
CONSTRAINT LOSS ESTIMATION SCHEMES IN 

DEEP AND SHALLOW THREE-DIMENSIONAL 

CRACK TIP FIELDS 

 

 

 

 

 

 

 

 

LEONG KARH HENG 

 

 

 

 

 

 

 

 

UNIVERSITI SAINS MALAYSIA 

2017 

 



 

 

CONSTRAINT LOSS ESTIMATION SCHEMES IN DEEP AND SHALLOW 

THREE-DIMENSIONAL CRACK TIP FIELDS 

 

 

 

 

 

 

by 

 

 

 

 

 

 

LEONG KARH HENG 

 

 

 

 

 

 

 

Thesis submitted in fulfillment of the  

requirements for the degree  

of Master of Science 

 

 

 

 

 

 

 

August 2017 



 

ii 
 

ACKNOWLEDGEMENTS 

This thesis is dedicated to everyone who embarks the journey of expanding the 

collection of knowledge and passion in carrying out this project.  

 First and foremost, highest gratitude is conveyed to Dr. Feizal Yusof, my 

project supervisor and thesis advisor, for seeing the promise of this thesis and 

achieving research conducted under his watchful eyes. His guidance and patience 

throughout the time are truly appreciated. Besides, his invaluable support and 

insightful suggestions in my numerical analysis, contributed tremendously to my 

project. 

 In addition, a sincere appreciation is delivered to Dr. -Ing Muhammad Razi 

Abdul Rahman for his continuous technical support on the High Performance 

Computing Cluster (HPC) in helping me to complete the project. 

I would also like to thank the Ministry of Higher Education, Malaysia and the 

Institute of Postgraduate Studies, Universiti Sains Malaysia for providing me the 

financial support through MyBrain15 and Graduate Assistant Scheme grant 

respectively. 

 Last but not least, appreciations are dedicated to my coursemates and other 

friends for their inputs, supports and friendships. Not forgetting my lovely family, my 

deepest appreciation to them for their great patience and support over the years.  

 
 

 

 

 

 

 

 

 

 



 

iii 
 

TABLE OF CONTENTS 

Page 

 

1.1 Fracture Mechanics 1 

1.2 Problem Statement 2 

1.3 Objectives 4 

1.4 Scope of Work 4 

 

2.1  Fundamentals of Deformation 6 

2.1.1 Stress 6 

2.1.2 Strain 10 

2.1.3 Elastic Constitutive Relation 11 

2.1.4 Plane States of Stress and Strain 13 

2.1.5 Yield Criterion 15 

2.1.6 Elastic-Plastic Constitutive Relation 17 

2.2 Linear Elastic Fracture Mechanics (LEFM) 19 



 

iv 
 

2.2.1 Energy Based Approach 19 

2.2.2 Stress Analysis of Cracks 21 

2.2.3 Stress Intensity Factor, 𝐾 24 

2.3 Elastic-Plastic Fracture Mechanics (EPFM) 28 

2.3.1 Crack Tip Slip Line Fields 29 

2.3.2 𝐽-Integral 32 

2.3.3 Hutchinson, Rice & Rosengren (HRR) Fields 34 

2.3.4 𝐽-Dominance 35 

2.4 Two-Parameter Fracture Mechanics 37 

2.4.1  𝑇-stress 38 

2.4.2 Determination of 𝑇-stress 39 

2.4.3 𝐾 − 𝑇 Fields 41 

2.4.4 𝐽 − 𝑇 Fields 45 

2.4.5 𝐽 − 𝑄 Fields 46 

2.4.6 𝐽 − 𝐴2 Fields 50 

2.5 Characterization of Three-Dimensional Elastic-Plastic Crack Tip Fields 52 

2.5.1 Three-Dimensional 𝐽-integral 52 

2.5.2 Three-Dimensional 𝑇-stress 55 

2.5.3 Three-Dimensional 𝑄 parameter 57 

2.5.4 Three-Dimensional 𝐴2 parameter 59 

2.6 Corner Singularity Field 62 

2.7 Characterization of Three-Dimensional Constraint Loss 65 

2.7.1 𝑇𝑧 Parameter 66 

2.7.2 𝐴𝑐 Parameter 71 

2.7.3 𝐴𝑝 Parameter 73 



 

v 
 

2.7.4 𝐽𝑙𝑜𝑐/𝑧𝜎0 Parameter 75 

2.8 Summary 79 

 

3.1 Model Geometry 81 

3.2 Finite Element Modelling 83 

3.3 Node Labelling Scheme 88 

3.4 Mesh Convergence Analysis 89 

3.5 Numerical Analysis 90 

3.6 Material Properties 91 

3.7 Boundary Conditions 93 

3.8 Extraction and Processing of Data 102 

3.9 Benchmarking of Linear Elastic Crack Tip Models 104 

3.10 Benchmarking of Elastic-Plastic Crack Tip Models 107 

 

