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HASIL DARAB SILANG SEPARA-ISOMETRIK ANTARA
SEMIKUMPULAN BAGI ENDOMORFISMA DAN ALJABAR
KHOSHKAM-SKANDALIS

ABSTRAK

Andaikan I'"™ adalah kon positif daripada sebuah kumpulan abelan yang bert-
ertib sepenuhnya I'. Biar (4,I'", a) sebuah sistem dinamik yang terdiri daripada
sebuah aljabar-C* A dan sebuah tindakan o dari I'" sebagai endomorfisma yang
meluas dari A. Dalam tesis ini;

(i) kami menyamaratakan takrifan bagi aljabar Khoshkam-Skandalis kepada
konteks endomorphisms yang meluas, iaitu 7, dan kemudian kami membuktikan
bahawa hasil darab silang separa-isometrik bagi (A, ', @) merupakan sudut penuh
bagi aljabar 7,;

(ii) kami menunjukkan bahawa apabila o adalah sebuah tindakan automor-
fisma dari A, maka A xgiso I'" merupakan salah satu dari hasil darab silang
isometrik.

Dengan menggunakan (i), kami menunjukkan bahawa jika I'™ N, maka ideal
ker ¢ dari A xgiso I'" dari homomorfisma surjektif semula jadi ¢ : A x?jso rt—
A XEO ', adalah merapikan sebuah sudut penuh didalam ideal /C(EQ(N, A)) dari
Ty. Akibatnya, kami memperoleh dari A Xgiso N oleh dua buah aljabar A XEO N
dan sudut penuh dan K(¢%(N, A)).

Sebagai aplikasi daripada perluasan tersebut, kami memperoleh perluasan dari
Khoshkam-Skandalis dan juga perluasan dari Pimsner-Voiculescu.

Dengan menggunakan (ii), kami menunjukkan bahawa jika « adalah tindakan
sebagai automorfisma dari A, maka A xPjSO I'"™ dapat dipandang sebagai sudut
penuh didalam hasil darab silang biasa. Tambahan lagi, kami mengidentifikasi

ideal ker ¢ dari A x giso I'" sebagai sebuah hasil darab silang isometrik.



THE PARTIAL-ISOMETRIC CROSSED PRODUCTS BY
SEMIGROUPS OF ENDOMORPHISMS AND THE
KHOSHKAM-SKANDALIS ALGEBRA

ABSTRACT

Suppose I't is the positive cone of a totally ordered abelian group I'. Let
(A,I'", a) be a dynamical system consisting of a C*-algebra A and an action a of
'™ by extendible endomorphisms of A. In this thesis;

(i) we generalize the definition of the algebra of Khoshkam-Skandalis, namely
7, to the context of extendible endomorphism, and then we prove that the partial-
isometric crossed product of (A,T'", «) is a full corner in the algebra 7y;

(ii) we show that when « is an action by automorphisms of A, then A xPjSO I+
is one of the isometric crossed products.

By using the realization (i), we show that if T'" is the semigroup N of the
additive group Z, then the ideal ker ¢ of A x E}SON arising by the natural surjective
homomorphism ¢ : A PO P, 4 x150 PF is a full corner in K(¢%(N, A)) of
compact operators contained in 7,. Therefore we get the extension of A xgiso N
by the two algebras A x5 N and the full corner of K(£2(N, A)).

As applications of this extension, we obtained the exact sequence of Khoshkam-
Skandalis and Pimsner-Voiculescu.

By using the realization (ii), we show that if « is an action by automorphisms
of A, then A xPjSO 't can be viewed as a full corner in the usual crossed product
of a system by a group of automorphisms. Moreover, we identify the ideal ker ¢

of A xgiso 't as one of the ideals of the isometric crossed products.

vi



CHAPTER 1
INTRODUCTION

1.1 Literature Review

Let T be a totally ordered abelian group and I't := {x € T': # > 0} the positive
cone of I'. A dynamical system (A4,I'", a) is a system consisting of a (not neces-
sarily unital) C*-algebra A and an action o of I'" by endomorphisms of A such
that ag =idy4.

Our interest in the present work is to study the representation theory of such
dynamical systems. When I'" = N and 1 € A, Stacey in [25] defines a covariant
representation of (A, N, a) to be a pair (m, V') of a unital representation 7 : A —
B(H) of A on a Hilbert space H and an isometry V' on the same Hilbert space H

which satisfies the covariance relation:

m(a(a)) = Vr(a)V* for all a € A. (1.1)

Then Stacey shows in [25] that if (4, N, «) has a nontrivial covariant representa-
tion, then there is a C*-algebra denoted by A XEO N, generated as a C*-algebra
by a universal covariant representation (i4,¢y) such that the unital representa-
tions of A XEO N are in a bijective correspondence with covariant representations
of (A,N,a). We call the C*-algebra A x%° N the isometric crossed product of
(A,N,a). Furthermore, by using the idea of Cuntz [9], Stacey shows that the
C*-algebra A XEO N is a full corner in the crossed product of a C*-algebra by a
group of automorphic actions.

