-parameters are chosen because they are easy to derive at high 

frequencies, and related to measurement parameters such as bandwidth, resonant frequency, 

and insertion loss which gain interest to RF engineers [14]. However, planar circuits without 

fixtures are difficult to be measured by network analyser (NA) for the reason that fixtures are 

required to provide electrical and physical connection between the planar circuits and the 

network analyser (NA) [16]. Additionally, ideal fixtures allow direct measurement of planar 

circuits, without any losses and mismatch from fixtures [17]. Nevertheless, ideal fixtures are 

impossible to be realised in reality because it allows other signals from the surrounding to 

interfere the measurement [18]. Subsequently, the S-parameters of fixtures are introduced into 

the experimental result as errors [19]. 

The aforementioned S-parameters without the effects of fixtures are preferred [20]. The 

S-parameters of fixtures are mathematically removed from entire measurement of the 
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prototype by calibration process [21]. Calibration process employed technique called 

calibration method, which the fixture effects are characterized using known standards [22]. 

There are two types of calibration methods which are short-open-load-thru (SOLT) method 

and thru-reflect-line (TRL) approach. Hence, this thesis focus on the research of different 

calibration methods applied to NA in order to separate the effects of fixtures from the measured 

S-parameters of the prototype.  

 

1.2 Problem Statement 

Conventionally, SOLT method has been widely used by researcher as standard calibration 

technique to predict the S-parameter of entire prototype [23]. However, the entire S-parameters 

of the prototype are measured that include the device under test (DUT) and its complimentary 

fixtures [19]. Moreover, SOLT method produced extremely high return loss and inaccurate 

experimental results in microstrip, especially in GHz frequency [12], [23], [24].  

 In the literature, many research studies relating to TRL aprroach were found in [17], 

[22], [25]. That approach has been employed for coaxial, on-wafer, and waveguide [25]. 

Nevertheless, TRL calibration predicted significantly high insertion loss result in microstrip 

[23]. Additionally, the implementation of waveguide on TRL calibration are expensive, bulky 

volume, and difficult to be integrated with the planar circuits [18], [26].  

 In contrast, the substrate integrated waveguide (SIW) exhibited low loss, compact size, 

and ease for integration with the planar circuits [4], [13].  Hence, SIW shown better electrical 

and physical properties as compared with microstrip and waveguide component [4], [13].  

Interestingly, Kumar et al. (2012) reported that the TRL approach produced an accurate result 

with low insertion loss for single layer SIW [27].  However, the approach cannot be employed 

to predict the result in multilayer SIW, owing to the high insertion loss [27]. 

As pointed out in [28]–[30], the complex propagation constant, γ, of line standards of 

TRL approach provide more accurate result in locating the location of reference plane 
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precisely.  Different line standards produce various complex propagation constants in diversify 

frequency ranges [28].  It was reported that the more complex propagation is considered, the 

result predicted by TRL calibration will be more accurate [29].  Thus, additional line standards 

in TRL calibration formed Multiline TRL (MTRL) calibration [30]. 

Therefore, MTRL calibration that utilized to predict the S-parameters of single- and 

multi- layer SIW are proposed in this research.  The motivation on our work hinges on de-

embedding the S-parameters of the DUTs without consider the fixtures by employing the 

proposed MTRL calibration. 

 

1.3  Aims and Objective  

The aim of this research is to demonstrate the MTRL calibration for single- and multi- layer 

SIW within X-band frequency range that can predict the S-parameters result of DUT 

accurately. In order to achieve this aim, several objectives listed below have to be carried out. 

The objectives are listed as below: 

 To propose and model equivalent circuit of MTRL standards, single- and multi-layer 

SIW that operates in multiband frequency range. 

 To design and simulate the FE models of MTRL standards, single- and multi- layer 

SIW using ANSYS HFSS software. 

 To fabricate and measure the experimental S-parameters result obtained by MTRL 

calibration with that obtained by SOLT method, and justify by FE simulated results. 

 

1.4  Research Scope 

The scope of this research mainly is confined on the equivalent circuit models of MTRL 

standards, single- and multi- layer SIW for predicting and evaluating their electrical properties 

that can be employed to determine the best performances for FE models.  This is an emerging 

research topic, and has attract a lot interest among radio frequency (RF) engineers. In this 
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thesis, MTRL calibration that utilized in predicting the S-parameters of single- and multi- layer 

SIW are proposed, their simulated and experimental results are analysed and discussed. 

Moreover, the simulated FE results of DUTs include different physical dimension of single 

layer SIW and multilayer SIW with rectangular slot are designed and simulated within 8.0 

GHz – 13.0 GHz frequency range.  

 Next, the DUT for two-port network with desired performance are necessary to 

interconnect with fixtures at both port before characterization process. Fixtures such as surface 

mount adaptor (SMA) and microstrip transition are commonly employed in planar design. The 

hardware prototypes to be measured are including DUTs with fixtures are fabricated on PCB. 