4.1 Asymptotic Non-Hardening Crack Tip Fields 110 

4.1.1 Normal Stresses 112 

4.1.2 Shear Stresses 123 

4.1.3 Deviatoric Stress 135 

4.1.4 Asymptotic Crack Tip fields at the Free Surface ( 𝑥3/𝐵 = 0.5) 136 

4.1.5 Constraint Estimation Scheme for 𝜎𝜃𝜃 at 𝜃 = 0∘ 138 

4.2 𝐽 − 𝑇𝑧 Characterization for Strain Hardening Materials 142 

4.2.1 Derivation of the 𝐽 − 𝑇𝑧 Approach 142 

4.2.2 Convergence of the 𝐽 − 𝑇𝑧 Approach 156 

4.2.3 Validity of the 𝐽 − 𝑇𝑧 Appproach 157 



 

vi 
 

4.2.4 Validity of the 𝐽 − 𝑇z − 𝑄 Approach 163 

4.3 𝐽 − ∆𝜎 Characterization of Three-Dimensional Crack Tip Fields 167 

4.3.1 Description of 𝑇𝑧 along a Crack Front 168 

4.3.2 Description of 𝜎𝜃𝜃 and 𝜎𝑚 along a Crack Front 171 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vii 
 

LIST OF TABLES 

Page 

Table 2.1 Values of 𝑇/𝜎 for single edge notched bend bar (SENB) 

and center cracked panel (CCP) after (Sherry et al, 1995). 

39 

Table 2.2 Values of 𝑎1, 𝑎2 and 𝛼𝑛 constants corresponding to 𝑛 =
3, 6, 13 and ∞ after (Karstensen, 1995). 

50 

Table 2.3 Values of  𝑘2 constant corresponding to 𝑛 = 3, 6, 13, ∞ 

at 𝑎 𝑊⁄ = 0.1, 0.2, 0.3, 0.5 after (Karstensen, 1995). 

50 

Table 3.1 The form factors of the SENB and the CCP models. 83 

Table 3.2 Configurations of element layers for various 𝑎/𝑊 ratios. 88 

Table 3.3 Number of elements for the models with various 𝑎/𝑊 

ratios. 

90 

Table 3.4 The plastic deformation levels, 𝜇 characterized in terms 

of the ratio of loading level to the plastic limit load, 𝑃/𝑃0 

for the SENB and CCP models with 𝑛 = 3 at various 

𝑎/𝑊 configurations. 

97 

Table 3.5 The plastic deformation levels, 𝜇 characterized in terms 

of the ratio of loading level to the plastic limit load, 𝑃/𝑃0 

for the SENB and CCP models with 𝑛 = 6 at various 

𝑎/𝑊 configurations. 

98 

Table 3.6 The plastic deformation levels, 𝜇 characterized in terms 

of the ratio of loading level to the plastic limit load, 𝑃/𝑃0 

for the SENB and CCP models with 𝑛 = 13 at various 

𝑎/𝑊 configurations. 

99 

Table 3.7 The plastic deformation levels, 𝜇 characterized in terms 

of the ratio of loading level to the plastic limit load, 𝑃/𝑃0 

for the SENB and CCP models with 𝑛 = ∞ at various 

𝑎/𝑊 configurations. 

100 

Table 3.8 The plastic deformation levels, 𝜇 characterized in terms 

of the plastic zone size, 𝑟𝑝/𝐵  for the SENB and CCP 

models with 𝑛 = 3,  6, 13, ∞  at various 𝑎/𝑊 

configurations. 

101 

Table 3.9 Labels of data variables used in the Python script and 

their associated definitions. 

103 



 

viii 
 

Table 3.10 Comparisons between the finite element results and the 

fully plastic solutions from (McClintock, 1971). 

108 

Table 4.1 Values of 𝑐𝑡 for each crack configuration in the models 

with 𝐵/(𝑊 − 𝑎)= 1. 

140 

Table 4.2 Comparisons between the 𝐼𝑛  function of the 𝐽 − 𝑇𝑧 

approach developed in this study and (Hutchinson, 

1968b). 

155 

Table 4.3 Comparisons between the singularity, (𝑠−2) of the 𝐽 −𝑇𝑧 

approach developed in this study and (Guo, 1993b). 

155 

Table 4.4 Range of strain hardening exponent, 𝑛  where 𝐽 − 𝑇𝑧 

solutions converged. 

157 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ix 
 

LIST OF FIGURES 

Page 

Figure 2.1 Stress components referred to Cartesian coordinates 

axes. 

7 

Figure 2.2 Stress components referred to cylindrical coordinates 

axes. 

9 

Figure 2.3 Plane stress condition in a stretched thin plate. 14 

Figure 2.4 Plane strain condition in a loaded long prismatic body. 15 

Figure 2.5 Elliptical hole in an infinite plate. 22 

Figure 2.6 The plane strain Westergaard crack tip stress fields for 

a center cracked infinite plate under a biaxial loading. 

24 

Figure 2.7 Illustrations of three modes of loading. 25 

Figure 2.8 Effect of specimen thickness on 𝐾𝑐. 28 

Figure 2.9 Prandtl plane strain slip line field at region around a 

crack tip. 

30 

Figure 2.10 Plane stress slip line field with incomplete plasticity 

after (Sham & Hancock, 1999). 

32 

Figure 2.11 Arbitrary contour, Γ surrounding a crack tip. 33 

Figure 2.12 Illustrations of the SENB and CCP specimens with 

their corresponding slip patterns (bold lines) at the 

crack tips (McClintock, 1971). 