Later on Adji in [1] generalized Stacey’s results from the semigroup N to the
positive cone I'™ and to nonunital C*-algebras. Because she studied on nonunital
C*-algebras, she had to assume that every endomorphism o : A — A is extendible

to a strictly continuous endomorphism @, of the multiplier algebra M (A) of A. The
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assumption on extendible endomorphism is required because the C*-algebra A in
the system may not contain an identity. It was shown in [4] that an endomorphism
¢ A — A is extendible precisely when there is an approximate identity {a)} for
A and a projection Py € M(A) such that ¢(ay) converges strictly to P, in M(A).
We wish to stress that extendibility of endomorphisms a, does not always imply
that @ is unital (@z(1p7(4)) = 1p7(a)), even though 1 € A. For example, we
see that the endomorphism 7(x1,x9,...) = (0,21, x2,...) on the C*-algebra ¢ of
convergent sequences, extends to the endomorphism 7 = 7 on M(c) = ¢ which
satisfies 7(1,1,...) = (0,1,1,...) # (1,1, ...).

A covariant representation of (A, T'", «) is given by a nondegenerate represen-
tation 7 : A — B(H) and an isometric representation V : I'" — B(H), where

every V is an isometry on H and Vy4y = V; oV}, and that
m(oz(a)) = Vem(a)Vy) for all z € T and a € A. (1.2)

The isometric crossed product A x o I'" has exactly the same property as described
by Stacey: it is a full corner in the crossed product of the system by the group of
automorphisms.

Adji, Laca, Raeburn and Nilsen described in [6] a condition for a covariant
representation (m, V') of the system to induce a faithful representation of the iso-
metric crossed product. They considered the system (BF+,F+,T) of the unital
C*-algebra Bpy := span{ls € (*(I'") : s € ['"} spanned by the characteristics
function 1g defined by 14(z) = 1 for x > s and 14(z) = 0 for z < s, and the
action 7 : I'" — End(Bp+) is given by the right translation on ¢°°(I'") which
satisfies 74(1s) = ls4¢. They show that every isometric representation V of I't
on a Hilbert space H induces a unital representation 7y : 15 +— ViV of Bp+ on
H such that (my, V) is a covariant isometric representation of (Bp+, ', 7), and

the representation my, x V' of Bp+ 150 T'F s faithful provided all Vi are nonuni-
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tary. This gives us a realization of the Toeplitz algebra T (I'), the C*-subalgebra
of B(f2(I'")) generated by the nonunitary isometries {Ts : s € I'"'} given by
Ts(er) = er+s on the usual orthonormal basis {&; : r € T} of 62(F+), as the
isometric crossed product Bp+ xiTSO I'". More precisely, since each Ty in the iso-
metric representation 7' : s +— T of ' on 52(1“") is nonunitary, 7y x 1" is an
isomorphism of Bp4 x15° 't onto 7(T).

Since then, several works have been carried out by authors to study the iso-
metric crossed product associated to more general ordered semigroups: Larsen
in [16] studied the isometric crossed product of the systems of Ore ordered semi-
groups, and their applications to the Hecke C'*-algebras, Laca and Raeburn in [14]
contributed the theory of isometric crossed products of the systems of nonabelian
semigroups with quasi-lattice order, and their applications to number theory. Au-
thors in [3,7, 8] studied the structure of isometric crossed product of a system of
positive cones of totally ordered groups, and describe the primitive ideal space of
the Toeplitz algebra 7 (I").

These facts confirm that the isometric crossed product theory provides the
most effective method to study the Toeplitz algebra (the C*-algebra generated by
Toeplitz operators) [3,6].

The success of isometric crossed product attracts the authors in [17] to study
a more general representation theory of a system (A,T", ) in which the semi-
group I'T is represented by partial isometries (instead of isometries). They define
a covariant representation of (A,I'", ) as a pair (7, W) which consists of a non-
degenerate representation m of A and a partial-isometric representation W of I'"

on H such that

m(as(a)) = Wem(a)WE and WiWsr(a) = m(a)WiWs for s € TT a € A. (1.3)



Unlike the isometric covariant representation theory of (A, T, ), every sys-
tem (A, ", a) admits a nontrivial covariant partial-isometric representation (7, W)
with 7 faithful [17, Example 4.6]. Then the crossed product A xgiso ' (we call the
partial-isometric crossed product) of (4,I'", a) which by definition is the Toeplitz
C*-algebra of Hilbert bimodules, which was studied enormously by Fowler [10].
It is the universal C*-algebra generated by the canonical partial-isometric covari-
ant representation (iy4,ip+) such that A x 3180 '™ has one-to-one correspondence
with the partial-isometric covariant representations of (A,l"+, a) (see Definition
2.5). The main result of [17] shows that the crossed product of (Bp+,I'", 7) has
a similar property to the isometric crossed products, and is universal for partial
isometric representation of the semigroup I'". So every partial isometric represen-
tation of I'"" gives a representation 7y, of Bpy defined by my/(1;) = V..V, such that
(my, V) is the partial-isometric covariant representation of the Proposition 5.1 [17].
Moreover, the authors described the structure of Bp+ inSO I'" in the large com-
mutative diagram [17, Theorem 5.6 |, in which this diagram determines completely
the structure of the crossed product of the system when '™ = N [17, Theorem
6.1].

