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PEMACU-PEMACU LED SATU-PERINGKAT BERDASARKAN PENUKAR-

PENUKAR BOOST BCM DAN LLC BERSEPADU UNTUK PENCAHAYAAN 

JALAN 

 

ABSTRAK 

 

Pencahayaan elektrik telah menjadi teknologi yang mustahak kepada 

masyarakat moden. Memandangkan peningkatan kebimbangan mengenai isu-isu alam 

sekitar dan penjimatan tenaga, diod-pemancar-cahaya (LED) telah menjadi tumpuan 

penyelidikan kerana ciri-ciri penyingkiran merkuri dan kecekapan tenaga yang tinggi 

berbanding lampu-lampu konvensional. Aspek prestasi pencahayaan LED adalah 

berkait dengan pemacu LED, jadi penukar yang sesuai perlu direka untuk memberi 

kuasa kepada LED dengan faktor kuasa pemasukan yang baik dan kecekapan yang 

tinggi. Untuk mencapai elemen-elemen ini, penukar arus ulang-alik kepada arus terus 

(AU-AT) satu-peringkat dengan pembetulan faktor kuasa (PFC) adalah dicadangkan 

sebagai pemacu LED untuk penggunaan pencahayaan jalan. Dalam topologi ini, 

sepasang litar boost yang berkongsi induktor tunggal digabungkan sebagai peringkat 

PFC dan kemudian disepadukan dengan tetimbang separuh LLC penukar salunan. 

Tiga jenis litar penerus dicadangkan bagi pembetulan pada sisi-menengah; 

gelombang-penuh tetimbang penerus, gelombang-penuh voltan pendua penerus dan 

dua gelombang-separuh penerus. Kesemua litar penerus mempunyai kelebihan 

masing-masing dan menghapuskan keperluan pengubah pusat-tetapan dalam reka 

bentuk litar. Suis kuasa dipandu oleh voltan-tinggi pengawal salunan IC L6598 dengan 

hampir 0.5 kitaran tugas dan masa selang yang kecil. Kesemua pemacu-pemacu LED 

yang dicadangkan telah diuji di dalam makmal untuk membekalkan 12 LED berkuasa 
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tinggi dari pemasukan ac voltan 240-V. Dari keputusan perbandingan, pemacu LED 

yang menggunakan gelombang-penuh voltan pendua penerus telah menunjukkan 

prestasi yang paling baik, diikuti oleh pemacu LED yang menggunakan gelombang-

penuh tetimbang penerus dan kemudian pemacu LED yang menggunakan dua 

gelombang-separuh penerus. Faktor kuasa yang tertinggi diukur adalah hampir 

kesepaduan pada 0.99, jumlah herotan harmonik (THD) yang terendah ialah 13.8%, 

kecekapan yang tertinggi ialah 93.39% dan bas voltan yang terendah ialah 330-V. 

Pembetulan faktor kuasa telah berjaya dicapai dan kecekapan penukaran yang tinggi 

telah diperolehi kerana ciri-ciri pensuisan lembut oleh pemacu LED. Tekanan voltan 

pada kapasitor bas telah dikurangkan kepada 1.36 kali daripada puncak-voltan-

pemasukan. Keupayaan malapan juga telah dicapai. Akhir sekali, pengurangan muatan 

kapasitor penyimpanan telah berjaya dengan riak arus keluaran dalam julat yang boleh 

diterima untuk pencahayaan LED tanpa kerlipan. 
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SINGLE-STAGE LED DRIVERS BASED ON INTEGRATED BCM BOOST 

AND LLC CONVERTERS FOR STREET LIGHTING 

 

ABSTRACT 

 

Electrical lighting has been an important technology to modern society. Given 

the increasing concerns about environmental and energy saving issues, light-emitting-

diode (LED) has become the research focus due to the features of mercury elimination 

and high energy efficiency compared to conventional lamps. Performance aspects of 

LED lighting are related with LED driver, thus an appropriate converter should be 

designed to power up the LEDs with good input power factor and high efficiency. To 

achieve these elements, single-stage alternating current to direct current (AC-DC) 

converter with power factor correction (PFC) is proposed as LED driver for application 

in street lighting. In this topology, a pair of boost circuits which share a single inductor 

are combined as a PFC stage and then integrated with half-bridge LLC resonant 

converter. Three kinds of rectifier circuits are proposed for the secondary-side 

rectification; full-wave bridge rectifier, full-wave voltage doubler rectifier and dual 

half-wave rectifiers. All rectifier circuits have their own advantages and remove the 

requirement of center-tapped transformer in circuit design. The power switches are 

driven by a high-voltage resonant controller IC L6598 with nearly 0.5 duty cycle and 

a small dead time. All proposed LED drivers have been tested in the laboratory for 

supplying 12 high-power LEDs from ac input voltage of 240-V. From the comparison 

results, LED driver using full-wave voltage doubler rectifier has shown the best 

performances, followed by LED driver using full-wave bridge rectifier and then LED 

driver using dual half-wave rectifiers. The highest power factor measured is almost 
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unity at 0.99, the lowest total harmonic distortion (THD) is 13.8%, the highest 

efficiency is 93.39% and the lowest bus voltage is 330-V. The power factor correction 

was successfully achieved and high conversion efficiency was obtained due to soft-

switching characteristics of the LED driver. The voltage stress on bus capacitor is 

considerably reduced to 1.36 times of the input-peak-voltage. The dimming capability 

was also accomplished. Lastly, the minimization of storage capacitance was successful 

with an acceptable range of output current ripple for flicker-less LED lighting. 
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