36 

Figure 2.13 Effect of 𝑇-stress on the slip line field after (Du & 

Hancock, 1991). 

44 

Figure 2.14 Effect of 𝑇-stress on the plastic zone shape after (Du 

& Hancock, 1991). 

44 

Figure 2.15 Variation of biaxiality factor in thin elastic plate, 𝛽𝑡ℎ𝑖𝑛 

after (Nakamura & Parks, 1992). 

57 

Figure 2.16 The angular and radial variation of 𝑄  near the free 

surface of the MBLF with 𝑟𝑝/𝑡 ≈ 1  after (Yuan & 

Brocks, 1998). 

 
 

59 



 

x 
 

Figure 2.17 Plot of hydrostatic stress as a function of 𝐴2  at 

𝑟𝜎0/𝐽 = 2 and 𝜃 = 0∘ under a) a low load (𝐽/𝜎0𝜀0𝑡 =
1) and b) a high load (𝐽/𝜎0𝜀0𝑡 = 10) after (Kim et al, 

2001). 

60 

Figure 2.18 Variation of 𝐴2 through the crack front of a) the deep 

square SENB specimen, b) rectangular SENB 

specimen and c) the shallow square SENB specimen 

after (Kim et al, 2003). 

61 

Figure 2.19 Corner singularity coordinate system. 63 

Figure 2.20 Plot of dimensionless function 𝑔𝑖𝑗 after (Nakamura & 

Parks, 1988) and the corresponding function by 

(Benthem, 1975) as indicated by the broken line. 

65 

Figure 2.21 Schematic illustration of equivalent thickness concept 

after (Zhao & Guo, 2012). 

68 

Figure 2.22 Comparison between the thickness variation of 𝑇𝑧 

from equation (2.93) and the finite element results 

from (Nakamura & Parks, 1990) after (Guo, 1995). 

69 

Figure 2.23 The distribution of 𝑇𝑧 along the crack front of SENT 

with a) 𝑎/𝑊 = 0.3, a) 𝑎/𝑊 = 0.5 and a) 𝑎/𝑊 = 0.7 

after (Wang et al, 2014a). 

71 

Figure 2.24 Plot of the fracture toughness, 𝐽𝑐/𝐽𝑟𝑒𝑓  against 

√𝐴𝑐 𝐴𝑟𝑒𝑓⁄  after (Mostafavi et al, 2010). 

72 

Figure 2.25 Unified 𝐽𝐼𝑐/𝐽𝑟𝑒𝑓  - √𝐴𝑝  reference line for different 

specimen geometries after (Yang et al, 2014). 

74 

Figure 2.26 Illustration of 𝑧  in relation to 𝑥3  in a cracked 

geometry. 

76 

Figure 2.27 The non-hardening opening stress, 𝜎𝜃𝜃  and mean 

stress, 𝜎𝑚  at different sections (𝑧/𝑡 ) of SENB and 

CCP as indicated by different markers. The stresses 

obtained from the specimens with 𝑡/(𝑊 − 𝑎)= 0.1, 1 

are represented by the non-filled and filled markers 

respectively after (Yusof & Hancock, 2009). 

77 

Figure 3.1 Schematics of the SENB and the CCP models 

implemented in the finite element analysis (only the 

shaded region was modelled). 

82 

Figure 3.2 Flow chart for the process flow of current study. 82 

Figure 3.3 Flow of finite element models’ generation processes. 84 



 

xi 
 

Figure 3.4 Illustration of an 8-noded quadrilateral element. 85 

Figure 3.5 Meshing pattern applied in each 𝑎/𝑊 configuration. 85 

Figure 3.6 Degeneration of quadrilateral element into wedge 

element at crack tip. 

86 

Figure 3.7 Example of the element connectivity for a 20-noded 

hexahedral element. 

87 

Figure 3.8 Schematic of the technical specifications for the HPC 

cluster. 

90 

Figure 3.9 HPC cluster in the School of Mechanical Engineering, 

Universiti Sains Malaysia. 

91 

Figure 3.10 The engineering stress-strain curves for various 𝑛. 93 

Figure 3.11 Comparison of the stress intensity factor, 𝐾𝐼 

calculated from the analytical solutions and finite 

element analysis for the a) SENB and b) CCP models 

of 𝐵/(𝑊 − 𝑎)= 1, 0.05 at 𝑎/𝑊= 0.1, 0.2, 0.3 and 0.5. 

105 

Figure 3.12 Comparison of the normalized 𝑇-stress , 
𝑇

𝐾𝐼 √𝜋𝑡⁄
 

calculated from the analytical solutions and the finite 

element analysis for the a) SENB and b) CCP models 

of 𝐵/(𝑊 − 𝑎)=1, 0.05 at 𝑎/𝑊= 0.1, 0.2, 0.3 and 0.5. 

107 

Figure 3.13 Radial distribution of 𝑇𝑧 extracted from the midplane 

(𝑥3/𝐵 = 0) of the SENB models (𝑎/𝑊 = 0.5, 𝑛 = 6) 

with thicknesses, 𝐵/(𝑊 − 𝑎)=1 and 0.05. 