The question that naturally arises here is whether there is a realization of
partial-isometric crossed products as full corners similar to the one of isometric
crossed product. The work of this thesis is dedicated towards answering the ques-
tion: Can A xgiso '™ be viewed as a corner in a particular C*-algebra? We want to
point out that the method we use here is adapted from Khoshkam-Skandalis [12],
which is different from the one of isometric crossed products: it does not involve
the dilation process. In fact we construct a partial isometric representation of the
system (A, T'" «) such that the associated representation of the crossed product

is an isomorphism onto the full corner.

To view the construction, we set up the subalgebra 7o, of L(£2(I't, A)) associ-



ated to a system (A,T'F, ) using a pair (74, S5) in which 74 : A — L(£2(IF A))
is a faithful representation defined by (7o (a)f)(z) = az(a)f(z) and S : I'T —
LT+, A)) is an isometric representation given by (Syf)(z) = f(z — y) for
z >y and (Syf)(z) =0 for < y where a € A and z,y € I'". The pair (mq, )

satisfies the equation
Ta(a)Sy = Syma(ay(a)) (1.4)

for all @ € A and y € I'". The algebra 7, is then defined as the C*-subalgebra
of L(2(I'F, A)) spanned by {Samala)Sy 1 a € Ayx,y € I'*}. The pair (7q,S)
is neither the partial-isometric covariant nor isometric-covariant representation,
however we prove in Proposition 4.1 that there is a right covariant partial-isometric
representation (kq,w) : (A, T, a) — L(£2(I'T, A)) such that the representation
kg xwof A xgiso I'" is an isomorphism onto the full corner of 7y, .

Furthermore by using this full corner identification, we obtain in Theorem 5.1
the extension of A xgiso N, from which we recover the exact sequences of [12]
and [22].

Finally, we want to mention that when dealing with unital endomorphisms,
A xgiso I'" is exactly the Koshkham-Skandalis algebra 7, described in [12]. Next,
if o : I'" — Aut(A) is an action by automorphisms of A, then we realize that

A xPjSO I'" is the isometric crossed product of the system (Br+ ® A, 7® a L ")

(see Proposition 6.1).

1.2 Overview of the Thesis

We begin with a preliminary chapter (Chapter 2) containing background materials
about Hilbert C*-modules and the extendibility of homomorphisms and ideals of

C*-algebras. Moreover, we briefly recall the theories of isometric crossed product



and partial-isometric crossed product.

In Chapter 3 we identify the spanning elements of the kernel of the natural
homomorphism from partial-isometric crossed product onto the isometric crossed
product.

In Chapter 4, we construct a covariant partial-isometric representation of
(A,TF, a) in L(£2(I'F, A)) and show that this gives an isomorphism of A x RIS Pt
onto a full corner of the subalgebra T, of L(£2(T'F, A)).

In Chapter 5, we show that when the semigroup I'" is N = ZT then the kernel
of natural homomorphism is a full corner in the compact operators of EQ(N7 A).

In Chapter 6, we discuss the theory of partial-isometric crossed products for
systems by automorphic actions of the semigroups I'". We show that A xgiso
I't is a full corner in the usual crossed product (Bp ® A) x I' by the group of

automorphisms.

Finally, Chapter 7 discusses conclusions and proposes an open question.



CHAPTER 2
PRELIMINARIES

This chapter contains the required background theory of C*-algebras which sup-
ports the main results of the thesis. However it does not contain the basic theory
of C*-algebras on a graduate course level. The readers who wish to know about
basic terminologies in C*-algebras can refer to the textbook [20], and the theory of
crossed products can be founded in [26]. We wish to mention that we specifically
elaborate Proposition 2.1 and Proposition 2.2 on Hilbert C*-modules although
they are known since we frequently use them considering that their proofs are
existing in other works or mathematics textbooks. We will use these in Chapters

4 and 5.

2.1 Hilbert C*-Modules

2.1.1 Basic Theories of Hilbert C*-Modules

Definition 2.1 Let A be a C*-algebra and E be a right A-module with compatible
scalar multiplication, that is A(z - a) = (Az) -a =2 - (Xa) for every z € E, a € A,

and A € C. We say F is a (right) inner product A-module, if there is a map

ExE— A

(z,9) = (T,9) 4

such that

(1) (2, Ay +pz)a = Mo, y) a4 + plz, 2) 45
(ii) (z,y-a)4 = (z,9) aq;

(111) <113,y>ik4 = <y7$>A;
(

iv) (z,x) 4 is a positive element of A;



(v) If (z,2) 4 = 0 then = = 0,

for every x,y,z € E, \,u € C, and a € A.