Moreover, the proposed MTRL calibration kits that include fixtures are fabricated on the same 

material as the DUT. That calibration requires known definition standards before de-

embedding process. Lastly, the result predicted by hardware prototypes using proposed MTRL 

calibration kits and commercial SOLT kits are compared, which are then justified by FE 

models and equivalent circuit models. The comparison results are important to ascertain the 

precision and effectiveness of proposed MTRL calibration with commercial calibration kits.   

 Moreover, the specifications of the material and the availability of calibration kits is 

considered. The material used in this research is RO4003C with relative permittivity of 3.38, 

thickness of 0.813 mm and loss tangent of 0.0027. The design specifications are limited by the 

provided specification of material in which the thickness and permittivity of material influence 

the physical dimension. In order to be supported by RO4003C material and SMA, the centre 

frequency at 10.00 GHz is chosen. Moreover, the calibration kits provided are the 85056D 

calibration kits with 2.40 mm SMA which are used to calibrate PNA-X N5242A, network 

analyser. 
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1.5  Thesis Contribution 

The research present in this thesis has three contributions, as follow: 

 The equivalent circuit models of  single- and double- layer SIW are presented, verifed 

by simulated FE result, and justified by the experimental results predicted by proposed 

MTRL calibration and SOLT method.  

 The modelling of fixtures that representing the SMA and microstrip transition are 

presented; the equivalent circuits that include SMA, microstrip transition and DUTs 

are presented and compared with the hardware prototype.  

 The details to design taper-via transition together with microstrip line and DUTs are 

decribed and shown promising electrical performances; implementation of taper-via 

transition in proposed MTRL calibration are  presented. 

 

1.6  Outline 

In this thesis, there are five main chapters covering the introduction, literature review, 

methodology, results and discussion, and conclusion of research. 

Chapter 2 provides a comprehensive review of calibration methods. Various 

calibration technique applied to NA are discussed. The advantages and disadvantages of each 

calibration approach are compared. Additionally, this chapter provides review of previous 

technology which are microstrip line, waveguide and SIW. Relevant literature on previous 

research on SIW with details on design parameters, formulae and advantages are elucidated.  

Chapter 3 explains the research methodology to achieve all the research objectives 

accordingly. Equivalent circuit model, finite element model, hardware prototype design, and 

measurement procedure with proposed MTRL calibration are included. Firstly, the equivalent 

circuit model represents DUTs and fixtures are stimulated in ADS software, respectively. Then 

the design parameters of FE model computed by mathematical formulae are simulated in 

ANSYS HFSS software. Subsequently, the DUTs with optimum design parameters are 
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integrated with microstrip line and taper-via transition are characterized. The proposed MTRL 

calibration standards with specific requirements are also integrated with microstrip line and 

taper-via transition. Lastly, MTRL calibration procedures on NA are performed and achieved 

with the prototype of MTRL calibration kits. 

Chapter 4 provides the details analyses and discussion on all results obtained from the 

equivalent circuit model, FE model, experimental result of SOLT method and proposed MTRL 

calibration. Initially, the comparison results between equivalent circuits of SMA, microstrip 

transition and DUT with measured hardware prototype are discussed. Besides that, the 

comparison results between circuit model, FE model and prototype of thru, reflect and line 

standard are analysed. Moreover, the experimental results of DUTs which are single layer SIW 

with different physical parameters and double layer SIW with rectangular slot are compared 

with circuit models, and verified by FE results. These results are obtained in form S-parameters 

and compared within X-band frequency range in terms of resonant frequency, bandwidth and 

insertion loss. Furthermore, the comparison between obtained results with conventional results 

are also discussed in this chapter.  

Finally, conclusion are drawn in Chapter 5. A number of future work and 

recommendation are included in this chapter. 
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CHAPTER TWO 

2 LITERATURE REVIEW 

2.1 Introduction 

In Chapter 2, the objectives of this project is to model the TRL calibration standard for de-

embedding process and the equivalent circuit model for SIW for single- and multi- layer. The 

design of SIW start with equivalent circuit model, and then finite element (FE) model. Also, 

the implementing de-embedding technique throughout the research is emphasized to determine 

the fixture characteristics of prototype by mathematical equations. By de-embedding SIW 

from the prototype, the S-parameters will be obtained and plotted. 

Here, details of calibration methods and standards are discussed. The equations on the 

designing the SIW are also discussed. Also, these expectations are used as design 

specifications to produce SIW model in this project. Furthermore, methods of determining the 

S-parameter of SIW are explained.  

 

2.2 Calibration 

Calibration is a process in which network analyser (NA) measures test devices and stores the 

vector differences between the measured values and actual values [31]. In order to ensure the 

accuracy of measured data, NA must be calibrated before carry out any measurement for one-, 

two- or more- port [26]. The types of calibration methods are different in environment and the 

standards used [32].  

The types of calibration methods are selected accordingly with the test setup, which 

the required parameters provided by known standards are measured [33]. After measuring the 

standards according to calibration methods, the error terms are and can be removed from entire 

measured S-parameters [26]. Hence, calibration process de-embeds the imperfections by 

measuring known standard as the error terms can be isolated, quantified and mathematically 

removed [19]. 
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