109 

Figure 4.1 Finite element models with 𝐵/(𝑊 − 𝑎)= 1 and 0.05. 110 

Figure 4.2 Illustrations of coordinate systems for asymptotic 

crack tip fields. 

111 

Figure 4.3 Angular distribution of 𝜎𝜃𝜃 at different sections of the 

(a-d) SENB, (e-h) CCP models ( 𝐵/(𝑊 − 𝑎 )= 1) 

with 𝑎/𝑊= 0.5, 0.3, 0.2 and 0.1. 

114 

Figure 4.4 Angular distribution of 𝜎𝑟𝑟 at different sections of the 

(a-d) SENB, (e-h) CCP models ( 𝐵/(𝑊 − 𝑎 )= 1) 

with 𝑎/𝑊= 0.5, 0.3, 0.2 and 0.1. 

115 

Figure 4.5 Angular distribution of 𝜎𝑚 at different sections of the 

(a-d) SENB, (e-h) CCP models ( 𝐵/(𝑊 − 𝑎 )= 1) 

with 𝑎/𝑊= 0.5, 0.3, 0.2 and 0.1. 

116 

Figure 4.6 Thickness distribution of 𝑇-stress  in the SENB 

models with 𝐵/(𝑊 − 𝑎)=1 at 𝑎/𝑊= 0.5, 0.3, 0.2 and 

117 



 

xii 
 

0.1. The bold line indicates the two-dimensional plane 

strain  𝑇-stresses given by (Sherry et al, 1995) for 

each 𝑎/𝑊 ratio. 

Figure 4.7 Thickness distribution of 𝑇-stress in the CCP models 

with 𝐵/(𝑊 − 𝑎) =1 at 𝑎/ 𝑊= 0.5, 0.3, 0.2 and 0.1. 

The bold line indicates the two-dimensional plane 

strain  𝑇-stresses given by (Sherry et al, 1995) for 

each 𝑎/𝑊 ratio. 

117 

Figure 4.8 Angular distribution of 𝜎𝜃𝜃 at different sections of the 

(a-d) SENB, (e-h) CCP models (𝐵/(𝑊 − 𝑎)= 0.05) 

with 𝑎/𝑊= 0.5, 0.3, 0.2 and 0.1. 

119 

Figure 4.9 Angular distribution of 𝜎𝑟𝑟 at different sections of the 

(a-d) SENB, (e-h) CCP models (𝐵/(𝑊 − 𝑎)= 0.05) 

with 𝑎/𝑊= 0.5, 0.3, 0.2 and 0.1. 

120 

Figure 4.10 Angular distribution of 𝜎𝑚 at different sections of the 

(a-d) SENB, (e-h) CCP models (𝐵/(𝑊 − 𝑎)= 0.05) 

with 𝑎/𝑊= 0.5, 0.3, 0.2 and 0.1. 

121 

Figure 4.11 Thickness distribution of 𝑇-stress  in the SENB 

models with 𝐵/(𝑊 − 𝑎)= 0.05 at 𝑎/𝑊= 0.5, 0.3, 0.2 

and 0.1. The bold line indicates the two-dimensional 

plane strain 𝑇-stresses given by (Sherry et al, 1995) 

for each 𝑎/𝑊 ratio. 

122 

Figure 4.12 Thickness distribution of 𝑇-stress in the CCP models 

with 𝐵/(𝑊 − 𝑎)= 0.05 at 𝑎/𝑊= 0.5, 0.3, 0.2 and 0.1. 

The bold line indicates the two-dimensional plane 

strain  𝑇-stresses given by (Sherry et al, 1995) for 

each 𝑎/𝑊 ratio. 

122 

Figure 4.13 Angular distribution of 𝜎𝑟𝜃 at different sections of the 

(a-d) SENB, (e-h) CCP models ( 𝐵/(𝑊 − 𝑎 )= 1) 

with 𝑎/𝑊= 0.5, 0.3, 0.2 and 0.1. 

125 

Figure 4.14 Angular distribution of 𝜎𝑟𝜃 at different sections of the 

(a-d) SENB, (e-h) CCP models (𝐵/(𝑊 − 𝑎)= 0.05) 

with 𝑎/𝑊= 0.5, 0.3, 0.2 and 0.1. 

126 

Figure 4.15 Angular distribution of 𝜎 at different sections of the 

(a-d) SENB, (e-h) CCP models ( 𝐵/(𝑊 − 𝑎 )= 1) 

with 𝑎/𝑊= 0.5, 0.3, 0.2 and 0.1. 

127 

Figure 4.16 Angular distribution of 𝜎 at different sections of the 

(a-d) SENB, (e-h) CCP models (𝐵/(𝑊 − 𝑎)= 0.05) 

with 𝑎/𝑊= 0.5, 0.3, 0.2 and 0.1. 

128 



 

xiii 
 

Figure 4.17 Angular distribution of 𝜎13 at different sections of the 

(a-d) SENB, (e-h) CCP models ( 𝐵/(𝑊 − 𝑎 )= 1) 

with 𝑎/𝑊= 0.5, 0.3, 0.2 and 0.1. 