Remark 2.1 In the definition above, condition (i) implies that the inner product
(-,-) 4 is linear in the second variable, and from conditions (i) and (iii), it follows

that it is conjugate linear in the first variable:

(Ar+py,2)4 = (z, e+ py)y = (Mz,2)4 +u(z,9)4)"
= Mz, 2)% + 1z, 9%

= Mz, 2)4 +7i{y, 2)a
Moreover, conditions (ii) and (iii) imply that
a(z,y) 4 = (Y, 2)4a")" = (y,x-a*)y = (z-a",y) 4.

Therefore this together with condition (ii) show that

span{(z,y)4 : v,y € E}

is a two-sided ideal of A.

Example 2.1 Every C*-algebra A can be viewed as an inner product A-module
in which the action of A is given by the right multiplication a - b = ab and the

inner product is given by (a,b) 4 = a*b for every a,b € A.

Lemma 2.1 (The Cauchy-Schwarz inequality) [24, Lemma 2.5] If E is an

inner product A-module, and x,y € E, then

(T, 9) 4w, ) a < Iz, 2) all{y, y) a- (2.1)



Next we define
lz]| 4 := H(a:,ac)AHI/Q for every x € E. (2.2)

By using the Cauchy-Schwarz inequality, we can show that || - || 4 is a norm on FE.

More precisely, we have:

Corollary 2.1 [24, Corollary 2.7] If E is an inner product A-module, then

][4 = [ (z, ) 4] /2

defines a norm on E such that ||x-a||4 < ||x|| alla||. The normed module (E, ||| 4)
is mon-degenerate in the sense that the elements of the form x - a span a dense

subspace of E. Indeed,

is || - || 4-dense in E.

Definition 2.2 An inner product A-module FE which is complete with respect to

the norm || - || 4 is called a Hilbert A-module. Moreover, if the ideal

I =span{(z,y)4 : 2,y € £}

is dense in A, then we say E is a full Hilbert A-module.

Example 2.2 Every Hilbert space H with the usual scalar multiplication and the
inner product is a Hilbert C-module, meaning that the action of C on H and the

C-valued inner product are given by

h-X:=Xh and (h,k)c := (k|h)
9



where h,k € H and \ € C.

Example 2.3 Every C*-algebra A is a full Hilbert A-module with a - b = ab and
(a,b) 4 = a™b for every a,b € A. In this case, the norm || - [[4 on A equals to the

usual norm (C*-norm) of A, because for every a € A, we have
1/2 1/2 2\1/2
lalla = llta, ayall'/? = [la*al]"/* = ([|a]}*)!/* = |ja].

A is full because if {a)} is an approximate identity for A, then aya converges to
a in the norm of A. But for each A, aya = aja = (ay,a)4 which shows that the

ideal I = span{(a,b) 4 : a,b € A} is dense in A, and therefore A is full.

Proposition 2.1 Let S be any nonempty set and A be a C*-algebra. Then

(S, A) :={f:5—A: Z f(s)*f(s) converges in the norm of A},
ses
the vector space consisting of all A-valued functions of S such that the unordered
sum Y ocs f(5)" f(s) converges unconditionally in the norm of A, is a full Hilbert

A-module with

(f-a)(s):=f(s)a and (f.g)a:=)_ f(s)*g(s)

seS

for every f,g € (?(S, A) and a € A.

Proof. If S is a finite set, then it follows by the Example 2.14 of [24] that (?(S, A)
is a Hilbert A-module. Thus we suppose that S is an infinite set which can be
either countable or uncountable. However our proof involves the finite subsets of
S. We therefore need to consider the collection F of all finite subsets of S which

is a directed set with the inclusion ‘C’.

10



First we want to check that f - a belongs to £2(S, A). For any F € F, we have

2user(f(s)a)* f(s)a = Xsepa™f(s)"f(s)a
= " (XLser [(5)"f(5))a
< N 2ser f(s)°f(s)]a”a,

A

because b*chb <|| ¢ || b*b is valid for every b € A and ¢ positive. Since in A,

0 < b < cimplies ||b]] < ||c]|, it follows that

DI Jall < llall®l Y f(s)*

seF seF

We know that since f € (2(S, A), the partial sums of ", g f(s)*f(s) are Cauchy
in A. Therefore for any € > 0, there is I € F such that for every J € F with

INnJ =0, wehave || Y c;f(s)"f(s)|| < ¢/||al|?. This implies that

1> ()all < llall D f(s)* (o)l < e

seJ sed

which means the partial sums of ) . ¢(f(s)a)* f(s)a are Cauchy in A, and conse-
quently > - g(f(s)a)* f(s)a converges in A. Thus f - a belongs to 2(S, A).

