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KAJIAN KEATAS PENGIKATAN TAK BOLEH BALIK 

ANTARA POLYDIMETHYLSILOXANE DAN PAPAN LITAR 

TERCETAK BAGI REKAAN BIOCIP DNA YANG BEBAS 

BOCOR 

 

ABSTRAK 

Salah satu isu dalam merekabentuk biocip DNA pakai buang 

berasaskan teknologi kapilari elektroforesis adalah kebocoran bendalir 

dalam saluran mikro melalui ruang-ruang kecil antara elektrod-elektrod.    

Dalam kajian ini biocip yang bebas bocor dan boleh diguna semula direka 

untuk aplikasi pemisahan dan pengesanan DNA. Biocip ini terdiri daripada 

struktur microfluidic PDMS yang dibina dengan kaedah soft-litografi dan 

elektrod-elektrod tembaga yang diukir pada papan FR-4 menggunakan 

proses pembuatan lazim separa automatik. Lapisan halangan yang dibuat 

daripada bahan pembekuan dengan cahaya (photocurable) polimer diacrylate 

bisphenol A (DABA), digunakan untuk mewujudkan ikatan tak boleh balik 

antara substrat PDMS dan substrat PCB. Ujian tarikan telah menghasilkan 

purata kekuatan tegangan setinggi 287.357 kPa dan sisihan piawai ± 23.793 

kPa. Keputusan ini adalah setanding dengan ikatan PDMS-PDMS melalui 

proses konvensional plasma oksigen dan melalui pengecajan korona. 

Sementara itu, ujian kebocoran menunjukkan bahawa saluran mikro boleh 

bertahan dengan tekanan lebih daripada 189 kPa dimana ianya cukup tinggi 

bagi kebanyakan aplikasi biocip. Akhirnya, eksperimen-eksperimen yang 

telah dilaksanakan pada DNA band tunggal yang dihasilkan dari proses PCR 

dan juga pada DNA band pelbagai daripada piawaian DNA ladder telah 

menunjukkan bahawa reka bentuk yang dicadangkan dengan jitu dapat 
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mengasingkan cebisan-cebisan DNA dengan sensitiviti arus elektrik secara 

konsisten lebih tinggi daripada 100 nA dan pada kekuatan medan elektrik 

20V/cm. Berbanding dengan reka bentuk sebelumnya yang menggunakan 

klip untuk mengapit secara mekanikal substrat PDMS dan PCB, pendekatan 

baru dengan berkesan melekatkan peranti tersebut, dengan itu menghalang 

kebocoran cecair dari kawasan sensor. Pencapaian ini bersama dengan sifat-

sifat lengai elektrokimia pada lapisan penghalang fotopolimer tersebut, 

membuka peluang dalam mereka bentuk peranti yang benar-benar mudah 

alih dan pakai buang untuk pengesanan biologi di masa hadapan. 
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INVESTIGATION OF IRREVERSIBLE BONDING BETWEEN 

POLYDIMETHYLSILOXANE AND PRINTED CIRCUIT BOARD 

FOR DESIGNING LEAKAGE-FREE DNA BIOCHIP 

ABSTRACT 

One of the issues in designing a disposable DNA biochip based on 

capillary electrophoresis technology is the leakage of fluid in the 

microchannel though small gaps between electrodes. In this work a leakage-

free and reusable biochip is designed for DNA separation and detection 

applications. The biochip comprises PDMS microfluidic structure fabricated 

with soft-lithography and copper electrodes which are engraved on FR-4 

board with standard semi-automatic processes. An inhibitive layer made 

from photocurable diacrylate bisphenol A polymer (DABA) is used to 

establish irreversible bonding between PDMS and PCB substrates. Pull-off 

tests resulted in an average tensile strength of 287.357 kPa and standard 

deviation ± 23.793 kPa. These results are comparable to PDMS–PDMS 

bonding via conventional oxygen plasma and corona discharge. Meanwhile 

the leakage test showed that the microchannel could withstand pressure of 

more than 189 kPa which is sufficiently high for most biochip applications. 

Finally experiments performed on single DNA band produced by using PCR 

and multiple bands from standard DNA ladders indicated that the proposed 

design can accurately separate DNA fragments with current sensitivity 

consistently higher than 100 nA and at electric field strength of 20V/cm. 

Comparing to the previous design that used clips to mechanically clamp 

PDMS and PCB substrates, the new approach effectively seals the device, 
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thus preventing leakage of liquid from the sensor matrix. This together with 

the electrochemically inert characteristics of the photopolymer inhibitor, 

open up possibilities in designing a truly portable bio-sensing device.
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1 CHAPTER ONE 

INTRODUCTION 

1.1 Overview 

The vast applications of electrophoresis are most evident in the 

health or medical industry, including protein, antibiotic and vaccine analysis. 

DNA analysis to date being the most important electrophoresis applications. 

It allows researchers to map and see the differences in the genetic code of 

species on earth, and also provides a reliable root in forensic investigations. 

Currently, there are two common applications of DNA analysis, which are 

the DNA fingerprinting (or also called DNA profiling) and the genome 

sequencing. DNA fingerprinting of individuals takes place by sampling their 

DNA and comparing it with a sample found at a crime scene. On the other 

hand, the DNA sequencing, determines the sequence of a stretch of DNA. 

Although DNA sequencing and DNA fingerprinting involve similar 

techniques, the ultimate aim of each is different and they have different 

applications. 

 

Figure 1.1: Rapid HIT Human DNA Identification System, developed by IntegenX in 
the US and Key Forensic Services in the UK [1, 2]. 
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