130 

Figure 4.18 Angular distribution of 𝜎13 at different sections of the 

(a-d) SENB, (e-h) CCP models (𝐵/(𝑊 − 𝑎)= 0.05) 

with 𝑎/𝑊= 0.5, 0.3, 0.2 and 0.1. 

131 

Figure 4.19 Angular distribution of 𝜎23 at different sections of the 

(a-d) SENB, (e-h) CCP models ( 𝐵/(𝑊 − 𝑎 )= 1) 

with 𝑎/𝑊= 0.5, 0.3, 0.2 and 0.1. 

132 

Figure 4.20 Angular distribution of 𝜎23 at different sections of the 

(a-d) SENB, (e-h) CCP models (𝐵/(𝑊 − 𝑎)= 0.05) 

with 𝑎/𝑊= 0.5, 0.3, 0.2 and 0.1. 

133 

Figure 4.21 The thinning and elongation effect at the crack front of 

a finite element cracked model under a tensile load. 

134 

Figure 4.22 The shear stress components, 𝜎13  and 𝜎23  acting on 

the planes with different orientation in a loaded 

cracked model. 

134 

Figure 4.23 Angular distribution of 𝑠𝜃𝜃  ( 𝑟 = 0 ) at different 

sections of the models within 0∘ ≤ 𝜃 ≤ 45∘. 

136 

Figure 4.24 Radial distribution of 𝑠𝜃𝜃  ( 𝜃 = 0∘ ) at different 

sections of all models. 

136 

Figure 4.25 Asymptotic crack tip field at the free surface (𝑥3/𝐵 = 

0.5) of the (a, c) SENB and (b, d) CCP models with 

𝐵/(𝑊 − 𝑎) =1 and 0.05 at 𝑎/ 𝑊= 0.5, 0.3, 0.2 and 

0.1. 

138 

Figure 4.26 Distribution of 𝜎𝜃𝜃  at 𝜃 = 0∘  and 𝑟 = 0 along the 

crack of a) SENB, b) CCP models (𝐵/(𝑊 − 𝑎)=1) 

with 𝑎/𝑊= 0.5, 0.3, 0.2 and 0.1. 

139 

Figure 4.27 Fitting curve for 𝑄𝑐 against 𝑇/𝜎𝑎𝑝𝑝 at the midplane of 

the SENB and CCP models (𝐵/(𝑊 − 𝑎) =1). 

140 

Figure 4.28 Distribution of 𝜎𝜃𝜃  at 𝜃 = 0∘  and 𝑟 = 0 along the 

crack of a) SENB, b) CCP models (𝐵/(𝑊 − 𝑎)= 0.05) 

with 𝑎/𝑊= 0.5, 0.3, 0.2 and 0.1. 

141 

Figure 4.29 Flow of algorithm to calculate the 𝜎̃𝑖𝑗  in 𝐽 − 𝑇𝑧 

approach. 

150 

Figure 4.30 The values of 𝑄∗  corresponding to the midplane 

(𝑥3/𝐵 = 0) of the (a-b) SENB and (c-d) CCP models 

with various thicknesses, (𝐵/(𝑊 − 𝑎)=1, 0.05), 𝑎/𝑊 

159 



 

xiv 
 

ratios and strain hardening exponents, 𝑛 at 𝑟𝜎0/𝐽𝑙𝑜𝑐=2 

and 𝑟𝜎0/𝐽𝑙𝑜𝑐 = 5. 

Figure 4.31 Thickness distribution of 𝑇-stress  in the strain 

hardening SENB, CCP models with Poisson’s ratio, 

𝑣 = 0.3. 

160 

Figure 4.32 The values of 𝑄∗ corresponding to the quarter plane 

( 𝑥3/𝐵 =  0.25) of the (a-b) SENB and (c-d) CCP 

models with various thicknesses, ( 𝐵/(𝑊 − 𝑎) =1, 

0.05), 𝑎/𝑊 ratios and strain hardening exponents , 𝑛 

at 𝑟𝜎0/𝐽𝑙𝑜𝑐=2 and 𝑟𝜎0/𝐽𝑙𝑜𝑐 = 5. 

161 

Figure 4.33 The values of 𝑄∗  corresponding to the free surface 

(𝑥3/𝐵 = 0.5) of the (a-b) SENB and (c-d) CCP models 

with various thicknesses, (𝐵/(𝑊 − 𝑎)=1, 0.05), 𝑎/𝑊 

ratios and strain hardening exponents, 𝑛 at 𝑟𝜎0/𝐽𝑙𝑜𝑐=2 

and 𝑟𝜎0/𝐽𝑙𝑜𝑐 = 5. 

162 

Figure 4.34 The comparisons between the finite element (FE) 

results and the 𝐽 − 𝑇𝑧 −𝑄 solutions at the 

midplane (𝑥3/𝐵=0) of the (a-b) SENB and (c-d) CCP 

models (𝐵/(𝑊 − 𝑎)=1) with various 𝑎/𝑊 ratios and 

strain hardening  exponents, 

𝑛 at 𝑟𝜎0/ 𝐽𝑙𝑜𝑐=2 and 𝑟𝜎0/𝐽𝑙𝑜𝑐 = 5. 