Next we want to prove that (f,g)4 is an inner product on (2(S, A). To do
this, first we have to show that »  cg f(s)*g(s) converges in A, thus (f,g)4 is

well-defined. For every F' € F, the Cauchy-Schwarz inequality implies that

1Y F6) g1 < 1 F@ NI 9(s) a(s)]- (2.3)

seF seF seF

Similar to the proof of f-a € ¢2(S, A), since f, g € €%(S, A), for every e > 0, there

11



are I,I' € F such that for every J € F with I N J = ), we have

1D () ()l < e

seJ

and for every K € F with I’ N K = (), we have

1> 9 g(s)l <e.

seK

It follows that for every J € F with JN(TUl’) =0,

1D F6) 91> < 1D F)* FY als) ()l < €

seJ sedJ seJ

which implies that || Y o7 f(s)*g(s)|| < €. Therefore > g f(5)*g(s) is Cauchy
in A, and hence it is convergent in A.

Now we have to check that (-, -) 4 satisfies all the conditions (i)-(v) in Definition
2.1. Let f,g,h € >(S,A), \,;. € C, and a € A.

(1) (f;Ag +phya = MF gy a + (S, h) a:
To see this, we have to show that ) ¢ f(5)*(Ag(s)+puh(s)) converges to A(f, g) 4+

w(f,hy4. For every J € F, we have

1225e F(8)*(Ag(s) + ph(s)) — (A(f,9) 4 + ulf, h) 4l
= M ser f(s)9(s) = (f:9) a) + n(Xses () h(s) = (f, ) A) (24)
< M seq F(9)*g(s) = (s g all + 1l Xses £(s)"hls) = (f, h) all

Since (f,g)4 and (f,h)4 are the limits of all partial sums (finite subsums) of

Y oses f(8)*g(s) and Y cg f(s)*h(s) respectively, for every € > 0, there exist

12



I,I' € F such that for every J € F, if I C J, then

1Y f(s)* f9)all <€/ (2A)),
sed
and if I’ C J, then
1Y f(s)* ) all < €/ 2pl)-
seJ

Therefore for every J € F with I U I’ C J, by inequality (2.4), we get

1D F () (Ag(s)+h(s)=(A(f gy atin(f 1) )| < IAI(e/ I+l e/ (2lul)) = €

sedJ

Therefore Y. cq f(s)"(Ag(s) + ph(s)) = XN f, 9)a + p(f, h) 4. On the other hand,
(F A9+ 1h)a = Yaes f(5)*(Ag(s) + uh(s)), so it follows that (f, \g + uh) 4 =
M, g) 4 + u(f, h) 4. This shows (i) is valid.

(ii) (f,9-a)a = {f.9) a0
We want to show that ) g f(s)*(g(s)a) converges to (f, g)4a. For any J € F,

we have

1225e £(s)"(g(s)a) = (f, g) aall 1 ses (5)7g(s))a = ([, 9) aall
= 1(Cses £(s)"g(s) = (f.9) a)all

1225 £(8)*g(s) = {f, 9) allllall

IN

Since Y .eq f(5)"9(s) = (f,g)a, for every € > 0 there exists / € F such that
for every J € F with I C J we have || > .7 f(5)*g(s) — (f,9)all < €/|lal|. This

implies that for every J € F,if I C J, then

1> f()* — (f:9)aall < (¢/llal)llall = .

seJ

13



It follows that ) . g f(5)*(g9(s)a) converges to (f, g) g4a, and therefore (f,g-a) 4 =
(f,9) aa.

(iii) (f,9)% = {9, f) a:
To see this, since Y g f(5)"g(s) = (f,9)a, so for every € > 0 there is a [ € F

such that for every J € F with I C J we have || Y. ; f(s)*g(s) — (f.9)all <e.

But
12 2ser 9(8)* f(s) = {f9)ull = 1 22ses(f(8)"9(s))* = (f:9) 4l
= [[(Qses f(s)9(s)" = (£, 9) %l
= [[(XCses f()*9(s) = (fr9) )"l
= 12 ses f(s)*g(s) = (f. 9) all,
therefore

1D 9(s) f(s) = (Foaall = 11D £()"9(s) = (f. 9 all < e.

sed sed

This implies that the finite subsums of ) g g(s)*f(s) converge to (f, g)%, and

hence (f,9)7% = (9, )4
(iv) (f, f)a = 0in A:
If f =0, then it is clear, because (f, f) 4 = 0. Now assume f # 0 and (f, f) 4 < 0.
So it follows that —(f, f) 4 > 0. Since f # 0, there is a ¢ € S such that f(t) # 0
in A. Thus for e = || f(t)]|?/2 > 0, there exists I € F such that for every J € F,
it 1, then | Syey £5)*£(s) — (. Fyall < LF@2/2. Let 7/ = 1U {t}, since
I c J', we have
IS 7 £(5) = 4 Fyall < IF@I/2
selJ’

which ia a contradiction. Because

S OHE ) = (L L a= FO ) = (F, Ha > FOF () >0

seJ’
14



which implies that

1> f(s — (£ DAl Z 1O FON = IFOI > @)1 /2.

seJ!

Therefore (f, f) 4 > 0 for every f € (2(S, A).

(v) If (f, f)a =0, then f = 0:
Suppose (f, f)4 = 0 but f # 0. Thus there is a ¢ € S such that f(¢) # 0. Since
(f, f)a =0,50for e = || f(t)]|?/2 > 0 there exists I € F such that for every J € F
with T € J we have || S, f(8)*f(s)]| < |[f(1)]|?/2. Now if J' = TU{t} > I,

then

1> £ )< @I /2.

seJ!

But this is a contradiction because

D F) f(s) = fFO)Ff(t) >0

seJ!

which implies that

1> F@ FI 2 IO FON = IIF O > 1FO17/2.

seJ!

Thus (v) is also satisfied, and therefore £2(S, A) is an inner product A-module.
As we know, this inner product induces a norm on ¢2(S, A) given by ||f|l4 =
I P alV? = || Sees F()* f(s)]M/2. Now we want to show that (2(S, A) is
complete in this norm, and hence it is a Hilbert A-module. To see this, we show
that every Cauchy sequence in EQ(S, A) is convergent.
Let {fn};— be a Cauchy sequence in (2(S, A). For every t € S, {fn(®) 02,

is also a Cauchy sequence in A. To see this, first note that if f € EQ(S, A), then

15



for every € > 0 there exists I € F such that for every J € F with I C J we have

1" F(s) f(s) = (f. fall <e.

seJ

Thus if t € S, then for J' = I U {t} D I we have

1S F(s) f(s) = (f fall < e.

seJ!

Now since 0 < f(t)*f(t) < Xoseyr f(8)" S (s), IF @SN < 1 2ser F(s)" ()],

and consequently

A

IFOI = 1K Hal < 1 e £ S = IKF £ all
12 2sesr F(8)°F(s) = (f, rall <e

IN

It follows that || f(£)[|? < ||(f, f)all +¢€ for every ¢ > 0. This implies that || f(t)||? <
Wf, all = ||f||?47 and hence ||f(t)|| < ||f|la for every t € S. From this we
conclude that for any ¢ > 0, since {f,}52 is Cauchy, there exists N > 0 such

that for every m and n with n > m > N we have

1fn(t) = fin (Ol = 1 (fn = Fn) O < [[fn = finlla <€,

for every t € S. Thus {fn(t)}52 is a Cauchy sequence in A and therefore it is
convergent in A. Let f : S — A be a map such that f(¢) = limy,— fn(t). We
claim that f € ¢2(S, A) and fp, — f in 62(5, A), thus it follows that 62(5, A) is
complete.

To see f € (2(S,A), we will prove that the partial sums of Yoses f(s) f(s)

are Cauchy in A and therefore it is convergent in A. First we need these materials

16



that for every map ¢g: S — A and F' € F, define

lallr =11 g(s)*g(s)1M2

seF

Note that for every F' € F, the vector space

CFA) ={h:F—A: Z h(s)*h(s) converges in the norm of A}
sel
is a Hilbert A-module by [24, Example 2.14] as we have mentioned in the beginning
of the proof for a finite set S. Therefore the module norm on (2(F, A) is | - ||,
because we can in fact view (2(F, A) as the subspace of EQ(S, A). Tt is the subspace
of all h € (2(S, A) such that h(s) = 0 whenever s ¢ F. Moreover, if g € (2(S, A),

then the map h : F' — A given by

hs) = g(s) ifseF

0 ifsg I

belongs to 2(F, A) such that ||h|4 = ||g|| . Similar to the proof of ||g(t)|| < |lglla
for every g € ¢2(S, A) and t € S in above, we can show that||g| 7 < ||g]/4 for every
g€ l?(S,A).

Now since { f }72 is Cauchy, for given € > 0 there exists N > 0 such that for
every m and n with m > n > N we have ||, — fnll4 < €/3. On the other hand,
for F' € F, we can find M > N such that ||f — farl|F < €/3. Because the sum in
1 = Farllp = | e (£(5) — far(s)*(F(5) — Far())I[M? s finite and as we have
seen it before, f;(s) — f(s) for every s € S. Moreover, since Y g fN(5)* fn(5)
converges in A, for € > 0 there exits I € F such that for every I’ € F with

INF =10, we have | fx|lr = | > scr fN(s)* fn(s)|| < e/3. Thus for every F € F

17



with I N F = (), if we choose M > N such that || f — fa/|lp < €/3, then we have

Iflle = If=fu+Fu—In+ Inllp
< W =fulle+ v = Inlle + 1N le
< W =Fullp+ 1 = Inlla+ Ifnllp <e/3+€¢/3+¢€/3=e
Therefore || Y- cp f(5)*f(s)]] = HfH% < €2, and since the existence of I € F de-

pends only on €, we conclude that the partial sums of Y~ ¢ f(s)* f(s) are Cauchy
in A. This implies that f € (2(S, A).