164 

Figure 4.35 The comparisons between the finite element (FE) 

results and the 𝐽 − 𝑇𝑧 −𝑄 solutions at the 

midplane (𝑥3/𝐵=0) of the (a-b) SENB and (c-d) CCP 

models  (𝐵/(𝑊 −𝑎)= 0.05) with various  𝑎/𝑊 ratios 

and strain hardening  exponents, 

𝑛 at 𝑟𝜎0/ 𝐽𝑙𝑜𝑐=2 and 𝑟𝜎0/𝐽𝑙𝑜𝑐 = 5. 

166 

Figure 4.36 Plot of 𝑇𝑧  as a function of 𝐽𝑙𝑜𝑐/𝑧𝜎0  at 𝑟𝜎0/𝐽𝑙𝑜𝑐 = 2 

and 𝑟𝜎0/𝐽𝑙𝑜𝑐 = 5  in the SENB, CCP models with 

strain hardening exponents (𝑛 = 3, 6, 13, ∞) and a) 

𝑎/𝑊 = 0.5, b) 𝑎/𝑊 = 0.3, c) 𝑎/𝑊 = 0.2, d) 𝑎/𝑊 = 

0.1. 
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Figure 4.37 Plot of normalized 𝜎𝜃𝜃 at 𝑟𝜎0/𝐽𝑙𝑜𝑐 = 2  as a function 

of 𝐽𝑙𝑜𝑐/𝑧𝜎0  at different sections of SENB ( 𝑎/𝑊 = 

0.5, 𝑛 = 13 ). The top and bottom dashed lines 

indicate the plane strain and plane stress HRR values 

respectively. 
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Figure 4.38 Plot of normalized 𝜎𝜃𝜃 against 𝐽𝑙𝑜𝑐/𝑧𝜎0 at 𝑟𝜎0/𝐽𝑙𝑜𝑐 =
2 for the (a-d) SENB, (e-h) CCP models with 𝑛 = 3, 
6, 13, ∞ and 𝑎/𝑊 = 0.5, 0.3, 0.2, 0.1. 
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Figure 4.39 Plot of normalized 𝜎𝜃𝜃 against 𝐽𝑙𝑜𝑐/𝑧𝜎0 at 𝑟𝜎0/𝐽𝑙𝑜𝑐 =
5 for the (a-d) SENB, (e-h) CCP models with 𝑛 = 3, 
6, 13, ∞ and 𝑎/𝑊 = 0.5, 0.3, 0.2, 0.1. 
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Figure 4.40 Plot of normalized 𝜎𝑚 against 𝐽𝑙𝑜𝑐/𝑧𝜎0 at 𝑟𝜎0/𝐽𝑙𝑜𝑐 =
2 for the (a-d) SENB, (e-h) CCP models with 𝑛 = 3, 
6, 13, ∞ and 𝑎/𝑊 = 0.5, 0.3, 0.2, 0.1. 
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Figure 4.41 Plot of normalized 𝜎𝑚 against 𝐽𝑙𝑜𝑐/𝑧𝜎0 at 𝑟𝜎0/𝐽𝑙𝑜𝑐 =
5 for the (a-d) SENB, (e-h) CCP models with 𝑛 = 3, 
6, 13, ∞ and 𝑎/𝑊 = 0.5, 0.3, 0.2, 0.1. 
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LIST OF ABBREVIATIONS 

BLF Boundary layer formulation 

CCP Center cracked tension panel 

CT Compact tension specimen 

EPFM Elastic-plastic fracture mechanics 

EDI Equivalent domain integral 

HPC High performance computing 

HRR Hutchinson, Rice & Rosengren 

LEFM Linear elastic fracture mechanics 

LGC Large geometry change 

LSY Large scale yielding 

MBLF Modified boundary layer formulation 

SENB Single edge notched bend bar 

SENT Single edge notched tension specimen 

SSY Small scale yielding 

VCE Virtual crack extension 
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LISTS OF SYMBOLS 

𝑎 Crack length 

𝑎𝑒𝑓𝑓 Effective crack length 

𝐵 Physical specimen thickness 

𝑐 Uncracked ligament length 

𝐶𝑖𝑗𝑘𝑙 

(𝑖, 𝑗, 𝑘, 𝑙=1,2,3) 

 

Stiffness tensor 

𝐸 Young’s Modulus/Modulus of elasticity 

𝑓𝑖𝑗(𝑖, 𝑗= 𝑟, 𝜃, 𝑧) 

 

Angular stress function in (𝑟, 𝜃, 𝑧) cylindrical coordinate system 

𝑔𝑖𝑗(𝑖, 𝑗= 𝑟, 𝜃, 𝑧) Angular stress function for corner singularity fields 

𝐺 Shear modulus 

 

𝒢 Energy released to propagate a crack 

 

𝐻 Specimen height 

𝐼 (subscript) Designation for mode I 

𝐼(𝑠) Interaction integral 

𝐼𝑛 Dimensionless function in HRR fields and 𝐽 − 𝑇𝑧 fields 

𝐽 𝐽-integral 

𝐽𝑙𝑜𝑐 Local 𝐽-integral along a crack front 

𝑘 Yield stress in shear 

𝐾 Stress Intensity Factor 

𝒦 Amplitude coefficient of stress dominant term 

𝑀 Global bending moment per unit thickness 

𝑛 Strain hardening exponent/rate 

𝑃 Applied load 
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𝑃0 Plastic limit load 