Now we want to show that f, — f in EQ(S, A). For any € > 0, there exists
N > 0 such that for every m > n > N, we have || fi, — fnlla < €. Thus for every

FelkF,
1>~ () = fa(s)* (fmls) = fals) < €,

seF

and if m — oo, then we get

I () = fals)*(f(5) = fa(s))]l < € foreveryn > N (2.5)
seF
We know that f — f, € (2(S,A), because f € (%(S,A). Thus Y ,cq(f(s) —
fn(s))*(f(s) — fu(s)) converges in A, and since the inequality (2.5) is valid for
every F' € F, ||f — folla < € for every n > N. This implies that f;, — f in
(2(S, A).
Finally we show that ¢2(S, A) is full. Let a € A and {ay} is an approximate
identity in A. Since S is nonempty, there is a ¢t € S. Now define the maps
fy9y S — A such that

a ifs=t
f(s) =

0  otherwise,

18



and

ay ifs=t
gr(s) =
0 otherwise.

It is clear that f, gy € €2(S,A), and since (gy, f)4 = aya converges to a in A,
it follows that the ideal I = span{(f, g)4 : f,g € €*(S, A)} is dense in A. Thus
(%(S, A) is a full Hilbert A-module. This completes the proof. 1

Remark 2.2 We will see in Proposition 2.2 that EQ(S7 A) is naturally isomorphic

to the (tensor product) Hilbert A-module ¢?(S) ® A.

2.1.2 Internal Tensor Product of Hilbert C*-Modules

Let A and B be two C*-algebras. Suppose F is a (right) Hilbert A-module, F' is
a (right) Hilbert B-module and ¢ : A — L(F) is a x-homomorphism of A into the
C*-algebra of adjointable operators on F'. We can consider F' as a A— B bimodule,

the left action of A is given by

a-y=a¢a)y forae Ajye F

The algebraic tensor product of F and F over A, E® 4 F, is the quotient of vector

space tensor product £ ® F' by the subspace

N =span{(z-a)®y—2®@¢(a)y:x € E,y € F and a € A},

meaning that £ ©4 F = (E ® F)/N. Let z ® 4 y denote the coset (z ® y) + N,
then (z-a)®@4y=2®4 ¢(a)y. E Oy F is a right B-module with the action of B
given by

(x®ay) - b=2®4(y-b) forre E,yc Fandbe B
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Proposition 4.5 of [15] says that £ ®4 F is an inner product (right) B-module

under the B-valued inner product given on simple tensor by

(11 ®4Y1,72®4 Y2) B = (Y1, 9((T1,72) 4)Y2) B (2.6)

for every z1,x9 € E and y1,y2 € F. This B-valued inner product induces a norm
on £ ®y F, and the completion of E ® 4 F with respect to this norm is a (right)
Hilbert B-module which is called the Internal tensor product of E and F' and is
denoted by F ® 4 F'.

Particularly, when E is a Hilbert space H and F is a C*-algebra A, we have
an important case of the internal tensor product of Hilbert C*-modules. Since
every Hilbert space H is a (right) Hilbert C-module and every C*-algebra A can
be regarded as a (right) Hilbert A-module over itself, it follows that the vector

space tensor product H ® A is a (right) inner product A-module with

(h®@a,k®@byg = (k|hya™d and (h®a)-b=h® ab (2.7)

for every h,k € H and a,b € A. So we have a (right) Hilbert A-module H ® A
which is the completion of H ® A with respect to the associated module norm
induced by the A-valued inner product [15, pages 6 and 41].

In the Proposition below, we elaborate one of the most important and special
realizations in the internal tensor product of Hilbert C*-modules. We will see
that for any set S, the Hilbert A-module 52(5) ® A is isomorphic to the Hilbert
A-module EQ(S, A) explained in Proposition 2.1. We remind the readers that two
Hilbert A-modules E and F are isomorphic if there is a linear map v : £ — F

which is isometric, surjective, and A-linear.

Proposition 2.2 Let S be any nonempty set and A be a C*-algebra. The Hilbert

A-module 52(5) ® A is obtained by completing the vector space tensor product
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(2(S) ® A over the A-valued inner product (€ ® a,n @ b)4 = (n | £)a*b and the
module action (£ @ a)-b=E@ab for every €,m € (2(S) and a,b € A. This module

is naturally isomorphic to the Hilbert A-module

S, A ={f:5—A: Z f(s)*f(s) converges in the norm of A}
seS

equipped with the module structures (f-a)(s) = f(s)a and (f,g) 4 = > sc5 f(5)"9(s)
for every f,g € (*(S,A), a € Aands e S.

Proof. To see this, first let F be the collection of all finite subsets of S. Then
define the map ¢ : €2(S) x A — (?(S, A) such that (¢(€,a))(s) = &(s)a for all
€ el?S),aec Aand s € S. Note that p(&,a) € (2(S, A), because for every

FelkF,

12 2ser(#(§, ) ()" (2(€ ) ()l = [ 2ser E(s)é(s)aa]

= [XCser&(s)é(s))aa]

= | 2ser&(s)(s)llla*all.

Since the partial sums of >~ ¢ @5(5) are Cauchy in C, similar to the proof in
Proposition 2.1, we can show that the partial sums of ) . g((§,a))(s)*(¢(&, a))(s)
is Cauchy in A, and hence it is convergent in A. The map ¢ is bilinear, there-
fore there is a well-defined linear map @ : £2(S) ® A — (2(S, A) such that
o€ ®a)(s) = &(s)a. Now we show that ¢ is an isometric A-linear map whose
extension on £2(S) ® A is surjective.

To see @ is A-linear, let y = 31" &, ®a; € (2(S)© A and b € A. We want to
show that &(7y-b) = &(7)-b. But first see that for a simple element £Qa € (2(S)®A,

we have

P(E®a)-b)(s) = P(€ @ ab)(s) = &(s)ab = P( @ a)(s)b = (P(E ® a) - b)(s)
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for every s € S. This implies that ¢(({ ® a) - b) = @(§{ ® a) - b. Thus for v, by

linearity of ¢, it follows that

M:

(& ®a;) - b)

=3O &®a)-b) = &
i=1

Il
_

(& ®a;) - b)

I
'Mi.

-
I
—

I
M:

P& ® az) b

~

|
MS»—k

-
I
—

P& ® 7)) 'b=¢(Z£¢®ai)-b=¢(7)-b.

Therefore ¢ is A-linear.

n m
@ is an isometry, because if o = Zf, ®a; and § = Z n; ® bj in 2(S) © A,

i=1 j=1
then we have
n m
(@la),o(B)a = <Z (& ®a;) 7290 i ®b
1=1 j=1
n m

= ZZ (& ®a;), (le®b)>

= ZZZ@&@% (773®b)( )}

i=1j=1 scS
m

= DD > &ls)nils)aihy]

i=1j=1scS

= > > (&®ainj®bj)a

i=1j=1
n

= (Z & ® aj, Zﬁj ®@bj)a = (a, B)a-
i=1 j=1

So for every a € (2(S) © A, [|3(a)lla = [(B(a), @) all'? = [, ) alV/? =

||a]] 4 which means @ is an isometry. Thus it extends to an isometric A-linear map
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7 of 12(S) ® A into £%(S, A).

Next we prove that @ is surjective, so it is an isomorphism from 62(5) ® A
onto (2(S, A). Let f € (2(S, A), and for every r € S, the map &, : S — C be the
point mass defined by

1 fors=r
or(s) =
0 otherwise.

Each 6, clearly belongs to ¢2(S) and the family {8, : r € S} is orthogonal, meaning

that
1 fors=r
(0s | 0r) =
0 otherwise.

We claim that 3°,cgdr ® f(r) converges to some a in £2(S) ® A and B(a) = f.

For every F' € F, we have

HZ&@JC(TH& = Zér@f Z(S@@f AH

rel rekF seF

= 1D D060 @ f(r), 85 ® f(3)) al

reF seF

= 1D D G [0 f(r)* f(s)l

reF seF

= > e

rel

The partial sums of 3°,.cg f(r)* f(r) are Cauchy in A because f € ¢2(S, A). There-
fore the partial sums of ), g dr ® f(r) are Cauchy in (2(S) ® A. Thus it follows
that >°,cgdr ® f(r) converges to some a in (2(S) @ A. To see B(a) = f, it is
enough to prove that the finite subsums (> 0, ® f(r)) = > @(0,® f(r)) converge

to f in £2(S, A). First note that we have

1> 80 @ f(r) = fIE =1 fra— D fr)*

rel’ rel
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for every F' € JF which is the key point of the proof. To verify this, we let
B=>rer@6r® f(r)) for convenience in our following computations. Then we

have

16 = FI% = 148 = £.8 = Fall = 148, 8)4 = (8. fya— (f.B)a + (f. )l (28)
Now we evaluate (3, 3) 4, (3, f) 4, and (f, 5) g separately. We have

(B,8)a = D> (6@ f(r), 3(ds ® f(s)))a

reF seF

= D> (6@ f(r). 05 f(5))a (2.9)
reF seF

) ALY, =Y flr
reF seF rek

and

B Nla=d @0 fr).fla = Y > 86 ® f(r)(s)f(s)

rel reF secS

= D 6 f () f(s) (2.10)

reF seS
= > ) f(r)
rek
For (f, ) 4, since (f,8) 4 = (B, )%, it follows from our calculation in (2.10) that
= (Q_ SV ) =D (V) =D f) S (). (211)

rel rekF reF

Thus we have

(B.B)a=(B.fla=(f.Ba=D_ f(r)*

rel
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