𝑟 Radial distance ahead of a crack tip 

𝑟𝑝 Plastic zone size 

𝑠 Order of stress singularity  

𝑆 Span between support of bend specimen 

𝑆𝑖 (𝑖=1,2,3) Principal deviatoric stress components 

𝑡 Physical specimen thickness 

𝑇 𝑇-stress 

𝑢𝑖 (𝑖=1,2,3) Displacement components in ( 𝑥1, 𝑥2, 𝑥3 ) Cartesian coordinate 

system 

 

𝑣 Poisson’s ratio 

𝑤 Strain energy density 

𝑊 Specimen width 

𝑊𝑠 Work required to create new crack surfaces 

𝑌 Crack calibration factor 

𝑧 Distance measured from the free surface of a specimen 

𝜎𝑎𝑝𝑝 Remotely applied stress 

𝜎𝑐𝑟 Critical stress for fracture to occur 

𝜎0 Yield strength/stress  

𝜎𝑖𝑗(𝑖, 𝑗=1,2,3)  Stress components in (𝑥1, 𝑥2, 𝑥3) Cartesian coordinate system 

𝜎𝑖𝑗(𝑖, 𝑗= 𝑟, 𝜃, 𝑧) Stress components in (𝑟, 𝜃, 𝑧) cylindrical coordinate system 

𝜎̃𝑖𝑗(𝑖, 𝑗= 𝑟, 𝜃, 𝑧) Dimensionless stress functions for HRR fields and 𝐽 − 𝑇𝑧 fields 

𝜎𝑒, 𝜎 von Mises stress 

𝜎𝑘𝑘 Volumetric stress 

𝜎𝑚 Mean stress 
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𝜀𝑖𝑗 (𝑖, 𝑗=1,2,3)  Strain components in (𝑥1, 𝑥2, 𝑥3) Cartesian coordinate system 

𝜀0 Yield strain 

𝛼 Material constant 

𝛽 Stress biaxiality ratio 

𝛽𝑡ℎ𝑖𝑛 Stress biaxiality ratio for thin specimen 

𝛽𝑐 Corner stress intensity factor 

𝛾𝑠 Surface energy per unit area 

𝛾𝑝 Plastic work done per unit area of crack surface area created 

𝛾𝑇𝑧
, 𝛾𝜎 Slope constants in the 𝐽 − ∆𝜎 approach 

𝜆 Strength of corner singularity field 

𝜇 Plastic deformation level 

𝛿𝑖𝑗 (𝑖, 𝑗=1,2)  Kronecker delta 

Φ Airy stress function 

Π Potential energy 

Γ Arbitrary contour around a crack tip 
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SKEMA ANGGARAN KEHILANAGN KEKANGAN DALAM MEDAN 

HUJUNG RETAKAN TIGA DIMENSI YANG DALAM DAN CETEK 

 

ABSTRAK 

Matlamat utama kajian ini adalah untuk memahami ciri-ciri kehilangan 

kekangan tiga dimensi dan melanjutkan pencirian skema anggaran kehilangan 

kekangan tiga dimensi seperti kaedah 𝐽 − 𝑇𝑧  dan 𝐽 − ∆𝜎  dalam retakan. Skema 

anggaran kehilangan kekangan tiga dimensi dalam medan di hujung retakan elastik 

plastik telah disiasat dalam kajian ini dengan menggunakan bar retak bawah beban 

lenturan (SENB) dan plat retak tengah bawah beban tegangan (CCP). Model tersebut 

telah ditakrifkan dengan sifat bahan pengerasan terikan, 𝑛 = 3,6,13 dan sifat bahan 

tanpa pengerasan (𝑛 → ∞). Kehilangan kekangan dalam medan tegasan di hujung 

retakan didapati berubah dalam model dengan panjang retakan yang berlainan, 

𝑎/𝑊 = 0.1, 0.2, 0.3, 0.5 and ketebalan yang berbeza, 𝐵/(𝑊 − 𝑎) = 0.05, 1. 

 Kehilangan kekangan di hujung retakan telah dikaji melalui pembandingan 

antara medan tegasan asimptotik bersifat tanpa pengerasan dengan penyelesaian 

hujung retakan terikan satah medan Prandtl dan penyelesaian hujung retakan tegasan 

satah Sham & Hancock. Kehilangan kekangan dalam satah didapati bertambah dengan 

tegasan 𝑇 negatif apabila nisbah 𝑎/𝑊  dikecilkan. Penurunan ketebalan model juga 

didapati mengurangkan kehilanagan kekangan dalam satah kerana tegasan 𝑇 

meningkat dalam model yang nipis. Kehilangan kekangan luar satah diperhatikan di 

kawasan dari satah tengah ke permukaan bebas dalam semua model. Medan tegasan 

di permukaan bebas tidak dapat mencapai keadaan tegasan satah penuh kerana 

dipengaruhi oleh medan singulariti penjuru. Medan tegasan deviatorik adalah unik 

dalam semua model dan tidak bergantung pada kehilangan kekangan dalam satah dan 
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luar satah. Skema anggaran kehilangan kekangan juga dikemukakan untuk tegasan 

lingkar di depan retakan dengan menghubungkaitkan kehilanagan kekangan dengan 

magnitud tegasan 𝑇. 

 Keberkesanaan kaedah 𝐽 − 𝑇𝑧 dan kaedah 𝐽 − ∆𝜎 dalam mencirikan medan di 

hujung retakan tiga dimensi juga dibincangkan.  Pemerolehan terperinci dan 

algorithma untuk mengira kaedah 𝐽 − 𝑇𝑧  telah ditunjukkan. Kaedah 𝐽 − 𝑇𝑧  didapati 

bahawa gagal menggambarkan medan di hunjung retakan model yang menunjukkan 

kehilangan kekangan dalam satah. Kaedah 𝐽 − 𝑇𝑧 − 𝑄  juga dikesahkan dengan 

mengunakan parameter 𝑄  terikan satah.  Kaedah 𝐽 − 𝑇𝑧 − 𝑄  didapati bahawa 

membuat anggaran berlebihan tentang kehilangan kekangan dalam satah dalam model 

nipis yang menunjukkan tegasan 𝑇  negatif seperti model CCP nipis.  Manakala, 

kaedah 𝐽 − ∆𝜎  adalah lebih bermanfaat kerana dapat menyifatkan kehilanagan 

kekangan dalam dan luar satah secara bersepadu dengan memplotkan tegasan paksi 

terhadap 𝐽𝑙𝑜𝑐/𝑧𝜎0  parameter. Penggunaan kaedah 𝐽 − 𝑇𝑧  memerlukan pertaburan 𝑇𝑧 

di depan retakan. Sebaliknya, aplikasi kaedah 𝐽 − ∆𝜎  adalah lebih mudah kerana 

kehilangan kekangan sepanjang retakan dapat dianggarkan melalui satu lengkungan 

unik untuk model yang mempunyai ketebalan yang berbeza.  
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CONSTRAINT LOSS ESTIMATION SCHEMES IN DEEP AND SHALLOW 

THREE-DIMENSIONAL CRACK TIP FIELDS 

 

ABSTRACT 

The primary goal of this study is to determine the three-dimensional constraint 

loss behavior and further extend the three-dimensional constraint loss estimation 

schemes of 𝐽 − 𝑇𝑧  and 𝐽 − ∆𝜎  approaches in three-dimensional crack tip fields 

consisting of various crack configurations. The three-dimensional constraint loss 

estimation schemes in elastic-plastic crack tip fields were examined for a single edge 

notched bend bar (SENB) and a center cracked panel in tension (CCP). The finite 

element models were characterized with a strain hardening material, 𝑛 = 3, 6, 13 and 

a non-hardening material, 𝑛 → ∞. The crack tip constraint loss was found to vary in 

the models with various crack length, 𝑎/𝑊 = 0.1, 0.2, 0.3, 0.5  and different 

thicknesses, 𝐵/(𝑊 − 𝑎) = 0.05, 1.  

Crack tip constraint loss was studied by comparing the non-hardening crack tip 

asymptotic fields with the plane strain Prandtl’s crack tip fields solutions and the plane 

stress Sham & Hancock’s crack tip solutions. The in-plane constraint loss increased 

with a more negative 𝑇-stress following the reduction of 𝑎/𝑊 ratio. The thin model 

exhibited smaller the in-plane constraint loss as 𝑇-stress was less negative. The out-

of-plane constraint loss occurred in all models at the region away from the midplane 

to the free surface. The radial and angular distribution of deviatoric stress field ahead 

of the crack tip was also found to be unique in all models and independent of the in-

plane and the out-of-plane constraint loss. A constraint estimation loss scheme at 𝜃 =

0∘ was proposed for the hoop stress along a crack front by correlating the constraint 

loss to the magnitude of the 𝑇-stress. 
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A detailed derivation and an algorithm to compute the 𝐽 − 𝑇𝑧 approach were 

shown. The 𝐽 − 𝑇𝑧  approach was unable to characterize the crack tip fields in the 

models that feature in-plane constraint loss and at the free surface due to a corner 

singularity field. The 𝐽 − 𝑇𝑧 − 𝑄  approach using a plane strain 𝑄  parameter was 

evaluated. It was found that the 𝐽 − 𝑇𝑧 − 𝑄  approach overestimated the in-plane 

constraint loss in a thin model with negative 𝑇-stress as seen in the thin CCP model. 

New equations were developed to extend the 𝐽 − ∆𝜎 approach in strain hardening 

models. The extended 𝐽 − ∆𝜎 approach offered a unified characterization of the in-

plane and out-plane constraint loss along a crack front by plotting the normal stresses 

against a dimensionless 𝐽𝑙𝑜𝑐/𝑧𝜎0 parameter. Unlike the 𝐽 − 𝑇𝑧 approach that required 

an exact distribution of 𝑇𝑧  along a crack front, the 𝐽 − ∆𝜎  approach is more 

advantageous as it can be applied immediately to approximate the constraint loss along 

a crack front by using a unified curve for the models with different thicknesses.  
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